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1. In this paper we study the behaviour of solutions of the equation 

(1) x" + ax" + bx' + h{x) = p{t) , 

where a > 0, Ь > 0 are constants with <з̂  > 4b, the functions h{x), p(t) have their 
first derivatives continuous for all real values of their arguments and are oscillatory 
in the following sense: 

for each argument и there exist such numbers ß^ > ocj^ > и > oc^^ > ß_^ that 

f{a,)< 0, f[ß,)>0, Д а _ , ) < 0 , fyß_,)>0, 

where/is either h[x) or p[t), и is either x or t and all roots of the restoring term h(x) 
are isolated. 

2. Our main tool for attacking the equation (1) will be the well-known Cauchy 
formula for the particular solution of nonhomogeneous linear differential equations 
with constant coefficients. 

Lemma 1. / / there exist such positive constants H, P that for all x e ^^ and t ^ 0 
the inequalities 

1) \h{x)\uH, 2) IKOI^-P 

hold, then each solution x(t) of the equation (1) satisfies the inequalities 

(2) lim sup \x'{t)\ S (Я + P)jb := D', 
t-^oo 

lim sup \x"{t)\ й 2{H + P)la := D". 
t-*oo 

Proof. Substituting у := x', we get from (1) the equation 

(3) 3;" + ay' + by== p{t) - h{x{t)) 



with solutions of the form 

lx'{t) = ly{t) = C,Q^^' + Qe^^^ + 
>t f,eiit-r) _ ^e2(t-T) Çt QQUt-z] 

Jo ^1 Q2 
[p{T)-h(x{T))]dT, 

where ^1,2 = ( — ̂  ± •^J{^^' ~ Щ)1^ ^^^ ^i» ^2 ^^^ arbitrary constants. 
Hence by virtue of l), 2), for Г ^ 0 we have not only 

I h - Qi 
\_p{x)-h{x{x))\éx 

but also 

(4) lim sup |x'(Oi й{Н + P)jb . 

Furthermore, putting z : = y\ we get from (3) the equation 

z' + az = p[t) - b x'{t) - h{x{t)) 

with solutions of the form 

jx^t) = lz{t) = CQ-"' + f е-" '̂-^>[/7(т) - b X'(T) - /<X(T))] dr , 
J Tx 

where С is an arbitrary constant and T^ a great enough number. 
Thus by virtue of 1), 2) and (4), for t ^ T̂  we have not only 

Г е-^-^^[Кт) " ЬхХт) - й(х(т))] drl ^ 2(Я + Р + |о(Т,)1) Г 
J г̂  I J : 

e - « ( f - t ) ^ ^ < 

but also 

^ f ( H + P + Kr , ) | ) ( l - e -«<-^^ ) ) , 

lim sup \xXt)\ S 2{H + P)/a , q.e.d. 

Lemma 2. Under the assumptions of Lemma 1, if 

1') |ft'(x)| ^ H' for all xem"-, 3) dr < 00 , 

where H' is a suitable constant, then every bounded solution x{i) of the equation 
(1) either satisfies the relation , 

(5) Um x{t) = X , lim. x'{i) = hm x"{t) = 0 {h{x) = 0) 

or there exists such a root x of h(x) that (x(t) — x) oscillates. 
Proof. Substituting a fixed bounded solution x(t) of (1) into (l) and integrating 

the result from Г̂  to ^ (T^ — a great enough number, whose magnitude will be speci-



fied later in (9)), we get the identity 

(6) Г h{x{T)) dt = -{b[x{t) - x(T,)] + a[x'{t) - x'(T,)] + x"{t) - x"(7;)} + 

+ г pir)dr{:^I{t)). 

Therefore, by virtue of the condition 3), the assertion of Lemma 1 and the bounded-
ness of x(t), there exists such a constant M^ that for t ^ T^ the relation 

(7) \l{t)\uM, i.e. /I(X(T)) dr < M. 

is satisfied. 
Now let us assume that x(t) does not converge to any root x of h{x): i.e., 

(8) lim sup \x{t) - 3c| > 0 
f->CXD 

and simultaneously, for t ^ T^, 
(9) h{x[t)) ^ 0 or /z(x(r)) й 0 . 
Then 

Я(^) := I к{х{т))ет (for ^ ^ T̂ ) 

evidently is a composed monotone function with a finite or infinite Hmit for ^ -> oo. 
Since (7) implies that the ''divergent case" can be disregarded, it follows from (9) 
that not only 

(7') hm f 1/I(X(T))| dr = lim I Г /I(X(T)) dil й M^ 

but also 

(8') lim inf \x{t) - xl = 0 
t->oo 

holds, because otherwise (i.e. if 
hm inf \x(t) - x| > 0) 

