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Boundedness on Stochastic Petri Nets

J. CAMPOS, F. PLO AND M. SAN MIGUEL#*

ABSTRACT. Stochastic Petri nets generalize the notion of queueing systems and are a useful
model in performance evaluation of paralle]l and distributed systems. We give necessary and
sufficient conditions for the boundedness of a stochastic process related to these nets.

1. INTRODUCTION

Petri nets are a formal tool for the modelling and validation of logical
properties of parallel and distributed systems (see Peterson [7] or Silva [8]
for general references). We consider a Petri net as being composed of a
finite set of places numbered from 1 to p, and a finite set of transitions
numbered from 1 to d. Each place can contain an integer number of
"tokens’. A p-tuple of null or positive integers X = (X',....X") will be
called a *marking’ and X' will be interpreted as the number of tokens in
place i. The evolution of the marking is determined by the firing of
transitions. We denote by ¢, the number (positive, null or negative) of
tokens added to place i when transition k is fired. The matrix C = (¢,),
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i=1,...,p, k=1,....d is called the incidence matrix of the net. A transition can
be fired only when there are enough resources in the system. That is, if
the number of tokens in each place is not negative after the firing.

Given a firable sequence of transitions s, we denote by § the d-tuple
which counts the number of times a transition &k (1<k<d)} occurs in s. The
marking evolution from an initial state X, can be represented by X = X,
+ C5. This equation is called the net firing equation and X is a reachable
marking from X,,.

Given a positive integer L, a place & in the net R with initial marking
X, is said to be L-bounded if X* < L for each reachable marking. The net
is said to be structurally bounded if for each initial X, and for each place
k there exists an integer L such that & is L-bounded.

A characterization of structural boundedness (see Brams [3]) can be
given:

Theorem 1.1 [3]. Let R be a Petri net with incidence matrix C. The
three following statements are equivalent:

i} R is structurally bounded.
ii) There is no g 2 0 such that Cg > 0.
iii ) There exists f > 0 such that f'C £ 0.

In order to be useful as a performance evaluation tool, a timing
interpretation has been added to the Petri net model, ieading to stochastic
Petri nets (see Molloy [5], Ajmone Marsan et al. [2], and Florin and
Natkin [4]).

The purpose of this paper is to give necessary and sufficient
conditions for the boundedness in mean of a stochastic process related to
the evolution of the markings of a stochastic Petri net. To achieve this
goal, we use tools that have been applied to the problem of optimal
stopping of a process in discrete time, and particularly, the process of
essential upper bounds (see Neveu [6]). The results obtained generalize
the above theorem 1.1 from a stochastic point of view.
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The paper is organized as follows: in section 2, stochastic Petri nets
are formally introduced. Boundedness in mean and stochastic conservation
are defined; both definitions are generalized until a stopping time T.
Section 3 inciudes the main result (i.e. a characterization of boundedness
in mean of a positive sequence of random variables until a stopping time
T) as well as two corollaries that can be seen as stochastic generalizations
of theorem 1.1. Finally, an additional necessary condition for boundedness
in mean of a stochastic Petri net is presented in section 4.

2. STOCHASTIC PETRI NETS AND RELATED CONCEPTS

2.1. Stochastic Petri nets. Stochastic Petri nets are a model that
includes time in Petri nets by assigning a random variable to each
transition. This variable represents the time elapsed since the transition is
firable until the moment in which it actually fires. In this section we
provide a stochastic process that describes the behaviour of the timed net.

Given a probability space (£2,.%#.P) and a family (&, £20) of sub-o-
fields of %, continuous from the right, let (T,, re N*) be a sequence of
stopping times for (&, r20), such that

i) T.>0
i) T.<T,, on {T, < o)

T_=lim 7, =+s0

n—yoo

Let (u(r), re N*) be a sequence of random variables with values in
{1,2,...,d}. The multivariate point process (N,)

N=N,N.,...NJ), 20,

where
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is called firing process. If {u(r) = i} represents the firing of transition /
at instant 7,, it can be interpreted that (N,) counts the firings of transitions
until the instant ¢.

