
Bounding and Counting Linear Regions of Deep Neural Networks

Thiago Serra * 1 Christian Tjandraatmadja * 1 Srikumar Ramalingam 2

Abstract

We investigate the complexity of deep neural

networks (DNN) that represent piecewise linear

(PWL) functions. In particular, we study the num-

ber of linear regions, i.e. pieces, that a PWL func-

tion represented by a DNN can attain, both the-

oretically and empirically. We present (i) tighter

upper and lower bounds for the maximum number

of linear regions on rectifier networks, which are

exact for inputs of dimension one; (ii) a first upper

bound for multi-layer maxout networks; and (iii)

a first method to perform exact enumeration or

counting of the number of regions by modeling

the DNN with a mixed-integer linear formulation.

These bounds come from leveraging the dimen-

sion of the space defining each linear region. The

results also indicate that a deep rectifier network

can only have more linear regions than every shal-

low counterpart with same number of neurons if

that number exceeds the dimension of the input.

1. Introduction

We have seen an unprecedented success of DNNs in com-

puter vision, speech, and other domains (Krizhevsky et al.,

2012; Ciresan et al., 2012; Goodfellow et al., 2013; Hin-

ton et al., 2012). While the popular networks such as

AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy

et al., 2015), and residual networks (He et al., 2016) have

shown record beating performance on various image recog-

nition tasks, empirical results still govern the design of

network architecture in terms of depth and activation func-

tions. Two important considerations that are part of most

successful architectures are greater depth and the use of

PWL activation functions such as rectified linear units (Re-

LUs). This large gap between practice and theory has driven

*Equal contribution 1Carnegie Mellon University, Pittsburgh,
USA 2The University of Utah, Salt Lake City, USA. Correspon-
dence to: Thiago Serra <tserraaz@alumni.cmu.edu>, Christian
Tjandraatmadja <ctjandra@alumni.cmu.edu>, Srikumar Rama-
lingam <srikumar@cs.utah.edu>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

100

102

104

106

108

1010

1;21;10 6;16;10 11;11;10 16;6;10 21;1;10

Neurons in each layer

N
u

m
b

er
o

f
li

n
ea

r
re

g
io

n
s

Bound from Montúfar et al. (2014)

Bound from Montúfar (2017)

Bound from Theorem 1

Average count of 10 networks

Figure 1. This paper shows improved bounds on the ”number of lin-

ear regions” (typically used to study the expressiveness of DNNs)

of PWL functions modeled by DNNs that use rectified linear acti-

vation functions, and a method for exact counting of the number of

such regions in trained networks. We compare upper bounds from

the first and latest results in the literature (Montúfar et al., 2014;

Montúfar, 2017) with our main result (See Theorem 1). Using the

proposed exact counting algorithm, we show the actual number

of linear regions in 10 rectifier networks for MNIST digit recogni-

tion task with each configuration of two hidden layers totaling 22

neurons, reporting average and min-max range.

researchers toward mathematical modeling of the expres-

sive power of DNNs (Cybenko, 1989; Anthony & Bartlett,

1999; Pascanu et al., 2014; Montúfar et al., 2014; Bianchini

& Scarselli, 2014; Eldan & Shamir, 2016; Telgarsky, 2015;

Mhaskar et al., 2016; Raghu et al., 2017; Montúfar, 2017).

The expressiveness of DNNs can be studied by transform-

ing one network to another with different number of layers

or activation functions. While any continuous function can

be modeled using a single hidden layer of sigmoid activa-

tion functions (Cybenko, 1989), shallow networks require

exponentially more neurons to model functions that can

be modeled using much smaller deeper networks (Delal-

leau & Bengio, 2011). There are a wide variety of acti-

vation functions, which come with different modeling ca-

pabilities, such as threshold (f(z) = (z > 0)), logistic

(f(z) = 1/(1 + exp(−e))), ReLU (f(z) = max{0, z}),

and maxout (f(z1, z2, . . . , zk) = max{z1, z2, . . . , zk}). It

has been shown that sigmoid networks are more expressive

than similar-sized threshold networks (Maass et al., 1994),

and ReLU networks are more expressive than similar-sized

Bounding and Counting Linear Regions of Deep Neural Networks

threshold networks (Pan & Srikumar, 2016).

