
Boundedness theorems for some fourth order 
differential equations. 

by g. O. C. EZEILO and H. O. TEJUh'fOLA (++) 

Summary.  - I n  this paper a new approach involving the use of two signum functions toge. 
ther with a suitably chosen Lyapttnov function is employed to investigate the bounde- 
dness property of solutions of two special cases of (1.3). This approach makes for con. 
siderable reduction in ths conditions imposed on {, g in an earlier paper [1]. 

1 .  - Consider  the d i f fe ren t i a l  equa t i on  

(1.1) ~(~) + f(xix + ~2~ -{- g(~) + ~ --  p(t) 

in which  ~¢2, c¢4 are cons tan t s  and f, g, p depend  on the a r g u m e n t s  shown.  
I t  was shown in an ea r l i e r  p a p e r  [1], sub jec t  to the bas ic  a s sumpt ions  that  
f(z), g'(y), p(t) are  c o n t i n u o u s  in z, y, t respec t ive ly ,  tha t  if 

(I) ~ 2 > 0 ,  a ~ > O  

(II) there  are  cons tan t s  a:L > O, a3 > 0 such that  g{y)/y ~ a~ (y ~ O} and  
f(z) ~ ~1 for  all z, 

(III) there  is a f ini te  cons tan t  h0 > 0 such  that  

- -  'l - -  ~ 4 f ( z )  ~ ~o I ~ :  g y) t ~ 

for  all  y and z, 
- - 1  - - 2  (IV} there  is a cons tan t  51 < 2hoa~a~ a4as such  that  

g'(y) - -  g(y)/y ~_ ~ (y ~ O) 

- - I  - - 2  (V) there  is a cons tan t  ~2 < 25oO:~ :¢3 such  that  

z -1 ( f ( ~ ) d ~  - -  f(z) ~ ~2 (z =4= 0), 
,J 

0 

t 

(VI) o/ I P(~) ] d~ ~ A < cx~ (t ~ 0) for  some cons tan t  A, then for every  

(*) En t r a t a  in Redaz ione  i l  25 ot tobre 1970. 
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solution x(t) of (I.1) defined by 

= zo ,  x(o)  = i ( 0 )  =  Vo, 

there is a finite constant  D whose magnitude depends 
a~, yo, Zo and rvo such that 

(1.2) x2(t) + x:(t) -4- ~2(t) + ~2(l) ~ D 

on the initial values 

for all t ~ 0 .  The conditions II), (I[), and (II[) are suitable generalizations 
of the R o w ~ - H v R w z ~ z  conditions 

for the asymptotic  stabili ty (in the large) of the trivial solution of the l inear 
equation 

x ~~) + ~ A- ~:2~ A" ~3a~ A- ~4~c = O. 

Subsequent ly  TEJU:~OLA [2] investigating the more general  equation 

(1.3) x.(4) + f (x)x  + ~2x -[- g(x) + ~dx~ = p(t, x, vc, x, x) 

in which p(t, vc, y, z, u) is bounded for all t, x~, y, z and u, succeeded in 
proving that, under  much the same conditions on ~2, ~4, f and g as before, 
then every solution x(t) of (1.3) ul t imately  satisfies the stronger inequal i ty 
(1.2) in which the bounding constant D is independent  of the initial values 
Xo, pc, Zo and Wo. 

The main object of the present  paper  is to draw attention to two special 
cases of (1.3) which have recent ly  come to our notice (mostly as a resul t  of 
the work by OGvacov [3]1 for which this boundedness  result  of the stronger 
type can be proved subject  only to a minimum of <<Rov~tr-ttvnwi~z restric. 
tions~> and without the use of the conditions (IV), (V}. 

The first case is the equation 

in which ~1, ~2, a4 are constants,  corresponding to f--= ~1 in (1.3). We shall 
prove here. 