Given a stochastic vector X; = (X{,....X5), a matrix C, pxd, such that
iy € Z, j=1,....p, i=l,..d, and a firing process (N, =20}, a necessary
condition for the firing of transition i at instant 7, is

X7, +¢. 20, j=1,...p. 2.n

We define the continuous parameter process (X, 20), of p
components, as follows:

X=X +CN, 20, (2

This process can be interpreted as the description of an evolution of
markings in a stochastic Petri net, with p places, d transitions, incidence
matrix ¢ and initial marking X,. Condition (2.1) ensures that (2.2) is a
non-negative process.

We consider in what follows the discrete parameter processes N=N,,
and X, = X,,. The equation X, = X, + CN,, is denoted by X, = X, + CN,.
This process will be called stochastic Petri net.

2.2. Boundedness in mean and stochastic conservation. In the
structural analysis of a Petri net, with incidence matrix C and initial
marking X, the net is called conservative if there exist vectors fe (N*),
such that f'C = 0. Similarly, for a stochastic Petri net we can search for
p-dimensional random variables such that fC(N,-N, ,)=0, or E(fC(N,-N,_,))
=0, where r = 1,2,... and N, = (0,....,0).

In the first case we try to obtain a conservative behaviour in each
path and in the second, a conservative behaviour on average.
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The first case is too constraining to be useful. The second is a
suitable approach but there are not enough stochastic tools for its
development. Therefore, it seems convenient to follow an intermediate
approach and carry out the search for a p-dimensional random variable
f=(f,-..f,), satisfying the following conditions: :

i) £21, Vi=l,.p (2.3)
ii) EF'CN.-N,.) | N,,...N.,) = 0, r=12.. (2.4)

If we consider the sequence of markings X = (X,), condition (2.4) can
be written

ity E(F(X,-X,) | X0 X, ) = 0, r=12.. 2.5)

We denote by (X*) the sequence that describes the sum of tokens in
the net in each instant T, that is:

p .
X'=Y" X/, for each r>0.

J=1

If there exists a p-dimensional random variable f satisfying conditions
i) and ii), then the sequence

FX=y fx}

i=1
is a martingale dominating (X*).

We must point out, however, that Doob decomposition of a
supermartingale

Y,=M,-A, reN

(where (M)} is a martingale and (A,) is an increaging sequence such that
A, = 0) ensures that the existence of a martingale dominating (X¥) is
equivalent to the existence of a supermartingale dominating (X?). This
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remark as well as the previous considerations justify the following
definition. '

Definition 2.2.1. A srochastic Petri net (X,) is called stochastically
conservative if there exists a supermartingale (Y,) dominating the
sequence (X%).

Let A be the set of all stopping times for (&)). The expected number
of tokens at a stopping time S € A is E(X}). Therefore, we can generalize
the concept of boundedness (see section 1) in the following way.

Definition 2.2.2. A stochastic Petri net (X,) is called bounded in
mean if

sUplE(XJY<eo.

SeA

The stochastic Petri nets related to a structurally bounded Petri net
are also bounded in mean. We can easily find unbounded Petri nets whose
related stochastic Petri net is bounded in mean.

However, there are some unbounded stochastic Petri nets in cases in
which boundedness should also be expected. For instance, the stochastic
Petri net which models an ergodic M/M/1 queue is not bounded in mean.
This fact justifies a less exigent condition of boundedness, which we
presently put forward.

2.3. Boundedness and stochastic conservation until a stopping
time T. Let L be a class of stopping times for (#,). On the assumption
that X(S) is a & ;-measurable and integrable random variable for each Se L,
we can give the following definition.

Definition 2.3.1. The family {X(S), SeL} is an L-supermartingale if
E(X(V)IF,) < X(U), for all UV € L, where V 2 U.
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If the variables X(S) are positive, we can drop the hypothesis of
integrability over X(S) in definition 2.3.1. In this case, we say that {X(S),
SeL} is a generalized L-supermartingale.

