Boundedness theorems for some fourth order differential equations.

by J. O. C. Ezeilo and H. O. Tejumola (*)

Summary, - In this paper a new approach involving the use of two signum functions together with a suitably chosen Lyapunov function is employed to investigate the boundedness property of solutions of two special cases of (1.3). This approach makes for considerable reduction in the conditions imposed on f, g in an earlier paper [1].

1. - Consider the differential equation

$$
\begin{equation*}
x^{(4)}+f(\ddot{x}) \ddot{x}+\alpha_{2} \ddot{x}+g(\dot{x})+\alpha_{4} x=p(t) \tag{1.1}
\end{equation*}
$$

in which α_{2}, α_{4} are constants and f, g, p depend on the arguments shown. It was shown in an earlier paper [1], subject to the basic assumptions that $f(z), g^{\prime}(y), p(t)$ are continuous in z, y, t respectively, that if
(I) $\alpha_{2}>0, \alpha_{4}>0$
(II) there are constants $\alpha_{1}>0, \alpha_{3}>0$ such that $g(y) / y \geq \alpha_{3}(y \neq 0)$ and $f(z) \geq \alpha_{1}$ for all z,
(III) there is a finite constant $\Delta_{0}>0$ such that

$$
\left\{\alpha_{1} \alpha_{2}-g^{\prime}(y)\right\} \alpha_{3}-\alpha_{1} \alpha_{4} f(z) \geq \Delta_{0}
$$

for all y and z,
(IV) there is a constant $\delta_{1}<2 \Delta_{0} \alpha_{4} \alpha_{1}^{-1} \alpha_{4} \alpha_{3}^{-2}$ such that

$$
g^{\prime}(y)-g(y) / y \leq \delta_{1} \quad(y \neq 0)
$$

(V) there is a constant $\delta_{2}<2 \Delta_{0} x_{1}^{-1} \alpha_{3}^{-2}$ such that

$$
z^{-1} \int_{0}^{z} f(\zeta) d \zeta-f(z) \leq \delta_{2} \quad(z \neq 0)
$$

(VI) $\int_{0}^{t}|p(\tau)| d \tau \leq A<\infty(t \geq 0)$ for some constant A, then for every

[^0]solution $x(t)$ of (1.1) defined by
$$
x(0)=x_{0}, \quad \dot{x}(0)=y_{0}, \quad \ddot{x}(0)=z_{0}, \quad \dddot{x}(0)=w_{0},
$$
there is a finite constant D whose magnitude depends on the initial values x_{0}, y_{0}, z_{0} and w_{0} such that
\[

$$
\begin{equation*}
x^{2}(t)+\dot{x}^{2}(t)+\ddot{x^{2}}(t)+\ddot{x^{2}}(t) \leq D \tag{1.2}
\end{equation*}
$$

\]

for all $t \geq 0$. The conditions (I), (II), and (III) are suitable generalizations of the Routh-Hurwitz conditions

$$
\alpha_{i}>0(i=1,2,3,4) \text { and }\left(\alpha_{1} \alpha_{2}-\alpha_{3}\right) \alpha_{3}-\alpha_{1}^{2} \alpha_{4}>0
$$

for the asymptotic stability (in the large) of the trivial solution of the linear equation

$$
x^{(4)}+\alpha_{1} \ddot{x}+\alpha_{2} \ddot{x}+\alpha_{3} \dot{x}+\alpha_{4} x=0 .
$$

Subsequently Tedumola [2] investigating the more general equation

$$
\begin{equation*}
x^{(4)}+f(\ddot{x}) \ddot{x}+\alpha_{2} \ddot{x}+g(\dot{x})+\alpha_{4} x=p(t, x, \dot{x}, \dot{x}, \ddot{x}) \tag{1.3}
\end{equation*}
$$

in which $p(t, x, y, z, u)$ is bounded for all t, x, y, z and u, succeeded in proving that, under much the same conditions on $\alpha_{2}, \alpha_{4}, f$ and g as before, then every solution $x(t)$ of (1.3) ultimately satisfies the stronger inequality (1.2) in which the bounding constant D is independent of the initial values x_{0}, y_{0}, z_{0} and w_{0}.

The main object of the present paper is to draw attention to two special cases of (1.3) which have recently come to our notice (mostly as a result of the work by Ogurcor [3]) for which this boundedness result of the stronger type cais be proved subject only to a minimum of «Routh-Hurwitz restrictions» and without the use of the conditions (IV), (V).

The first case is the equation

$$
\begin{equation*}
x^{(4)}+\alpha_{1} \ddot{x}+\alpha_{2} \ddot{x}+g(\dot{x})+\alpha_{4} x=p(t, x, \dot{x}, \ddot{x}, \ddot{x}) \tag{1.4}
\end{equation*}
$$

in which $\alpha_{1}, \alpha_{2}, \alpha_{ \pm}$are constants, corresponding to $f \equiv \alpha_{1}$ in (1.3). We shall prove here.

Throrem 1. - In the equation (1.4) lei g, p be continuous in all their arguments and suppose that
(i) $\alpha_{1}>0, \alpha_{2}>0, \alpha_{4}>0$,
(ii) there is a constant $\eta_{0}>0$ such that

$$
g(y) / y>0 \quad\left(|y| \geq \eta_{0}\right)
$$

(iii) there is a constant $d_{1}>0$ such that

$$
\begin{equation*}
\alpha_{1} \alpha_{2} \frac{g(y)}{y}-\left\{\frac{g(y)}{y}\right\}^{2}-\alpha_{1}^{2} \alpha_{4} \geq d_{1} \quad\left(|y| \geq \eta_{0}\right) \tag{1.5}
\end{equation*}
$$

(iv) there is a finite constant A_{0} such that

$$
\begin{equation*}
|p(t, x, y, z, u)| \leq A_{0} \text { for all } t, x, y, z \text { and } u \tag{1.6}
\end{equation*}
$$

Then there exists a finite constant D whose maginite depends only on α_{1}, α_{2}, $\alpha_{4}, \eta_{0}, d_{1}, A_{0}$ and g such that every solution $x(t)$ of (1.4) ultimately satisfies

$$
\begin{equation*}
x^{2}(t)+\dot{x}^{2}(t)+\ddot{x}^{2}(t)+\dddot{x}^{2}(t) \leq D \tag{1.7}
\end{equation*}
$$

Observe here that the existence of $g^{\prime}(y)$ is not even required. Also no restriction whatever, except that of continuity, has been placed on $g(y)$ in the interval $|y| \leq \eta_{0}$.