TttEOR]~ 1. - I n  the equation (1.4) let g, p be continuous in  all their ar- 
gumenls  and  suppose that 
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(ii) there is a constant ~o > 0 such that 

g(y)/y > 0 ( I y ] ~ o ) ,  

(iii) there is a constant d~ > 0 such that 

(1.5) a~2 g(y~) ~ t g_~: )l 2 -  ~ 4  ~ d~ (]y] ~ ~o), 
Y 

(iv) there is a finite constant Ao such that 

(i.6) I p(t, x, y, z, u ) [ ~ A o  for all  t, x, y, z and u. 

Then there exists a finite constant D whose maginite depends only on ~ ,  a2, 
~4, ~o, d~, Ao and g such that every solution x(t) of  (1.4) ult imately satisfies 

(1.7) x~(t) + ~:(t) + x-~(t) + ~2(t) ~ D. 

Observe here that the existence of g'(y) is not even required.  Also no 
restriction whatever,  except that of continuity, has been placed on g(y ) in  
the interval t Y t ~ ~o. 

The next special case is the equation 

(1.8) x(4) + f(x)x + :qx + a3x + ~4x = p(t, x, x, x, x) 

with ~2, ~3 and ~4 constants, corresponding this time to g(x) l inear in (1.3}; 
and we have here, analogous to Theorem 1, 

T ~ o R n ~  2. - In  the equation (1.8) let f, g be continuous in  all their ar- 
guments  and suppose that 

(i) ~2 > 0, as>O,  ~4 > 0, 

(ii) there is a constant "~o > 0 such that 

! f(z) > 0 ( I z [ ~  ~o) 

(iii) there is a constant d2 > 0 such that 

(iv) p(t, x, y, z, u) satisfies (1.6). 

Then there exists a finite constant D whose magnitude depends only ~2, 
:¢3, ~ ,  d2, to, Ao and g such that every solution x(t) of (1.8) ult imately  sati- 
sfies (1.7). 
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With  ~2, ~3 and a~ constants it is possible to extend Theorem 2 a little 
fur ther  and we shall actual ly prove here 

T~Eo~M 3. - Given the equation 

(1.9) z(+ + +(x,, x)x + ~ x  + ~ + ~ x  = p(t, x, x, x, x), 

in which the function + is such that ~ (y, z )ex is t  +(y, z), ~ (y, z), p(t, 

x, y, z, u) are continuous for all x~, y, z, u and t, suppose that 

(i) ~2 > O, O~ 3 > O, a 4 > O, 

(iO there is a constant ~o > 0 such that +IY, z) > 0 ~ I z ! ~ 0 ) 

(iii) there is a finite constant 17 such that max l~(x , z) t ~ F for all y, 
IzI<<-~o 

3+ (y, z) ~ O for all y, z, (iv) @ 

(v) there is a constant d2 > 0 such that 

(1.10) a2a3+(y, z) - -  a23 - -  :~@2(y, z) ~ d2 (I z ] ~  ~o), 

(vi) p(t, x, y, z, u) satisfies (1.6). 

Then there exists a finite constant D > 0 whose magnitude depends only on 
~2, ~z, ~4, d2, ~o, Ao and t~ such that every solution x(t) of (1.9) satisfies {1.7). 

Note that if ~ is independent  of y, then (iv) is tr ivially true, and the 
existence of F in (iii) would follow from the continui ty of ,~(z). so that Theo- 
rem 2 is indeed a special case of Theorem 3. 

2. - Notation for  the  constants.  

W e  adopt the notation in [2] and the capitals D, Do, D1, ... in the text 
are finite positive constants whose magnitudes are independent  of solutions 
of whatever  differential  equat ion is under  review: in the context of the equa- 
tion (1.4), for instance, their magnitudes would depend at most on ~1, a2, o:~, 
"~o, dl,  Ao and g, and in the context  of the equat ion (1.9) on c¢2, ccz, ~4, d2,~o, Ao, 
and +. As usual  the D's are not necessari ly the same in each place of occur- 
rence unless  numbered,  but the D's:Do, DI, D2, ... with suffixes at tached 
retain a fixed identity throughout. 

3. - A funct ion V3.1. 