We are interested in the behaviour of the stochastic net until a
stopping time T, (i.e until some condition is fulfilled or some event is
observed). Therefore we take L = {S: SeA, S<T} and generalize
definitions 2.2.1 and 2.2.2 in the following way.

Definition 2.3.2. A stochastic Petri net is called stochastically
conservartive until the stopping time T if there exists a L-supermartingale
dominating (X%, S<T).

Definition 2.3.3. A stochastic Petri net is called bounded in mean
until the stopping time T if

suplE(X )} < oo,
s<T

Usually we take, as stopping time 7, the first hitting time of (X} in
B, defined by

. {inf{rZO:X,eB}
27 | 4os; if X, 2 B for all reN

where B is a subset of W,

3. A CHARACTERIZATION OF BOUNDEDNESS UNTIL A
STOPPING TIME T

In this section we present a characterization of boundedness of (X,),
a positive sequence of random variables adapted to (&,), until a stopping
time 7. Two altemative stochastic generalizations of theorem [.1 are
derived as corollaries.
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Given a fixed stopping time 7, let L = {§ : Se A, $§<T'} and let us
denote by L, the set of all stopping times of [ which are greater than or
equal to the stopping time . We refer to (Y(I/), UeL), where

Y(U)=ess supE(X|.5) [ER))

Sel,

as the‘f‘ajhily of essential upper bounds.

. It can be shown (see Adell [1]) that the family (Y(U), UelL) is the
smallest generalized L-supermartingale dominating (X, UelL).

In order to study the family (Y(U)) we point out that there is a
correspondence between the sets L and M = {SAT : Se A} (SAT stands for
inf(S,7)). This correspondence suggests that we take the sequence (X,,;)
instead of (X,) and consider the sequence {raT, re N} as a generating
system, in the sense that '

i) raTeL, reN

i) if S<T, then  $=Y" (nAD)1,,,
reN

Let N be a positive integer. Given the random horizon T, we denote
by L¥ the class of stopping times S such that § < NAT. The sequence
(raT, r=0,1,....N} is a generating system for L, and, following Neveu {6]
(p. 128), we can build the sequence

YMNAT)=X,,,

Y¥raD)=max(X_,E(Y (r+DAD)|.F_) if r=0,1,...N~1 (3.2)

This sequence (3.2) is the smallest generalized supermartingale
dominating (X, r = 0,1,....N) for each N previously fixed.

For each N and each r = 0,1,...,N, it holds that YY(raT) < Y*"'(rAT).
Thus, it is clear that the limits '
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(dim Y¥(raAD), reN)
N

exist. They are denoted by (Y™ (rAT)).
Both, the family (¥(L/), Uel) of essential upper bounds and the

sequence (Y(raT)), enable us to state the following result.

Theorem 3.1. The three following statements are equivalent:

i) suplE(XJ < oo
s<T

i) There exists a supermartingale dominating (X, ).
(iii} There exists an L-supermartingale dominating the family of

random variables (X, SeL).

Proof. [i} = ii)] Under the hypothesis i), the random variables
Y™(rAT) are integrable. Indeed,

E(Y=(raT)=E(lim Y¥(raT))=lim E(Y¥rAaT)) (3.3)

As (YM(raT), r = 1,....N) is a supermartingale, then
EY "(raA)<lim E(YNIAT))=
N

=lim (sup E(X))SsupE(X )<ee. (3.4)
<T

N SENAT §:

The supermartingale condition holds:
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A

E(Y ~((r+DADIF )=E(lim Y¥(r+DAT)|.Z, )<
N

<lim YNrAT)=Y =(rAT), VreN (3.5
N

And
Y=(raT)2Y'(raT)=X ., VreN (3.6)

Therefore, (Y™(rAT)) is a supermartingale dominating (X,, 7).