The next special case is the equation

$$
\begin{equation*}
x^{(4)}+f(\ddot{x}) \ddot{x}+\alpha_{2} \ddot{x}+\alpha_{3} \dot{x}+\alpha_{4} x=p(t, x, \dot{x}, \ddot{x}, \ddot{x}) \tag{1.8}
\end{equation*}
$$

with α_{2}, α_{3} and α_{4} constants, corresponding this time to $g(x)$ linear in (1.3); and we have here, analogous to Theorem 1 ,

Theorem 2. - In the equation (1.8) let f, g be continuous in all their arguments and suppose that
(i) $\alpha_{2}>0, \alpha_{3}>0, \alpha_{4}>0$,
(ii) there is a constant $\zeta_{0}>0$ such that

$$
f(z)>0 \quad\left(|z| \geq \zeta_{0}\right)
$$

(iii) there is a constant $d_{2}>0$ such that

$$
\alpha_{2} \alpha_{3} f(z)-\alpha_{3}^{2}-\alpha_{4} f^{2}(z) \geq d_{2} \quad\left(|z| \geq \zeta_{0}\right)
$$

(iv) $p(t, x, y, z, u)$ satisfies (1.6).

Then there exists a finite constant D whose magnitude depends only α_{2}, $\alpha_{3}, \alpha_{4}, d_{2}, \zeta_{0}, A_{0}$ and g such that every solution $x(t)$ of (1.8) ultimaiely satisfies (1.7).

With α_{2}, α_{3} and α_{4} constants it is possible to extend Theorem 2 a little further and we shall actually prove here

Theorem 3. - Given the equation

$$
\begin{equation*}
x^{(4)}+\psi(\dot{x}, \ddot{x}) \ddot{x}+\alpha_{2} \ddot{x}+\alpha_{3} \dot{x}+\alpha_{4} x=p(t, x, \dot{x}, \ddot{x}, \ddot{x}) \tag{1.9}
\end{equation*}
$$

in which the function ψ is such that $\frac{\partial \psi}{\partial y}(y, z)$ exist $\psi(y, z), \frac{\partial \psi}{\partial y}(y, z), p(t$, x, y, z, u) are continuous for all x, y, z, u and t, suppose that
(i) $\alpha_{2}>0, \alpha_{3}>0, \alpha_{4}>0$,
(ii) there is a constant $\zeta_{0}>0$ such that $\psi(y, z)>0(|z| \geq 0)$
(iii) there is a finite constant F such that $\max _{|z| \leq z_{0}}|\psi(x, z)| \leq F$ for all y,
(iv) $z \frac{\partial \psi}{\partial y}(y, z) \leq 0$ for all y, z,
(v) there is a constant $d_{2}>0$ such that

$$
\begin{equation*}
\alpha_{2} \alpha_{3} \psi(y, z)-\alpha_{3}^{2}-\alpha_{4} \psi^{2}(y, z) \geq d_{2} \quad\left(|z| \geq \zeta_{0}\right) \tag{1.10}
\end{equation*}
$$

(vi) $p(t, x, y, z, u)$ satisfies (1.6).

Then there exists a finite constant $D>0$ whose magnitude depends only on $\alpha_{2}, \alpha_{3}, \alpha_{4}, d_{2}, \zeta_{0}, A_{0}$ and ψ such that every solution $x(t)$ of (1.9) satisfies (1.7).

Note that if ψ is independent of y, then $(i v)$ is trivially true, and the existence of F in (iii) would follow from the continuity of $\psi(z)$, so that Theorem 2 is indeed a special case of Theorem 3.

2. - Notation for the constants.

We adopt the notation in [2] and the oapitals D, D_{0}, D_{1}, \ldots in the text are finite positive constants whose magnitudes are independent of solutions of whatever differential equation is under review: in the context of the equation (1.4), for instance, their magnitudes would depend at most on $\alpha_{1}, \alpha_{2}, \alpha_{4}$, η_{0}, d_{1}, A_{0} and g, and in the context of the equation (1.9) on $\alpha_{2}, \alpha_{3}, \alpha_{4}, d_{2}, \zeta_{0}, A_{0}$, and ψ. As usual the D^{\prime} s are not necessarily the same in each place of occurrence unless numbered, but the $D^{\prime} s: D_{0}, D_{1}, D_{2}, \ldots$ with suffixes attached retain a fixed identity throughout.

3. - A fanction $V_{3.1}$.

It is convenient in proving Theorem 1 to deal more directly with the differential system

$$
\dot{x}=y, \quad \dot{y}=z, \quad \dot{z}=u
$$

$$
\begin{equation*}
\dot{u}=-\alpha_{1} u-\alpha_{2} z-g(y)-\alpha_{4} x+p(t, x, y, z, u) \tag{3.1}
\end{equation*}
$$

which is derived from (1.4) on setting $y=\dot{x}, z=\ddot{x}$ and $u=\ddot{x}$. We shall prove that there is a continuous function $V=V(x, y, z, u)$ such that

$$
\begin{equation*}
V(x, y, z, u) \rightarrow+\infty \text { as } x^{2}+y^{2}+z^{2}+u^{2} \rightarrow \infty \tag{3.2}
\end{equation*}
$$

and such that the limit

$$
\begin{equation*}
\dot{V}^{+} \equiv \lim _{h \rightarrow+0} \sup \frac{V(x(t+h), y(t+h), z(t+h), u(t+h))-V(x(t), y(t), z(t), u(t))}{h} \tag{3.3}
\end{equation*}
$$

exists, corresponding to any solution $(x(t), y(t), z(t), u(t))$ of (3.1), and satisfies

$$
\begin{equation*}
\dot{V}^{+} \leq-D_{0} \text { if } x^{2}(t)+y^{2}(t)+z^{2}(t)+u^{2}(t) \geq D \tag{3.4}
\end{equation*}
$$

for some constants D_{0}, D_{1}. As shown in $\S 4$ of [2], the two results (3.2) and (3.4) imply, ultimately that

$$
x^{2}(t)+y^{2}(t)+z^{2}(t)+u^{2}(t) \leq D
$$

which is precisely (1.7).
In order to distinguish between the above V and another V, with properties analogous to (3.2) and (3.4), which will arise in the context of Theorem 3 we shall refer to the present V as $V_{3 \cdot 1}$ so as to underline the fact of its association with the system (3.1).