It  is convenient  in proving Theorem 1 to deal more directly with the 
differential  system 

-- y, y - -  ~, Z --  U 
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(3.1) u --  - -  a~u - -  a2z - -  g(y) - -  ~4x + p(t, x,  y, z, u) 

which is derived from (1.4) on setting y - - x ,  z.-~ ~c and u - - x .  We shall 
prove that there is a continuous function V ' -  V(x, y, z, u) such that 

(3.2) V(x, y, z, u) ~ -{- c~ as ~2 + y2 + z2 + u 2 - - .  cx~ 

and such that the limit 

(3.3} V + ~_ l im sup 
h~+o h 

V(x(t+h),  y ( t+  h), z(t + h), u(t + h)) - -  V(x(t), v(t), z(t), u(t)) 

exists, corresponding to any solution (x~(t), y(t), z(t), u(t)) of (3.1), and satisfies 

(3.4) V+ ~ - -  Do if x2(t) + y~(t) + z2(t) Jr u2(t) ~ D, 

for some constants Do, DI. As shown in § 4 of [2], the two results  (3.2) and 
{3.4} imply, u l t imately  that 

~(t) 4:- y2(t) + z2(t) + uS(t) ~ D 

which is precisely (1.7). 
In  order to dist inguish between the above V and another V, with pro- 

perties analogous to (3.2) and (3.4), which will arise in the context  of Theo. 
rein 3 we shall refer to the present  V as V3-~ so as to underl ine the fact of 
its association with the system (3.1). 

4. - 0gnrcov ' s  funct ion Vo. 

We were led to the construct ion of our own V31 by the propert ies  of a cer- 
tain LYxl, VZ~ov funct ion which we designate here by Vo, which was used 
by O~vncov in [3] for investigating the stabil i ty of the trivial solution of the 
equation corresponding to p~__0 in (1.4). In  the present  notation Yo is given by 

2Vo --  a2~a~ ~ -]- 2~zo:4xy -{- (~  - -  2~.)y 2 d- 

+ 4o:~xz + 2ccz~2yz + (~  ~ ~2)z 2 + 2 ~ y u  + 

(4.1) 
Y 

-~ 2:¢1zu -~ 2u 2 + 2~1 f g(~)d~. 
0 
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with the proper t ies  in quest ion conta ined in the fol lowing 

Ln~MA 1. - Subject to the condi t ions of Theorem 1: 

(i) there exis ts  a pos i t ive  definite quadra t ic  f o rm  Q~(x, y, z, u) a n d  a 
cons tant  D2 such that 

(4.2) Vo ~ Q~(x, y, z, u ) -  D:, 

for  all  x, y~ z a n d  u 

(ii) the derivat ive ~Vo ~ ~zo{x(t), y(t), z(t), u(t)) corresponding to any  solut ion 
(x(t), y(t), z(t), u(t)) of (3.1) sa t i s f e s  

(4.3} ido < - -  D3(y 2 + u 2) + D~( ! y I 2r I z l q- I u I -k 1) 

for some cons tants  D~ a n d  D4. 

PRooF. o~ (i). - Vo can be rear ranged  thus :  

(4.4) 

Y 

V o = V ~ + ~  g ( n ) - ~  d ,  
0 

where V~ is the quadrat ic  form given by 

2v'0 = ~ x  2 + ~l~,xy + (~ - ~ + ~ ' t  y2 + 
\ ~2 / 

+ 4o:¢xz + 2o:l~2yz + (~  + ~2)z 2 + 2~2yu + 2~lzu + 2u 2 . 

For  precisely the same reasons as in [3] V~ is positive definite.  Also, since 
~1a2 > 0 it is clear from (1.5) rewri t ten in the form 

that  g(y)/y > a~o~4~ ~ > 0 ( I Y I ~ ~o), and thus, since g(y) is cont inuous  we have 
evident ly  that  

g ( ~ ) - - - ~  d ~ _ ~ - - D  for all y. 

0 

The  resul t  (4.2) then follows from (4.4). 