The complexity or expressiveness of neural networks belong-

ing to the family of PWL functions can also be analyzed by

looking at how the network can partition the input space to

an exponential number of linear response regions (Pascanu

et al., 2014; Montúfar et al., 2014). The basic idea of a PWL

function is simple: we can divide the input space into sev-

eral regions and we have individual linear functions for each

of these regions. Functions partitioning the input space to a

larger number of linear regions are considered to be more

complex, or in other words, possess better representational

power. In the case of ReLUs, it has been shown that some

deep networks separate their input space into exponentially

more linear response regions than their shallow counterparts

despite using the same number of activation functions (Pas-

canu et al., 2014). The results were later extended and

improved. In particular, Montúfar et al. (2014) show upper

and lower bounds on the maximal number of linear regions

for a ReLU DNN and a single layer maxout network, and a

lower bound for a maxout DNN. Furthermore, Raghu et al.

(2017) and Montúfar (2017) improve the upper bound for a

ReLU DNN. This upper bound asymptotically matches the

lower bound from Montúfar et al. (2014) when the number

of layers and input dimension are constant and all layers

have the same width. Finally, Arora et al. (2018) improve

the lower bound by providing a family of ReLU DNNs with

an exponential number of regions for fixed size and depth.

Main Contributions

This paper directly improves on the results of Montúfar et

al. (Pascanu et al., 2014; Montúfar et al., 2014; Montúfar,

2017), Raghu et al. (2017), and Arora et al. (2018). Fig. 1

highlights the main contributions, and the following list

summarizes all the contributions:

• We achieve tighter upper and lower bounds on the

maximal number of linear regions of the PWL

function corresponding to a DNN that employs ReLUs

as shown in Fig. 1. As a special case, we present

the exact maximal number of regions when the input

dimension is one. We additionally provide the first

upper bound for multi-layer maxout networks. (See

Sections 3 and 4).

• We show for ReLUs that the exact maximal number of

linear regions of shallow networks is larger than that

of deep networks if the input dimension exceeds the

number of neurons, a result that could not be inferred

from bounds in prior work. (See Figure 5).

• We use a mixed-integer linear formulation to show

that counting linear regions is indeed possible. For

the first time, we show the exact number of linear

regions for a sample of DNNs as shown in Fig. 1. This

new capability can be used to evaluate the tightness of

the bounds and potentially to analyze the correlation

between accuracy and the number of linear regions.

(See Sections 5 and 6).

2. Notations and Background

Let us assume that a feedforward neural network, which

is studied in this paper, has n0 input variables given by

x = {x1, x2, . . . , xn0
}, and m output variables given by

y = {y1, y2, . . . , ym}. Each hidden layer l = {1, 2, . . . , L}
has nl hidden neurons whose activations are given by hl =
{hl

1, h
l
2, . . . , h

l
nl
}. Let W l be the nl × nl−1 matrix where

each row corresponds to the weights of a neuron of layer

l. Let bl be the bias vector used to obtain the activation

functions of neurons in layer l. Based on the ReLU(x) =
max{0, x} activation function, the activations of the hidden

neurons and the outputs are given below:

h1 = max{0,W 1x+ b1}

hl = max{0,W lhl−1 + bl}

y = WL+1hL

As considered in Pascanu et al. (2014), the output layer is

a linear layer that computes the linear combination of the

activations from the previous layer without any ReLUs.

We can treat the DNN as a piecewise linear (PWL) function

F : Rn0 → R
m that maps the input x in R

n0 to y in R
m.

We define linear regions based on activation patterns.

Activation Pattern: Let us consider an input vector x =
{x1, . . . , xn0

}. For every layer l we define an activation set

Sl ⊆ {1, . . . , nl} such that e ∈ Sl if and only if the ReLU

e is active, i.e. hl
e > 0. We aggregate these activation sets

into S = (S1, . . . , Sl), which we call an activation pattern.

In this work, we may consider activation patterns up to a

layer l ≤ L. Activation patterns were previously defined in

terms of strings (Raghu et al., 2017; Montúfar, 2017). We

say that an input x corresponds to an activation pattern S if

feeding x to the DNN results in the activations in S .

We define linear regions as follows.1

Definition 1. Given a PWL function F : R
n0 → R

m

represented by a DNN, a linear region is the set of inputs

that correspond to a same activation pattern in the DNN.

1There is a subtly different definition of linear region in the
literature (Pascanu et al., 2014; Montúfar et al., 2014), as follows.
Given a PWL function F , a linear region is a maximal connected
subset of the input space on which F is linear. The two definitions
are essentially the same, except in a few degenerate cases. There
could be scenarios where two different activation patterns may
correspond to two adjacent regions with the same linear function, in
which case this definition considers them as a single one. However,
the bounds derived in this paper are valid for both definitions.