4. - Ogurcov's function V_{0}.

We were led to the constraction of our own $V_{3 \cdot 1}$ by the properties of a certain Lfapunov function which we designate here by V_{0}, which was used by Ogurcov in [3] for investigating the stability of the trivial solution of the equation corresponding to $p \equiv 0 \mathrm{in}$ (1.4). In the present notation V_{0} is given by

$$
\begin{align*}
2 V_{0} & =\alpha_{2} \alpha_{4} x^{2}+2 \alpha_{1} \alpha_{4} x y+\left(\alpha_{2}^{2}-2 \alpha_{4}\right) y^{2}+ \\
& +4 \alpha_{4} x z+2 \alpha_{1} \alpha_{2} y z+\left(\alpha_{1}^{2}+\alpha_{2}\right) z^{2}+2 \alpha_{2} y u+ \\
& +2 \alpha_{1} z u+2 u^{2}+2 \alpha_{1} \int_{0}^{y} g(\eta) d \eta . \tag{4.1}
\end{align*}
$$

with the properties in question contained in the following
Lemma 1. - Subject to the conditions of Theorem 1:
(i) there exists a positive definite quadratic form $Q_{1}(x, y, z, u)$ and a constant D_{2} such that

$$
\begin{equation*}
V_{0} \geq Q_{1}(x, y, z, u)-D_{2} \tag{4.2}
\end{equation*}
$$

for all x, y, z and u
(ii) the derivative $\dot{V}_{0} \equiv \dot{V}_{0}(x(t), y(t)$, $\hat{y}(t)$, $u(t))$ corresponding to any solution $(x(t), y(t), z(t), u(t))$ of (3.1) satisfies

$$
\begin{equation*}
\dot{V}_{0} \leq-D_{3}\left(y^{2}+u^{2}\right)+D_{4}(|y|+|z|+|u|+1) \tag{4.3}
\end{equation*}
$$

for some constants D_{3} and D_{4}.
Proof. of (i). $-V_{0}$ can be rearranged thus:

$$
\begin{equation*}
\nabla_{0}=V_{0}^{1}+\alpha_{1} \int_{0}^{y}\left\{g(\eta)-\frac{\alpha_{1} \alpha_{4}}{\alpha_{2}} \eta\right\} d \eta \tag{4.4}
\end{equation*}
$$

where V_{0}^{t} is the quadratic form given by

$$
\begin{gathered}
2 V_{0}^{1}=\alpha_{2} \alpha_{4} x^{2}+2 \alpha_{1} \alpha_{4} x y+\left(\alpha_{2}^{2}-2 \alpha_{4}+\frac{\alpha_{1}^{2} \alpha_{4}}{\alpha_{2}}\right) y^{2}+ \\
+4 \alpha_{4} x z+2 \alpha_{1} \alpha_{2} y z+\left(x_{1}^{2}+\alpha_{2}\right) z^{2}+2 \alpha_{2} y u+2 \alpha_{1} z u+2 u^{2} .
\end{gathered}
$$

For precisely the same reasons as in [3] V_{0}^{1} is positive definite. Also, since $\alpha_{1} \alpha_{2}>0$ it is clear from (1.5) rewritten in the form

$$
\alpha_{1} \alpha_{2}\left\{\frac{g(y)}{y}-\frac{\alpha_{1} \alpha_{4}}{\alpha_{2}}\right\} \geq d_{1}+\left(\frac{g(y)}{y}\right)^{2} \quad\left(y \mid \geq \eta_{0}\right\}
$$

that $g(y) / y>\alpha_{1} \alpha_{4} \alpha_{2}^{-4}>0 \quad\left(|y| \geq \eta_{0}\right)$, and thus, since $g(y)$ is continuous we have evidently that

$$
\int_{0}^{y}\left\{g(\eta)-\frac{\alpha_{1} \alpha_{4}}{\alpha_{2}} \eta\right\} d \eta \geq-D \text { for all } y .
$$

The result (4.2) then follows from (4.4).
Proof. of (ii). - Let $(x(t), y(t), z(t), u(t)$ be any solution of (3.1). By a straightforward differentiation from (4.1) we have that

$$
\begin{equation*}
\dot{V}_{0}=-\chi(y, u)+\left\{\alpha_{2} y+\alpha_{1} z+2 u\right\} p(t, x, y, z, u), \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
\chi(y, u) & \equiv \alpha_{1} u^{2}+2 u g(y)+\alpha_{2} y g(y)-\alpha_{1} \alpha_{4} y^{2} \tag{4.6}\\
& =\alpha_{1}\left[u+\alpha_{1}^{-4} g(y)\right]^{2}+\alpha_{1}^{-1}\left(\alpha_{1} \alpha_{2} y g(y)-g^{2}(y)-\alpha_{1}^{2} \alpha_{4} y^{2}\right\} .
\end{align*}
$$

We have from (1.5) that

$$
\begin{equation*}
\alpha_{1} \alpha_{2} y g(y)-g^{2}(y)-\alpha_{1}^{2} \alpha_{4} y^{2} \geq d_{1} y^{2}-D \tag{4.7}
\end{equation*}
$$

for all y, since, if $|y| \geq \eta_{0}$ then

$$
\begin{aligned}
\chi_{1} & \equiv \alpha_{1} \alpha_{2} y g(y)-g^{2}(y)-\alpha_{1}^{2} \alpha_{4} y^{2}-d_{1} y^{2}+D \\
& =y^{2}\left\{\alpha_{1} \alpha_{2} \frac{g(y)}{y}-\left(\frac{g(y)}{y}\right)^{2}-\alpha_{1}^{2} \alpha_{4}-d_{1}\right\}+D \\
& >0
\end{aligned}
$$

for arbitrary D, and if $|y| \leq \eta_{0}$ then any D such that

$$
\left.D>\mid \alpha_{1}^{2} \alpha_{4}+d_{1}\right) \eta_{0}^{2}+\max _{|y| \leq n_{0}}\left|\alpha_{1} \alpha_{2} y g(y)-g^{2}(y)\right|
$$

would also secure $X_{1}>0$. Thus, by (4.6) and (4.7)

$$
\begin{equation*}
\chi \geq \alpha_{1}\left(u+\alpha_{1}^{-1} g(y)\right\}^{2}+\alpha_{1}^{-1} d_{1} y^{2}-D . \tag{4.8}
\end{equation*}
$$