Pnoor .  o~' (ii). - Let (x(t), y(tt, z(t), u(t)) be any solut ion of (3.1}. By a 
s t ra ightforward different ia t ion from (4.1) we have that  

(4.5) ;Vo - -  - -  X(Y, u} q- { o~:y -b :¢1z -b 2u }p(t, x, y, z, u), 
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where 

(4.6) X(Y, u) ~ ~ u  2 + 2ug(y) + ~2yg{y) - -  a ~ Y ~  

We have from (1.5) that 

(4.7) ~ 2 y g ( y )  - -  g2(y) - -  ~a4y~ 2 ~ dly2 - -  D 

for all y, since, if l Y ] ~ o  then 

X1 ~ ~ 2 y g ( y )  --g2(y) _ ~c~4y2 _ d~y2 q_ D 

_ y21cqa2g(y ) ( g ~ ) 2 - - d ~ } q - - D  

> 0  

for arbitrary D, and if [Yl~ '0o  then any D such that 

D > (~,~4 -1- d~)~: o q- max t o:~:~2yg(y) - -  g2(y) I 

would also secure X~ > 0. Thus, by (4.6) and (4.7) 

(4.8) X ~ cq { u -t- ~i-'g(Y) }2 .{_ ~-('dly: - -  D. 

~Next observe from hypothesis (ii) and from (1.5), this time taken in the form 

gtY) l ~ g(Y) t ~:~ 

that 

so that 

(4.9) 

0 < g(y)/y < o:~:~2 (t Y t ~ ~o) 

I g(Y) l <-- :qa2 l Yl q- D5 for all y, 

provided that D~ is sufficiently large. 
From (4.9) we have in turn that 

(4.10) 222 g2(y) ~ 2 ~ % y  + D  

Annati di Matematica 34 
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for sufficiently large D. Thus, by (4.8) and (4.10), 

1 l o:.O~,~dlg:(y ) + 31 1 u %. ~g(y)}2 _ D. (4.ll) ~ o~-{'dly 2 %. 

How fix D6 sufficiently small to ensure that 

I a;3a-~dlg2(y) %. o~1 { u %. ~7'g(Y) }z ~ D6[u 2 %. g2(y)]. 

Then, by (4.11), we would have that 

1 
;< ~ 2 ~7'dly z %. D6u 2 - -  D 

from which (4.3) now follows on combining with (4.5) and using (1.6). 

5. - Expl ic i t  form of V31. 

The function V3.x- V3.1(x,, y, z, u) is the composite function:  

(5.1) V~.~ = Vo + V~ + V~ 

where Vo is the 0c~vncov function (4.1) and V ~ -  V~(x, u) and V ~ -  VI(y, z) 
are defined by 

( :  sgn x, if t a ~ t ~ t u [ ~  
(52) = sgnu,  if l uI t i] 

(--(2D4%.~2) y s g n z ,  if I z I ~ l y  ) 
(5.3) V: = \__(204 %. ~z) z s g n y ,  if [ y i ~ [ ~  " 

It is clear from their definitions that 

IV~i<_luI ,  [V~I<--(2D~+~z) IYi, 

and hence, by (5,1) and (4.2), that 

(5.4) V3~ ~ Qa(x, y, z, u) - -  (2D~ %. a2) ty t - -  t x! - -  Dz 

for all $, y, z and u. Since Q~ is a positive definite quadrat ic  form, (5.4) 
implies that 

V3.1 --"~ -~ C'O as  ~2 %. y2 %. Z2 %. U2 "--~ ¢:x~ 

so that V : V3.1 does satisfy (3.2). 
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6. - It remains now to verify (3.4) for V----V3.1. 
Let  (x(t), y(t), z(O , u(t)) be any solution of (3.1} and let 

Vl(~(t + h), u(t + h ) ) -  V~(z(t), .(t)) 
V ~  lira sup 

h..,.+o h 

with V2 + similarly defined. It  is easy to see form (5.2), (5.3) and from (3.1) 
itself that ~'~+ and V2 + can be set out in the forms: 