(9) together with the fact that the roots of h{x) are isolated would yield 

lim inf \h{x{t))\ = lim inf \h{x{t)) - h{x)\ > 0 , 

a contradiction to (7'). 
Thus (8) and (8') imply 

hm sup l^(x(r))| = hm sup \h{x{t)) — h{x)\ > 0 = lim inf j/i(x(r))[ 
f->oo t->oo f->oo 

and consequently there exists such a sequence {f,} ^ T^ and such a constant H > 0 



that (in what follows, d{x, y) denotes the distance between x and ĵ ) 

hold. Hence 

M. > lim 

a) lim inf d{ti, tt-1) > 0 , ß) |/i(x(r,))| ^ Й 
i-*ool~>ti-^ool 

|/Î(X(T))| dT = ^ \К^{Щ dt => lim sup \К4Щ ^( = О 
' = 2 j „ _ , • •^oo /= . ( , - *oo /J , ,_ j 

or (cf. a), ß)) 

H' lim sup \x'{t)\ ^ lim sup 
dx{t) ^ ^ 

lim sup 
dh{x{t)) 

dt 
= 00 . 

But according to the assertion of Lemma 1, this is impossible and that is why 
(x(t) — x) necessarily oscillates. 

The remaining part of our lemma follows immediately from the assertion 

(10) x{t) e (Ï:^"VO, OO) , lim sup \x^"\t)\ < oo , 

Mm \x(t}\ < 00 =» lim x^^\t) = 0 , 
t-»oo t-*co 

(where n ^ 2 is a natural number and fc = 1,..., (n — l)) , 

whose proof can be found e.g. in [l, p. 161]. This completes the proof. 

Lemma 3. Under the assumptions of Lemma 2 and if 

20 1/(01 g P' for all t^O, 2") lim sup \p{t)\ > 0 
f->-00 

hold, where P' is a suitable constant, then for every bounded solution x(t) of the 
equation (l) there exists such a root x of h{x) that {x{t) — x) oscillates. 

Proof. If Lemma 3 does not hold, then according to Lemma 2 (5) holds and the 
fourth derivative of x{t) satisfies 

x"\t) = p'{t) - ax'\i) - bx\i) - h\x) x\t) . 

But it can be readily checked that, by the ultimate boundedness of x'{t), x"(t), x'"{t) 
(see (2)) and Г), 2'), there exists such a constant D4 that 

lim sup \x"\i)\ й />4 , 
f-*oo 

which according to (10) gives the relations 
Hm x{t) = jc/ => lim h{x{t)) = h{x) = 0/, lim x^''\t) = 0 j = 1,2,3 
f-*oo f->oo t-*oo 

or 
lim sup \p{t)\ = lim sup \x"{t) + a x'̂ O + b x\t) + h{x{t))\ = 0, 

f->oo f->oo 

a contradiction to lim sup \p{t)\ > 0 (cf. 2'')), q.e.d. 



^ Po, lim sup \p{t)\ > О, 

3. Now we can give the principal result of our paper. 

Theorem. / / there exist such positive constants H, H\ P, P', PQ, R that for 
\x\ > R and t ^ 0 the following conditions are satisfied: 

1) \h{x)\ й H, \hXx)\ ^ H\ 

и о 

3) min [d(x„ x,+i), d(x„ x,_,)] > Ш-±^ p + ^ j + :^ ^ 
b \a bj b 

where x̂  are roots of h{x) with h'[xj^) > О and Xj^-i, Xj^+i denote the couple of 
adjacent roots of x^ (k = 0, ±2, ±4,. . .) , then all solutions x(^t) of the equation (1) 
are bounded and for each of them there exists such a root x of /г(х) that (x(t) —3c) 
oscillates. 

Proof. Let us assume, on the contrary, that x{t) is an unbounded solution of (l); 
i.e., for example, lim sup x(̂ ) = oo. 

t-»oo 

Lemma 1 implies the existence of such a number TQ ^ 0 great enough that for 
t^ To 

\хЩ UD' + 3,, \x%t)\ й D" + 82 , 
with 8i > 0, 82 > 0 small enough constants. 

Let Ti ^ To be the last point with x{T^ = Xj, (fc-even) and T2 > T^ be the first 
point with x(T2) = Xj^+i- If we integrate (1) from T^ to t, T^ ^ t ^ T2, we come to 

(11) [x'(0 - x^Pi)] + alxXt) - xXT,)] + b[x{t) - x(Ti)] + 

+ /г(х(т)) dr = р[т) dt 
Г1 JTi 

However, for T^ S t й T2 we have ft(x(r)) sgn x(^) ^ 0, whence we can obtain 
(multiplying (11) by sgn x) 

\x{t)\ й \x{T,)\ + ~ {D" + aD' + iPo] + 8 , 
b 

where e > 0 is an arbitrarily small constant, a contradiction to x(T2) = x̂ +̂i with 
respect to 3). 

Since the remaining part of our theorem immediately follows from Lemma 3, the 
proof is complete. 

4. In the end, let us note that in [2] we have dealt also with the case 

\p[t)\ df < 00 . 
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