Next observe from hypothesis ($i i$) and from (1.5), this time taken in the form

$$
\frac{g(y)}{y}\left\{\alpha_{1} \alpha_{2}-\frac{g(y)}{y}\right\} \geq d_{1}+\alpha_{1}^{2} \alpha \quad\left(|y| \geq \eta_{0}\right)
$$

that

$$
0<g(y) \mid y<\alpha_{1} \alpha_{2} \quad\left(|y| \geq r_{0}\right)
$$

so that

$$
\begin{equation*}
|g(y)| \leq \alpha_{1} \alpha_{2}|y|+D_{5} \text { for all } y \tag{4.9}
\end{equation*}
$$

provided that D_{5} is sufficiently large.
From (4.9) we have in turn that

$$
\begin{equation*}
g^{2}(y) \leq 2 \alpha_{1}^{2} \alpha_{2}^{2} y^{2}+D \tag{4,10}
\end{equation*}
$$

for sufficiently large D. Thus, by (4.8) and (4.10),

$$
\begin{equation*}
\chi \geq \frac{1}{2} \alpha_{1}^{-4} d_{1} y^{2}+\frac{1}{4} \alpha_{1}^{-3} \alpha_{2}^{-2} d_{1} g^{2}(y)+\alpha_{1}\left\{u+\alpha_{1}^{-4} g(y)\right\}^{2}-D . \tag{4.11}
\end{equation*}
$$

Now fix D_{6} sufficiently small to ensure that

$$
\frac{1}{4} \alpha_{1}^{-3} \alpha_{2}^{-2} d_{1} g^{2}(y)+\alpha_{1}\left\{u+\alpha_{1}^{-1} g(y)\right\}^{2} \geq D_{6}\left[u^{2}+g^{2}(y)\right] .
$$

Then, by (4.11), we would have that

$$
\chi \geq \frac{1}{2} \alpha_{1}^{-1} d_{1} y^{2}+D_{6} u^{2}-D
$$

from which (4.3) now follows on combining with (4.5) and using (1.6).
5. - Explicit form of $V_{3 \cdot 1}$.

The function $\nabla_{3 \cdot 1}=\nabla_{3 \cdot 1}(x, y, z, u)$ is the composite function:

$$
\begin{equation*}
V_{3 \cdot 1}=V_{0}+V_{1}+V_{2} \tag{5.1}
\end{equation*}
$$

where V_{0} is the $O_{G U R C o v}$ function (4.1) and $V_{1}=V_{1}(x, u)$ and $V_{1}=V_{1}(y, z)$ are defined by

$$
\begin{gather*}
\nabla_{1}=\left(\begin{array}{ll}
u \operatorname{sgn} x, & \text { if }|x| \geq|u| \\
x \operatorname{sgn} u, & \text { if }|u| \geq|x|
\end{array}\right) \tag{5.2}\\
V_{2}=\left(\begin{array}{ll}
-\left(2 D_{4}+\alpha_{2}\right) y \operatorname{sgn} z, & \text { if }|z| \geq|y| \\
-\left(2 D_{4}+\alpha_{2}\right) z \operatorname{sgn} y, & \text { if }|y| \geq|z|
\end{array}\right) . \tag{5.3}
\end{gather*}
$$

It is clear from their definitions that

$$
\left|V_{1}\right| \leq|u|, \quad\left|V_{2}\right| \leq\left(2 D_{4}+\alpha_{2}\right)|y|
$$

and hence, by (5.1) and (4.2), that

$$
\begin{equation*}
\nabla_{3 \cdot 1} \geq \mathrm{Q}_{1}(x, y, z, u)-\left(2 D_{4}+\alpha_{2}\right)|y|-|x|-D_{2} \tag{5.4}
\end{equation*}
$$

for all x, y, z and u. Since Q_{1} is a positive definite quadratic form, (5.4) implies that

$$
\nabla_{3 \cdot 1} \rightarrow+\infty \text { as } x^{2}+y^{2}+z^{2}+u^{2} \rightarrow \infty
$$

so that $V=V_{3,1}$ does satisfy (3.2).

J. O. C. Ezeilo - H. O. Tejumola: Boundedness theorems for some, etc.

6. - It remains now to verify (3.4) for $V=V_{3 \cdot 1}$.

Let $(x(t), y(t), z(t), u(t))$ be any solution of (3.1) and let

$$
\dot{V}_{1}^{+} \equiv \limsup _{h \rightarrow+0} \frac{V_{1}(x(t+h), u(t+h))-V_{1}(x(t), u(t))}{h}
$$

with \dot{V}_{2}^{+}similarly defined. It is easy to see form (5.2), (5.3) and from (3.1) itself that \dot{V}_{1}^{+}and \dot{V}_{2}^{+}can be set out in the forms:

$$
\begin{aligned}
& \dot{V}_{2}^{+}=\left(\begin{array}{l}
\left.-\alpha_{1} u+\alpha_{2} z+g(y)+\alpha_{4} x-p\right) \operatorname{sgn} x, \text { if }|x| \geq|u| \\
y \operatorname{sgn} u, \text { if }|u| \geq|x|
\end{array}\right. \\
& \dot{V}_{2}^{+}=\binom{-\left(2 D_{4}+\alpha_{2}\right)|z|, \text { if }|z| \geq|y|}{-\left(2 D_{4}+\alpha_{2}\right) u \operatorname{sgn} y, \text { if }|y| \geq|z|}
\end{aligned}
$$

so that, on using (1.6) and (4.9) as requirred,

$$
\begin{align*}
& \dot{V}_{1}^{+} \leq\binom{-\alpha_{1}|x|+\alpha_{2}|z|+D_{7}(|y|+|u|+1), \text { if }|x| \geq|u|}{|y|, \text { if }|u| \geq|x|} \tag{6.1}\\
& \dot{V}_{2}^{+} \leq\binom{-\left(2 D_{4}+\alpha_{2}\right)|z|, \text { if }|z| \geq|y|}{\left(2 D_{4}+\alpha_{2}\right)|u|, \text { if }|y| \geq|z|} .
\end{align*}
$$