(  2D,+  2)lxl, if Ixl lvl ) v + =  
- - ( 2 D , + ~ 2 ) u s g n y ,  if Iyl>>_lxl 

so that, on using (1.6) and (4.9) as requirred,  

( - - ~ f ~ v ] + ~ 2 1 x l + D T ( t y i + I u l +  l), if t x { ~ t u l )  
(6.1) V~_.< lY[, if I u i ~ I x  I 

(--(2D~+ ~)[z l, if Ixl~lvl) 
{6.2) t ~ + <  (2D~-k-~2)]u], if l y l ~ l z I  " 

For our estimates of V+~ we shall use (4.3), (6.i) and (6.2) in conjuuetion 
with the formula 

(6.3) ~'+~ = Vo + $'+ + ])'2 + 

from (5.1). If [ x l ~ i y ] ,  for example, it is clear that V#~ necessarily satisfies 
one or other of the following two inequali t ies  

V3~.% < --  D3(y 2 + u2) + D4( ]y] + Ix] + ]u] + 1)- - (294 + ~2)Ix] + 

(6,3) . k - ~ 2 ] x ] + D T ( [ y [ + ] u [ - - } - l ) - - ~ 4 J x  I 

= --  D3(y 2 + u 2 ) + (D4 + D~)( I y I + I uI + 1) - ~ [ ~ I - -  D~ Ix }, 

(6.5) ~V+~ <--D3(y2 + u Z ) +  D 4 ( ] y l + I x I + I u l +  l ) - - ( 2 D 4 + a 2 ) l z i + l y l  

: - - D 3 ( y  2 + u 2) +(D~ + l ) l y l  + DdI  u i + l ) - ( D ~ + ~ 2 ) l z I ,  

according as [ ~ I ~ I u I or  i x  l < I u l, so that, at least, 

(6.6) V+I --.< - -  D3(y ~ + u 2) + e ( l  y t + I u I + 1). 

An analogous consideration of the two possibilities that can arise will also 
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show that in the case ]z}<_]y] V~  too satisfies (6.6). Thus  

V~+I <-- - -  D3(y 2 -}- u 2) -5 D( ] y l "-b l u[ -5 I) 

always, f rom which it follows that  there is a constant  D8 such that  

(6.7) ~'r+l <_ - -  1 if y2 .}. u 2 ~ D~. 

A similar  bound can also be establ ished for T'+~ if y2_}_ u ~ < D~ provided 
that  w2-5 z2 is large enough,  to be more precise:  

(6.8) ~'~ _< - -  1 when  y2 -b u 2 --< D~ provided that  x 2 -5 z 2 _____ D~ 

for some suff icient ly large Do. Indeed  let y~ -5 u 2 __. D~ and assume, to begin 
with that  l z l ~ D s .  Then  t z I ~ ] Y [  and so as before V~  satisfies one or 
other  of (6.4) or (6.5). Ei ther  of these gives at least that  

v+l_< --D [zi+D < - I  

provided fur ther  that  l z I is large enough,  say ]z]~D~o(:>Ds); so that  we 
have now shown that  

(6.9) V+~ <: --  1 if y2 _~_ u 2 < 92 and l z] ~ D~o. 

It  remains  to consider  the case 

y2-5 u2 <_ D~ and l~l-<D~o. 

Here,  we have that  

]7o-<D and V2 + _ < D  

by (4.3) and (6.2) respectively.  Also, if ] a~ [~  D8 then, by (6.1), 

V+I -< - -  ~ I x  i -5. D, 

so that, by (6.3), 

+ D  < - -  i 

provided fur ther  that  Ira] is suff icient ly large, say, t x ] ~  DI~(~ Ds). In  other  
words we also have that  

(6.10) i'+1 _< - -  1 if (y2 -5 u 2) <_ D~ and l~I _< D~o but  l ~ l ~  DI~. 
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The results (6.9) and (6.10) together show that 

1)3+~ _ - -  1 when y2 Jr_ U2 ----- D~ provided that X 2 "~- Z 2 ~ D~0 -[- D~,, 

which is (6.8), with D9 ~ (D~o-[-D~) ~/2. In  turn  (6.7) and (6.8) give that 

~Y+x _< - -  1 if x 2 + y2,1. z2 _{_ u 2 ~ D~ -1- D~ 

so that the funct ion V = V3,~ also satisfies (3.4). 
Theorem 1 now follows as was pointed out. 