[ii)) = iii}] Let (Z,) be a supermartingale dominating (X,,,). Then
Z2YNraT), N=rr+l,.. 3.7

and then we have

Y=(raT)=lim Y"raAT)SZ, VreN (3.8)
N

Therefore, the sequence (Y"(rAT)) is the smallest supermartingale
dominating (X,,;} and Y~ (rAT) coincides with the essential upper bound,
that is

Y “(ranT)=ess supFE(X

UnTel, ,

Z )=Y(raT), VreN 3.9

UATl

On the other hand, the family of essential upper bounds (Y(U), Ue L)
is the smallest generalized L-supermartingale dominating (X, Se L), which
gives

E(Y(S)| F<Y(0)=Y ~(OAT), (3.10)

hence, E(Y(S)) £ E(Y"(OAT)) < oo, for all SeL, and iii) holds.
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(iii) = i)] Let (Z(S), SeL) be an L-supermartingale dominating (X,
Sel), then

E(X)<E(Z(S)<E(Z(0))<os, for all SeL (3.11)

and

SUPE(X )<oo. Q.ED.
ST

From theorem 3.1 and according to definitions 2.3.2 and 2.3.3, the
next result follows.

Corollary 3.2. The following statements are equivalent:

i) The stochastic Petri net (X,) is bounded in mean until the stopping
time T,

ii}) The stochastic Petri net (X,) is stochastically conservative until the.
stopping time T.

iii) There exists a supermartingale dominating (X% ;).

Corollary 3.2 allows us to give an example of a stochastic net which
is bounded whereas its underlying Petri net is not. Let (X,) be the Petri
net which models an M/M/1 queue whose mean interarrival time is greater
than the mean service time (i.e., an ergodic queue). The regenerative
character of the sequence enables us to prove that (X)) is stochastically
conservative until the instant of entrance in B, where B is a set of finite
cardinal from the spaces of states E (for example, B = {0}). That i« to
say, (X%, S<T,) is an L-supermartingale and the net is bounded in rizan
until the stopping time of ’regeneration’ in B.

If the stopping time T is infinite a.s. then, according to dcfinitions
2.2.1 and 2.2.2, the next result follows.
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~ Corollary 3.3. The stochastic Petri net (X,) is bounded in mean if
and only if it is stochastically conservartive.

Corollaries 3.2 and 3.3 constitute two stochastic generalizations of
theorem 1.1.

4. A NECESSARY CONDITION FOR BOUNDEDNESS

The following result gives a necessary condition for boundedness in
mean for stochastic Petri nets.

Theorem 4.1. Let (X,) be a bounded in mean stochastic Petri net. Let
m be a non negative integer m and (T,) a sequence of stopping times such
that T2m. If there exists a sequence (Z,) dominated by (X,) and such that
(E(Xa [ F,)) is a non decreasing.sequence, then

Pr{(x):E(ZTk—ZTk_I/.%')zs, i.o1=0, Ve>0,

where i.0. stands for infinitely often.

Proof. Let (Z,}) be a sequence such that Z<X and let (T,) be a
sequence of stopping times such that (E(Z;, | &,)) is monotonous non
decreasing. Let (4,) be the supermartingale dominating the sequence (X)).
From the inequalities Z,,<Xp,<H,, we obtain (E(Zy, | F,))<H,, for each k.

Therefore the sequence (E(Z;, ) converges a.s., the sequence of
its differences (E(ZH-ZT,C_,IQ,,,)) converge to zero a.s. and the result
follows.

‘ QE.D.

The next corollary can be easily inferred.

Corollary 4.2. Let (X,) be a stochastic Petri net. If there exists a
submartingale (Z ) dominated by (X*) such that for some € > 0 and some
me N .
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PR@:E(Z ~Z _|F)>e, iol > 0,

then (X,) is not bounded in mean.

For stochastic Petri nets bounded in mean until the stopping time T

an analogous result to theorem 4.1 can be stated. In the same way, and
analogous to corollary 4.2, a necessary condition for the boundedness in
mean until a stopping time T can be derived.
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