For our estimates of $V_{3.1}^{+}$we shall use (4.3), (6.1) and (6.2) in conjuuction with the formula

$$
\begin{equation*}
\dot{V}_{3: 1}^{+}=\dot{V}_{0}+\dot{V}_{1}^{+}+\dot{V}_{2}^{+} \tag{6.3}
\end{equation*}
$$

from (5.1). If $|z| \geq|y|$, for example, it is clear that $\dot{V}_{3.1}^{+}$necessarily satisfies one or other of the following two inequalities

$$
\begin{align*}
\dot{V}_{3_{11}^{\prime}}^{+} \leq & -D_{3}\left(y^{2}+u^{2}\right)+D_{4}(|y|+|z|+|u|+1)-\left(2 D_{4}+\alpha_{2}\right)|z|+ \\
& +\alpha_{2}|z|+D_{7}(|y|+|u|+1)-\alpha_{4}|x| \tag{6.3}\\
= & -D_{3}\left(y^{2}+u^{2}\right)+\left(D_{4}+D_{7}\right)(|y|+|u|+1)-\alpha_{4}|x|-D_{4}|z|,
\end{align*}
$$

$$
\begin{align*}
\dot{V}_{3 \cdot 1}^{+} & \leq-D_{3}\left(y^{2}+u^{2}\right)+D_{4}(|y|+|z|+|u|+1)-\left(2 D_{4}+\alpha_{2}\right)|z|+|y| \tag{6.5}\\
& =-D_{3}\left(y^{2}+u^{2}\right)+\left(D_{4}+1\right)|y|+D_{4}(|u|+1)-\left(D_{4}+\alpha_{2}\right)|z|
\end{align*}
$$

according as $|x| \geq|u|$ or $|x| \leq|u|$, so that, at least,

$$
\begin{equation*}
\dot{V}_{3 \cdot 1}^{+} \leq-D_{3}\left(y^{2}+u^{2}\right)+D(|y|+|u|+1) . \tag{6.6}
\end{equation*}
$$

An analogous consideration of the two possibilities that can arise will also
show that in the case $|z| \leq|y| \dot{V}_{3 \cdot 1}^{+}$too satisfies (6.6). Thus

$$
\dot{V}_{3 \cdot 1}^{+} \leq-D_{3}\left(y^{2}+u^{2}\right)+D(|y|+|u|+1)
$$

always, from which it follows that there is a constant D_{8} such that

$$
\begin{equation*}
\dot{\bar{V}}_{31}^{+} \leq-1 \text { if } y^{2}+u^{2} \geq D_{8}^{2} . \tag{6.7}
\end{equation*}
$$

A similar bound can also be established for $\dot{V}_{3: 1}^{+}$if $y^{2}+u^{2} \leq D_{8}^{2}$ provided that $x^{2}+z^{2}$ is large enough, to be more precise:

$$
\begin{equation*}
\dot{\nabla}_{3 \cdot 1}^{+} \leq-1 \text { when } y^{2}+u^{2} \leq D_{8}^{2} \text { provided that } x^{2}+z^{2} \geq D_{9}^{2} \tag{6.8}
\end{equation*}
$$

for some sufficiently large D_{9}. Indeed let $y^{2}+u^{2} \leq D_{8}^{2}$ and assume, to begin with that $|z| \geq D_{3}$. Then $|z| \geq|y|$ and so as before $\dot{V}_{3.1}^{+}$satisfies one or other of (6.4) or (6.5). Either of these gives at least that

$$
\dot{V}_{3.1}^{+} \leq-D_{4}|z|+D<-1
$$

provided further that $|z|$ is large enough, say $|z| \geq D_{10}\left(\geq D_{8}\right)$; so that we have now shown that

$$
\begin{equation*}
\dot{V}_{3.1}^{+} \leq-1 \text { if } y^{2}+u^{2} \leq D_{8}^{2} \text { and }|z| \geq D_{10} . \tag{6.9}
\end{equation*}
$$

It remains to consider the case

$$
y^{2}+u^{2} \leq D_{8}^{2} \text { and }|z| \leq D_{10} .
$$

Here, we have that

$$
\dot{V}_{0} \leq D \text { and } \dot{V}_{2}^{+} \leq D
$$

by (4.3) and (6.2) respectively. Also, if $|x| \geq D_{3}$ then, by (6.1),

$$
\dot{V}_{3_{1}}^{+} \leq-\alpha_{4}|x|+D,
$$

so that, by (6.3),

$$
\dot{V}_{1}^{+} \leq-\alpha_{4}|x|+D<-1
$$

provided further that $|x|$ is sufficiently large, say, $|x| \geq D_{11}\left(\geq D_{8}\right)$. In other words we also have that

$$
\begin{equation*}
\dot{V}_{3,1}^{+} \leq-1 \text { if }\left(y^{2}+u^{2}\right) \leq D_{8}^{2} \text { and }|z| \leq D_{10} \text { but }|x| \geq D_{11} . \tag{6.10}
\end{equation*}
$$

The results (6.9) and (6.10) together show that
$\dot{\vec{V}}_{3 \cdot 1}^{+} \leq-1$ when $y^{2}+u^{2} \leq D_{8}^{2}$ provided that $x^{2}+z^{2} \geq D_{10}^{2}+D_{11}^{2}$,
which is (6.8), with $D_{9}=\left(D_{10}^{2}+D_{11}^{2}\right)^{1 / 2}$. In turn (6.7) and (6.8) give that

$$
\dot{V}_{3 \cdot 1}^{+} \leq-1 \text { if } x^{2}+y^{2}+z^{2}+u^{2} \geq D_{8}^{2}+D_{9}^{2}
$$

so that the function $V=V_{3: 1}$ also satisfies (3.4).
Theorem 1 now follows as was pointed out.
7. - We turn now to Theorem 3 with the numbering of the D 's started afresh.

The procedure will follow essentially the pattern for Theorem 1 and we shall skip all inessential details.

8. - The function $\nabla_{8.1}$.