7. - We turn now to Theorem 3 with the number ing of the D's started 
afresh. 

The procedure  will follow essentially the pat tern  for Theorem 1 and we 
shall skip all inessential  details. 

8, - The func t ion  Vs,~. 

As before we consider the the differential  system 

(8.1) ~-=y,  y---.z, z - - u ,  u = - - ~ ( y ,  z)u--cc2z--cc3y--~c4X--~p(t, X, y, z, u) 

obtained from (1.9) by setting y - - x ,  z ~ x and u -  x, and to prove Theorem 
3 it will be enough to show that there is a funct ion V - - V ( x ,  y, z, u) sati. 
sting (3.2) and such that, corresponding to any solution (x(t), Y(O, z(t), u(t)) of 
(8.1), (3.3) exists and satisfies (3.4). We shall refer  to such a function in what 
follows as the function Vs.~ so as to emphasize the important  role which the 
system (8.1) plays in the character izat ion of the present  V. 

9. - The Ogurcov's funct ions  Wo. 

The par t icular  V81 which will be used here was suggested to us by cer- 
tain properties (stated in Lemma 2 below) of the LYxPv~cov funct ion Wo-" 
--" Wo(x, y, ~, u) defined by 

(9.1) 

/ 2 Wo = 2~,a: ~ + 2~3~xy + (~2:¢~ + %}y~ 2 + 

I ~ 2¢¢2a~XZ "31- 2c¢20~3yz + (a~2 - -  2CQ)Z 2 --~ 

+ 4a4yu + 2azzu + o:2u, 2 "4- 2~3 ~,.p{y, ~)d~ 
O 

which was the main tool in Oc~vRcov's proof of a stability theorem for the 
equation corresponding to p--~ 0 in {1.9). 
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L m ~  2. - Assume the conditions of Theorem 3 hold. Let • -- O(z) be the 
dif/erenliable function defined by 

(9.2) 

and set 

• ---- s i n  ~oo ' 1~1 ~ 2~o 

(9.3} Uo -- Wo - -  D2uO(z) 

where Wo is the funct ion (9.1) and  

(9.4) 1): ~ 8 ~ o ( ~ F  + ~ + F ~ + d~)/(=~ V-~), 

the constants ~o, F and d2 being as given in hypotheses (ii), (iii) and (iv) of 
Theorem 3. Then 

(i) there e~cists a positive definite quadratic  form Q2(x, y, ~, u) and a 
constant Ds such that 

(9.5) Uo ~ Q2(~v, y, ~, u) - -  D3(t u 1 -k 1) 

for all x, y, z and  u 

(ii) the Uo--" Uo(x(t), y(t), 
y(t), z(t), u(t)) of (8.1) satisfies 

z(t), u(t)) corresponding to any  solution (x(t), 

(9.6) (To < - -  D4(y 2 -b u2) -t- D~( I ~c I "{" [ Y I + I zl ] + I u ] + 1) 

for some constants D4 and Ds. 

P~ooF oF (i). - Th i s  pa r t  is a c o n s e q u e n c e  of the  r e a r r a n g e m e n t  of 
Wo in the  f o r m :  

TWo = w'0 + ~ +(y, ~ ) - - - ~  nd~ 
0 

w h e re  W~o is the q u a d ra t i c  fo rm given  by:  

t ~2)~ 2 

-t- 4aayu -b 2a~zu "Jr" a2 u2. 
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For, as shown in [3], W~0 is positive definite. Next, by (I.10), taken in the form : 

+ l 1 :0 

~ - - ~ t 3 > O  for lzl>~o, so that since [ ~ I < _ F < ~  for Iz I < t o ,  
~2 

~--2 ~ d ~ > - - D  
0 

for all y, z, and (9.5) now follows on bringing in the fact from the definit ion 
(9.2), that l(I)(z)I ] _< 1. 