Bounding and Counting Linear Regions of Deep Neural Networks

Figure 2. (a) Simple DNN with two inputs and three layers with

2 activation units each. (b) Visualization of the hyperplanes from

the layers partitioning the input space into 20 linear regions. The

arrows indicate the directions in which the corresponding neurons

are activated. (c) Visualization of the hyperplanes from the first,

second, and third (non-input) layers (from top to bottom) in the

space given by the outputs of their respective previous layers.

The outputs of the units are ha = max{0,−x1 + x2}, hb =

max{0, x1 + x2 − 4}, hc = max{0,−ha − 3hb + 4}, hd =

max{0,−3ha − hb + 4}, he = max{0, hc + 3hd − 4}, and

hf = max{0, 3hc + hd − 4}.

In this paper, we interchangeably refer to S as an activation

pattern or a region for convenience.

In Figure 2 we show a simple ReLU DNN with two inputs

{x1, x2} and 3 layers. The activation units {a, b, c, d, e, f}
on these layers can be thought of as hyperplanes that each

divide the space in two. On one side of the hyperplane, the

unit outputs a positive value. For all points on the other side

of the hyperplane including itself, the unit outputs 0.

One may wonder: into how many linear regions do n hy-

perplanes split a space? Zaslavsky (1975) shows that an ar-

rangement of n hyperplanes divides a d-dimensional space

into at most
∑d

s=0

(
n
s

)
regions, a bound that is attained

when they are in general position. The term general position

basically means that a small perturbation of the hyperplanes

does not change the number of regions. This corresponds to

the exact maximal number of regions of a single layer DNN

with n ReLUs and input dimension d.

In Figures 2(b)–(c), we provide a visualization of how Re-

LUs partition the input space. Figure 2(c) shows the hyper-

planes corresponding to the ReLUs at layers l = 1, 2, and

3, from top to bottom. Figure 2(b) considers these same

hyperplanes in the input space x. If we consider only the

first-layer hyperplanes, the 2D input space is partitioned into

4 regions, as per Zaslavsky (1975)
((

2
0

)
+
(
2
1

)
+
(
2
2

)
= 4

)
.

The regions are further partitioned as we consider additional

layers. Subsequent hyperplanes are affected by the transfor-

mations applied in the earlier layers.

Figure 3. (a) A network with one input x1 and three activation units

a, b, and c. (b) We show the hyperplanes x1 = 0 and −x1+1 = 0

corresponding to the two activation units in the first hidden layer.

In other words, the activation units are given by ha = max{0, x1}
and hb = max{0,−x1 + 1}. (c) The activation unit in the third

layer is given by hc = max{0, 4ha+2hb−3}. (d) The activation

boundary for neuron c is disconnected.

Figure 2 also highlights that activation boundaries behave

like hyperplanes when inside a region and may bend when-

ever they intersect with a boundary from a previous layer.

This has also been pointed out by Raghu et al. (2017). In

particular, they cannot appear twice in the same region as

they are defined by a single hyperplane if we fix the region.

Moreover, these boundaries do not need to be connected, as

illustrated in Figure 3.

3. Tighter Bounds for Rectifier Networks

Montúfar et al. (2014) derive an upper bound of 2N for N
units, which can be obtained by mapping linear regions to

activation patterns. Raghu et al. (2017) improve this re-

sult by deriving an asymptotic upper bound of O(nLn0)
to the maximal number of regions, assuming nl = n
for all layers l and n0 = O(1). Montúfar (2017) fur-

ther tightens the upper bound to
∏L

l=1

∑dl

j=0

(
nl

j

)
, where

dl = min{n0, n1, . . . , nl}.

Moreover, Montúfar et al. (2014) prove a lower bound of
(
∏L−1

l=1 ⌊nl/n0⌋
n0

)
∑n0

j=0

(
nL

j

)
when n ≥ n0, or asymp-

totically Ω((n/n0)
(L−1)n0nn0). Arora et al. (2018) present

a lower bound of 2
∑n0−1

j=0

(
m−1
j

)
wL−1 where 2m = n1

and w = nl for all l = 2, . . . , L. We derive both upper and

lower bounds that improve upon these previous results.

3.1. An Upper Bound on the Number of Linear Regions

In this section, we prove the following upper bound on the

number of regions.