As before we consider the the differential system

$$
\begin{equation*}
\dot{x}=y, \dot{y}=z, \dot{z}=u, \dot{u}=-\psi(y, z) u-\alpha_{2} z-\alpha_{3} y-\alpha_{4} x+p(t, x, y, z, u) \tag{8.1}
\end{equation*}
$$

obtained from (1.9) by setting $y=\dot{x}, z=\ddot{x}$ and $u=\ddot{x}$, and to prove Theorem 3 it will be enough to show that there is a fanction $V=\nabla(x, y, z, u)$ satisfing (3.2) and such that, corresponding to any solution $(x(t), y(t), z(t), u(t))$ of (8.1), (3.3) exists and satisfies (3.4). We shall refer to such a function in what follows as the function $V_{8 \cdot 1}$ so as to emphasize the important role which the system (8.1) plays in the characterization of the present ∇.

9. - The 0gurcor's functions W_{0}.

The particular $\nabla_{8 \cdot 1}$ which will be used here was suggested to us by certain properties (stated in Lemma 2 below) of the Lyapunov function $W_{0}=$ $=W_{0}(x, y, z, u)$ defined by

$$
\left\{\begin{align*}
2 W_{0} & =2 \alpha_{4}^{2} x^{2}+2 \alpha_{3} \alpha_{4} x y+\left(\alpha_{2} \alpha_{4}+\alpha_{3}^{2}\right) y^{2}+ \tag{9.1}\\
& +2 \alpha_{2} \alpha_{4} x z+2 \alpha_{2} \alpha_{3} y z+\left(\alpha_{2}^{2}-2 \alpha_{4}\right) z^{2}+ \\
& +4 \alpha_{4} y u+2 \alpha_{3} z u+\alpha_{2} u^{2}+2 \alpha_{3} \int_{0}^{z} \eta \psi(y, \eta) d \eta
\end{align*}\right.
$$

which was the main tool in Ogurcov's proof of a stability theorem for the equation corresponding to $p \equiv 0$ in (1.9).

Lemma 2. - Assume the conditions of Theorem 3 hold. Let $\Phi=\Phi(z)$ be the differentiable function defined by

$$
\Phi=\left\{\begin{array}{ll}
\operatorname{sgn} z, & |z|>2 \zeta_{0} \tag{9.2}\\
\sin \left(\frac{\pi z}{4 \zeta_{0}}\right), & |z| \leq 2 \zeta_{0}
\end{array}\right\}
$$

and set

$$
\begin{equation*}
U_{0}=W_{0}-D_{2} u \Phi(z) \tag{9.3}
\end{equation*}
$$

where W_{0} is the function (9.1) and

$$
\begin{equation*}
D_{2} \equiv 8 \zeta_{0}\left(\alpha_{2} \alpha_{3} F+\alpha_{3}^{2}+F^{2}+d_{2}\right) /\left(\pi \alpha_{3} \sqrt{2}\right) \tag{9.4}
\end{equation*}
$$

the constants ζ_{0}, F and d_{2} being as given in hypotheses (ii), (iii) and (iv) of Theorem 3. Then
(i) there exists a positive definite quadratic form $Q_{2}(x, y, z, u)$ and a constant D_{3} such that

$$
\begin{equation*}
U_{0} \geq Q_{2}(x, y, z, u)-D_{3}(|u|+1) \tag{9.5}
\end{equation*}
$$

for all x, y, z and u
(ii) the $\dot{U}_{0}=\dot{U}_{0}(x(t), y(t), z(t), \boldsymbol{u}(t))$ corresponding to any solution $(x(t)$, $y(t), z(t), u(t))$ of (8.1) satisfies

$$
\begin{equation*}
\dot{U}_{0} \leq-D_{4}\left(y^{2}+u^{2}\right)+D_{5}(|x|+|y|+|z||+|u|+1) \tag{9.6}
\end{equation*}
$$

for some constants D_{4} and D_{5}.
Proof of (i). - This part is a consequence of the rearrangement of W_{0} in the form:

$$
W_{0}=W_{0}^{1}+\alpha_{3} \int_{0}^{z}\left\{\psi(y, \eta)-\frac{\alpha_{3}}{\alpha_{2}}\right\} \eta d \eta
$$

where W_{0}^{1} is the quadratic form given by:

$$
\begin{aligned}
2 W_{0}^{1} & =2 \alpha_{4}^{2} x^{2}+2 \alpha_{3} \alpha_{4} x y+\left(\alpha_{2} \alpha_{4}+\alpha_{3}^{2}\right) y^{2}+ \\
& +2 \alpha_{2} \alpha_{4} x z+2 \alpha_{2} \alpha_{3} y z+\left(\alpha_{2}^{2}-2 \alpha_{4}-\frac{\alpha_{3}^{2}}{\alpha_{2}}\right) z^{2}+ \\
& +4 \alpha_{4} y u+2 \alpha_{3} z u+\alpha_{2} u^{2} .
\end{aligned}
$$

For, as shown in [3], W_{0}^{1} is positive definite. Next, by (1.10), taken in the form :

$$
\begin{gathered}
\alpha_{3}^{2}\left(\psi-\frac{\alpha_{3}}{\alpha_{2}}\right) \geq \alpha_{4} \psi^{2}+d_{2} \quad|z| \geq \zeta_{0} \\
\psi-\frac{\alpha_{3}}{\alpha_{2}}>0 \text { for }|z| \geq \zeta_{0}, \text { so that since }|\psi| \leq F<\infty \text { for }|z| \leq \zeta_{0}, \\
\int_{0}^{z}\left\{\psi(y, \eta)-\frac{\alpha_{3}}{\alpha_{2}}\right\} \eta d \eta \geq-D
\end{gathered}
$$

for all y, z, and (9.5) now follows on bringing in the fact from the definition (9.2), that $\mid \Phi(z) \| \leq 1$.