PaooF oF (ii). - Let @(t), y(t), z(t), u(t)) be any solution of (8.1). Then from 
(9.1) and (9.3) it can be verified that 

(9.7) 

where 

= (y, ~)d~ + W~ 
O 

(9.8) 
W ~ - -  ~3a~y 2 + 2a4~(y, z ) y u -  g2~(y, z)~, 2 --~ 0~3U 2 -~ D2(I)'(z)U 2 

W2 -" (2~4y + adz + a2u)p +4" D2@u + ~2z A- :¢3y + a ~  - -p)¢(z) .  

Note that hypothesis (it) of theorem 3 and (1.10), taken this time in the 

form ~z4~(a2a¢3-- ) \ ~4 ~ ~ d2 "3 L ~ (I ~ I ~ ~o) yield 

0 < + < ~:¢~a~' ( l z I ~  ~o) 

and, in view of hypothesis (iii) of the theorem, this shows that ~ is bounded 
for all y and z. Thus, since l¢(z) I_< 1, it follows on using (1.6) that 

(9.9) I W ~ I s D ( ] ~ I  + IY] + ]z] + [u]  + 1). 

Turning to W~ which we rearrange thus:  

W1 ---- a~a4(y + b-~u~) 2 -4- ¢¢~[~2~3'~ - -  %--~ ~2 + ~3D2(I),(~)]u 2 

let ~t--~(y,  z) denote the terms inside the square brackets here. Since the 

definition (9.2) implies that (I)'(z)~ 0 for all z, and that ~ ' ( z ) > 8 ~ V - 2  when 
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Izl---< to, it is clear at once from (1.10) that 

~(y, z) ~ d2 ( t z ] ~ to) 

and from hypothesis (it) of theorem 3 that, when [z[-< to, 

~(y, z) ~ ~ ~3D2~ V 2 - (a2~3F + ~ A- F ~) = d~, 

by (9.4). Hence ~t(y, z ) ~  d2 always and thus 

(9.10) W1 ~ ~3:¢4(y --~ ~ u ~ )  ~ T ~ d 2  u2 

In view of the fact, proved earlier,  that ~ is bounded, the usual  
applied to (9.10) will now give that 

(9.11) W~ ~ D(y 2 + u 2) 

for some sufficiently small D. 
Hypothesis (iv) of Theorem 3 implies that 

z 

0 

and thus (9.6) follows on combining (9.11) and (9.9) with (9.7). 

arguments  

(10.2) 

10. - Expl ic i t  form of Vsq. 

The function V8.1 is defined by 

(10.1) Vs1 -" Uo -t- U1 -4- U2 

where Uo is the function (9.3) and Ut, U2 are given by 

2Ds(ct:~:¢2.-~ 1)ysgnz ,  if [ z l ~ l y l t  ) 
U1 --- 2D5(~-~c¢2 ~ 1) z sgn y, if I Y l -> 1 z 

{2o:-[~Dsusgnx, if I~l~lul) 
(10.3) U2 = \2~T,D 5 $ sgn u, if l Iu l~ l  a~ " 

The constant Ds here is that which appears in (9.6). 
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It is easy to verify that V -  Vs.~ satisfies (3.2). For, from (10.2)and (10.3), 

and thus, by (9.5), 

~¢8~Q~(x, y, z, u)--D(Ixl+lyl + l u [ +  1) 

and the right hand side here tends to q-cx~ as ~2q_y2_]_z 2_[_u 2 ~  since 
Q2 is a positive definite quadratic form in w, y, z and u. 

11. - T h e  v e r i f i c a t i o n  o f  (3.4).  