Proof of (ii). - Let ($x(t), y(t), z(t), u(t))$ be any solution of (8.1). Then from (9.1) and (9.3) it can be verified that

$$
\begin{equation*}
\dot{U}_{0}=-W_{1}+\alpha_{3} z \int_{0}^{z} \eta \frac{\partial \psi}{\partial y}(y, \eta) d \eta+W_{2} \tag{9.7}
\end{equation*}
$$

where

$$
\begin{gather*}
W^{1}=\alpha_{3} \alpha_{4} y^{2}+2 \alpha_{4} \psi(y, z) y u-\alpha_{2} \psi(y, z) u^{2}+\alpha_{3} u^{2}+D_{2} \Phi^{\prime}(z) u^{2} \tag{9.8}\\
W_{2}=\left(2 \alpha_{4} y+\alpha_{3} z+\alpha_{2} u\right) p+D_{2}\left(\psi u+\alpha_{2} z+\alpha_{3} y+\alpha_{4} x-p\right) \Phi(z) .
\end{gather*}
$$

Note that hypothesis (ii) of theorem 3 and (1.10), taken this time in the form $\alpha_{4} \psi\left(\frac{\alpha_{2} \alpha_{3}}{\alpha_{4}}-\psi\right) \geq d_{2}+\alpha_{3}^{2}\left(|z| \geq \zeta_{0}\right)$ yield

$$
0<\psi<\alpha_{2} \alpha_{3} \alpha_{4}^{-1} \quad\left(|z| \geq \zeta_{0}\right)
$$

and, in view of hypothesis (iii) of the theorem, this shows that ψ is bounded for all y and z. Thus, since $|\Phi(z)| \leq 1$, it follows on using (1.6) that

$$
\begin{equation*}
\left|W_{2}\right| \leq D(|x|+|y|+|z|+|u|+1) . \tag{9.9}
\end{equation*}
$$

Tarning to W_{1} which we rearrange thus:

$$
W_{1}=\alpha_{3} \alpha_{4}\left(y+b^{-1} u \psi\right)^{2}+\alpha_{3}^{-4}\left[\alpha_{2} \alpha_{3} \psi-\alpha_{3}^{2}-\psi^{2}+\alpha_{3} D_{2} \Phi^{\prime}(z)\right] u^{2}
$$

let $\mu=\mu(y, z)$ denote the terms inside the square brackets here. Since the definition (9.2) implies that $\Phi^{\prime}(z) \geq 0$ for all z, and that $\Phi^{\prime}(z) \geq \frac{\pi}{8} \zeta_{9}^{-1} \sqrt{2}$ when
$|z| \leq \zeta_{0}$, it is clear at once from (1.10) that

$$
\mu(y, z) \geq d_{2} \quad\left(|z| \geq \zeta_{0}\right)
$$

and from hypothesis (ii) of theorem 3 that, when $|z| \leq \zeta_{0}$,

$$
\mu(y, z) \geq \frac{\pi}{8} \alpha_{3} D_{2} \zeta_{0}^{-1} \sqrt{2}-\left(\alpha_{2} \alpha_{3} F+\alpha_{3}^{2}+F^{2}\right)=d_{2}
$$

by (9.4). Hence $\mu(y, z) \geq d_{2}$ always and thas

$$
\begin{equation*}
W_{1} \geq \alpha_{3} \alpha_{4}\left(y+\alpha_{3}^{-1} u \psi\right)^{2}+\alpha_{3}^{-4} d_{2} u^{2} \tag{9.10}
\end{equation*}
$$

In view of the fact, proved earlier, that ψ is bounded, the usual arguments applied to (9.10) will now give that

$$
\begin{equation*}
W_{1} \geq D\left(y^{2}+u^{2}\right) \tag{9.11}
\end{equation*}
$$

for some sufficiently small D.
Hypothesis (iv) of Theorem 3 implies that

$$
z \int_{0}^{z} \eta \frac{\partial \psi}{\partial y}(y, \eta) d \eta \leq 0
$$

and thus (9.6) follows on combining (9.11) and (9.9) with (9.7).

10. - Explicit form of $V_{8 \cdot 1}$.

The function $V_{8 \cdot 1}$ is defined by

$$
\begin{equation*}
\nabla_{8 \cdot 1}=U_{0}+U_{1}+U_{2} \tag{10.1}
\end{equation*}
$$

where U_{0} is the function (9.3) and U_{1}, U_{2} are given by

$$
\begin{align*}
& U_{1}=\binom{-2 D_{5}\left(\alpha_{4}^{-4} \alpha_{2}+1\right) y \operatorname{sgn} z, \text { if }|z| \geq|y|}{-2 D_{5}\left(\alpha_{4}^{-4} \alpha_{2}+1\right) z \operatorname{sgn} y, \text { if }|y| \geq|z|} \tag{10.2}\\
& U_{2}=\binom{2 \alpha_{4}^{-1} D_{5} u \text { sgn } x, \text { if }|x| \geq|u|}{2 \alpha_{4}^{-1} D_{5} x \operatorname{sgn} u, \text { if } \| u|\geq|x|} . \tag{10.3}
\end{align*}
$$

The constant D_{5} here is that which appears in (9.6).

It is easy to verify that $V=V_{8 \cdot 1}$ satisfies (3.2). For, from (10.2) and (10.3),

$$
\left|U_{1}\right| \leq D|y|, \quad\left|U_{2}\right| \leq|x|
$$

and thus, by (9.5),

$$
\nabla_{8 \cdot 1} \geq Q_{2}(x, y, z, u)-D(|x|+|y|+|u|+1)
$$

and the right hand side here tends to $+\infty$ as $x^{2}+y^{2}+z^{2}+u^{2} \rightarrow \infty$ since Q_{2} is a positive definite quadratic form in x, y, z and u.
11. - The verification of (3.4).

Let $(x(t), y(t), z(t), u(t))$ be any solution of (8.1), and let $\dot{V}_{8 \cdot 1}^{+}, \dot{U}_{1}^{+}, \dot{U}_{2}^{+}$be defined as before. Then, by (10.1),

$$
\begin{equation*}
\dot{V}_{8 \cdot 1}^{+}=\dot{U}_{0}+\dot{U}_{1}^{+}+\dot{U}_{2}^{+} \tag{11.1}
\end{equation*}
$$

where \dot{U}_{0} satisfies (9.6) and $\dot{U}_{1}^{+}, \dot{U}_{2}^{+}$which, in view of (10.2) and (10.3) are given by

$$
\begin{aligned}
& \dot{U}_{1}^{+}=\binom{-2 D_{5}\left(\alpha_{2} \alpha_{4}^{-1}+1\right)|z| \text { if }|z| \geq|y|}{-2 D_{5}\left(\alpha_{2} \alpha_{4}^{-1}+1\right) u \operatorname{sgn} y, \text { if }|y| \geq|z|} \\
& \dot{U}_{2}^{+}=\binom{-2 D_{5}|x|-2 \alpha_{4}^{-4} D_{5}\left(\psi u+\alpha_{2} z+\alpha_{3} y-p\right) \operatorname{sgn} x, \text { if }|x| \geq|u|}{2 \alpha_{4}^{-1} D_{5} y \operatorname{sgn} u, \text { if }|u| \geq|x|}
\end{aligned}
$$

satisfy the inequalities:

$$
\begin{align*}
& \dot{U}_{1}^{+} \leq\binom{-2 D_{5}\left(\alpha_{2} \alpha_{4}^{-1}+1\right)|z|, \text { if }|z| \geq|y|}{2 D_{5}\left(\alpha_{2} \alpha_{4}^{-4}+1\right)|u|, \text { if }|y| \geq|z|} \tag{11.1}\\
& \dot{U}_{2}^{+} \leq\binom{-2 D_{5}|x|+2 \alpha_{2} \alpha_{4}^{-1} D_{5}|z|+D_{6}(|y|+|u|+1), \text { if }|x| \geq|u|}{2 \alpha_{4}^{-1} D_{5}|y|, \text { if }|u| \geq|x|}
\end{align*}
$$

In the estimate (11.3) for \dot{U}_{2}^{+}we have used the result (1.6) as well as the fact, pointed out earlier from the hypotheses, that $|\psi(y, z)| \leq D$.

The rest of the verification from now onwards follows exactly as in $\S 5$ with (9.6), (11.1), (11.2) and (11.3) playing the roles of (4.3), (6.3), (6.2) and (6.1) respectively, and we sketch only the outlines.

We have, for instance that, when $|z| \geq|y|, \dot{V}_{8 \cdot 1}^{+}$necessarily satisfies one or other of the following inequalities:

$$
\begin{align*}
\dot{V}_{8 \cdot 1}^{+} \leq & -D_{4}\left(y^{2}+u^{2}\right)+D_{5}(|x|+|y|+|z|+|u|+1)+ \\
& +2 D_{5} \alpha_{2} \alpha_{4}^{-1}|z|-2\left(\alpha_{2} \alpha_{4}^{-1}+1\right) D_{5}|z|-2 D_{5}|x|+ \\
& +D_{6}(|y|+|u|+1) \tag{11.4}
\end{align*}
$$

$$
\begin{align*}
\dot{V}_{8 \cdot 1}^{+} \leq & -D_{4}\left(y^{2}+u^{2}\right)+D_{5}(|x|+|y|+|z|+|u|+1)+ \\
& +2 \alpha_{4}^{-1} D_{5}|y|-2 D_{5}\left(\alpha_{2} \alpha_{4}^{-1}+1\right)|z| \tag{11.5}\\
\leq & -D_{4}\left(y^{2}+u^{2}\right)+D_{5}\left\{\left(\alpha_{4}^{-1}+1\right)|y|+2|u|+1\right\} \\
& -D_{5 \cdot}\left(1+2 \alpha_{2} \alpha_{4}^{-1}\right)|z|,
\end{align*}
$$

according as $|x| \geq|u|$ or $|x| \leq|u|$. The two results (11.4) and (11.5) are the analogue of (6.4) and (6.5) respectively and they show that when $|z| \geq|y|$

$$
\dot{\nabla}_{8 \cdot 1}^{+} \leq-D_{4}\left(y^{2}+u^{2}\right)+D(|y|+|u|+1) .
$$

As in $\S 5$ this last estimate also holds when $|z| \leq|y|$, so that we now have analogous to (6.7) that there is a constant D_{7} such that

$$
\begin{equation*}
\dot{V}_{\vartheta \cdot 1}^{+} \leq-1 \text { if } y^{2}+u^{2} \geq D_{7}^{2} \tag{11.6}
\end{equation*}
$$

The results (11.4) and (11.5) also show in the same way as before that there is a constant D_{8} such that

$$
\begin{equation*}
\dot{V}_{8 \cdot 1}^{+} \leq-1 \quad \text { if } y^{2}+u^{2} \leq D_{7}^{2} \quad \text { but } \quad|z| \geq D_{8} \tag{11.7}
\end{equation*}
$$

Suppose however that

$$
y^{2}+u^{2} \leq D_{7}^{2} \quad \text { and } \quad|z| \leq D_{8}
$$

Then, by (9.6) and (11.2), we have respectively

$$
\dot{U}_{0} \leq D_{5}|x|+D \quad \text { and } \quad \dot{U}_{1}^{+} \leq D
$$

Also, by (11.3), provided that $|x| \geq D_{7}$,

$$
\dot{U}_{2}^{+} \leq-2 D_{5}|x|+D
$$

Hence, by (11.1),

$$
\begin{aligned}
\dot{V}_{3 \cdot 1}^{+} & \leq-D_{\bar{z}}|x|+D \\
& \leq-1
\end{aligned}
$$

provided further that $|x|$ is sufficiently large, say $|x| \geq D_{9}\left(\geq D_{7}\right)$; that is (11.8) $\quad \dot{V}_{8,1}^{+} \leq-1$ if $y^{2}+u^{2} \leq D_{7}^{2}$ and $|z| \leq D_{8}$ provided that $|x| \geq D_{9}$.

The results (11.6), (11.7) and (11.8) show clearly that

$$
\dot{V}_{8 \cdot 1}^{+} \leq-1 \text { if } x^{2}+y^{2}+z^{2}+u^{2} \geq D_{7}^{2}+D_{8}^{2}+D_{9}^{2}
$$

Thus the function $V=V_{8 \cdot 1}$ also satisfies (3.4), and this completes the verification of Theorem 3.

REFERENCES

[1] J. O. C. Ezeilo, J. Math. Anal. Appl. Vol. 5, No. 1, 1962, pp. 136-146.
[2] H. O. Tejumola, Ann. Mat. Pura Appl. (IV), Vol. LiXXX, 1968, pp. 177.196.
[3] A.I. Ogurcov, Izv. Vyss Ucebn. Zaved Matematika (1958) no 1(2), pp. 124-129.

[^0]: (*) Entrata in Redazione il 25 ottobre 1970.