Let (x(t), y(t), z(t), u(t)) be any solution of (8.1), and let V~ ,  
defined as before. Then, by (10.1), 

U~, U~ be 

(11.1) ;~ ,  = gro + v~+ + t) + 

where Uo satisfies (9.6) and /)+, U + which, in view of (10.2) and (10.3) are 
given by 

/)+ (---2Ds(~2~- 'q-1)[zl  if I z l ~ l y [  ) 
2D~(c¢2~ -~ -t- 1)u sgn y, if ] y ] ~ ] z l 

2c~-~D~y sgn u, if [ u I --~ I ~c I ) 

satisfy the inequali t ies:  

(11.1) 

(11.3) 

(-- 2Ds(cc2cc2' -q-1) l z l, if I z l~ l y i  ~ 
U~+ ~ \ 2D5(~2~; ' -{- 1)/u[, if ]Yl ~ l  z [/ 

U+< (-  ~:'D~IYl,2DsIxl --}- 2~2c~?~'D~[zlif l u l ~ [ a ¢ [  -q- D6([ y [ q-] u I-}- 1), if I x l ~ ] u t )  

In the estimate (11.3) for 9 + we have used the result (1.6)as well as the 
fact, pointed out earlier from the hypotheses, that I~(Y, z) l ~  D. 

The rest of the verification from now onwards follows exactly as in § 5 
with (9.6), (11.1), (11.2) and (11.3) playing the roles of (4.3), (6.3), (6.2) and (6.1) 
respectively, and we sketch only the outlines. 

We have, for instance that, when [ z I ~ ] y l ,  V~I necessarily satisfies one 
or other of the following inequali t ies:  

Annali  di Matematica 35 
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(11.4) 

(11.5) 

V + ~ g : - - D 4 ( Y 2 +  u 2) -{- D~(I w I + IYl 4- I z I - { - l u l +  1) + 

+ 2Dsa2:~-~Izt - -  2(a2:¢~ -~ + 1)Ds I zt - -  2D~ [~v I + 

..~ D6( ly  t + l u l  + 1) 

- -  D~(y 2 ~- u 2) -}- 

V ~  ~ - -  Ddy  2 + u 2) + 

D(lYl + IuI-t- 1)--D~(l~cl +Izt )  

Ds( lx I -~  lY} + tz[ + lu l  + 1) + 

2D5(~2¢¢71 -[- 1) lz ] 

• ~ - -  D4(y 2 + u 2) -{- D5 {C:¢71 + 1) ly] + 21u 1 + 1 } 

- -  D5(1 + 2~2~71) I z I, 

according as I x l ~ l u l  or l ~ l ~ l u l  • The two results (11.4) and (11.5) are 
the analogue of (6.4)and (6.5) respectively and they show that when f z l ~  l Yl 

V+l ~ - -  D4(Y 2 + u2) + D( l ~ t -4" t u I "4- 1). 

As in § 5 this last estimate also holds when I z l ~ l y t ,  so that we now have 
analogous to (6.7) that there is a constant D7 such that 

2 2 (11.6) 1 7 ~ 1 ~ - - 1  if y2_}_u ~ D T .  

The results (11.4) and (ll.5) also show in the same way as before that 
there is a constant D8 such that 

(ll.7) 17+1_<--1 if y2.4_u 2 ~ D ~  but I z l ~ D s .  

Suppose however that 

y2 -{- u2 ~ D~ and l z t ~ Ds. 

Then, by (9.6) and (I1.2), we have respectively 

U o ~ D 5 1 x l q - D  and U ~ D .  

Also, by (11.3), provided that t ~ t ~  DT, 

Hence, by (11.1), 
U ~ ' ~  - -  2D5 I ~ I .-I- D. 
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V s + ~  - -  D~ I xI  + D 

~ 1  

provided further that I x / is sufficiently large, say I x I ~ D9(~ DT); that is 

(11.8) V + ~ - - I  if y2_[_u2~D~ and I z l ~ D 8  provided that la~l~Dg" 

The results (11.6), (11.7) and (11.8) show clearly that 

Thus the function V ~  V81 also satisfies (3.4), and this completes the verifi- 
cation of Theorem 3. 
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