Theorem 1. Consider a deep rectifier network with L lay-

ers, nl rectified linear units at each layer l, and an input

of dimension n0. The maximal number of regions of this

Bounding and Counting Linear Regions of Deep Neural Networks

neural network is at most

∑

(j1,...,jL)∈J

L∏

l=1

(
nl

jl

)

where J = {(j1, . . . , jL) ∈ Z
L : 0 ≤ jl ≤ min{n0, n1 −

j1, . . . , nl−1 − jl−1, nl} ∀l = 1, . . . , L}. This bound is

tight when L = 1.

Note that this is a stronger upper bound than the one that

appeared in Montúfar (2017), which can be derived from

this bound by relaxing the terms nl − jl to nl and factoring

the expression. When n0 = O(1) and all layers have the

same width n, we have the same best known asymptotic

bound O(nLn0) first presented in Raghu et al. (2017).

Two insights can be extracted from the above expression:

1. Bottleneck effect. The bound is sensitive to the posi-

tioning of layers that are small relative to the others, a

property we call the bottleneck effect. If we subtract

a neuron from one of two layers with the same width,

choosing the one closer to the input layer will lead to a

larger (or equal) decrease in the bound. This occurs be-

cause each index jl is essentially limited by the widths

of the current and previous layers, n0, n1, . . . , nl. In

other words, smaller widths in the first few layers of

the network imply a bottleneck on the bound.

The following proposition illustrates this bottleneck

effect of the bound for the 2-layer case (see Appendix A

for the proof).

Proposition 2. Consider a 2-layer network with

widths n1, n2 and input dimension n0 > max{n1, n2}.

Then moving a neuron from the first layer to the second

layer strictly decreases the bound.

Figure 4 illustrates this behavior. For the solid line, we

keep the total size of the network the same but shift

from a small-to-large network (i.e., smaller width near

the input layer and larger width near the output layer)

to a large-to-small network in terms of width. We see

that the bound monotonically increases as we reduce

the bottleneck. If we add a layer of constant width

at the end, represented by the dashed line, the bound

decreases when the layers before the last become too

small and create a bottleneck for the last layer.

While this is a property of the upper bound rather than

of the exact maximal number of regions, we observe

in Section 6 that empirical results for the number of

regions of a trained network exhibit a behavior that

resembles the bound as the width of the layers vary.

Moreover, this bottleneck effect appears at a more fun-

damental level. For example, having a first layer of size

one forces all hyperplanes corresponding to subsequent

layers to be parallel to each other in the input space,

reflecting the fact that we have compressed all infor-

mation into a single value. More generally, the smaller

a layer is, the more linearly dependent the hyperplanes

from subsequent layers will be, which results in fewer

regions. Further in this section, we formalize this in

terms of dimension and show that the dimension of the

image of a region is limited by the widths of earlier

layers, which is used to prove Theorem 1.

2. Deep vs shallow for large input dimensions. In sev-

eral applications such as imaging, the input dimension

can be very large. Montúfar et al. (2014) show that if

the input dimension n0 is constant, then the number

of regions of deep networks is asymptotically larger

than that of shallow (single-layer) networks. We com-

plement this picture by establishing that if the input

dimension is large, then shallow networks can attain

more regions than deep networks.

More precisely, we compare a deep network with L
layers of equal width n and a shallow network with one

layer of width Ln. Denote the exact maximal number

of regions by R(n0, n1, . . . , nL), where n0 is the input

dimension and n1, . . . , nL are the widths of layers 1

through L of the network.

Corollary 3. Let L ≥ 2, n ≥ 1, and n0 ≥ Ln. Then

R(n0, n, . . . , n
︸ ︷︷ ︸

L times

) < R(n0, Ln)

Moreover, limL→∞
R(n0,n,...,n)
R(n0,Ln) = 0.

This is a consequence of Theorem 1 (see Appendix A

for the proof).

Figure 5 (a) illustrates this behavior. As we increase

the number of layers while keeping the total size of the

network constant, the bound plateaus at a value lower

than the exact maximal number of regions for shallow

networks. Moreover, the number of layers that yields

the highest bound decreases as we increase the input

dimension n0. Hence, for a given number of units and

n0, there is a particular depth maximizing the bound.

This property cannot be inferred from upper bounds

derived in prior work: previous bounds for a network

with L layers of size n are no smaller than R(n0, Ln)
for a sufficiently large n0. Figure 5 (b) shows the

behavior of the previous best known bound.

We remark that asymptotically both deep and shallow

networks can attain exponentially many regions when

the input dimension is sufficiently large. More pre-

cisely, for a DNN with the same width n per layer, the

maximal number of linear regions is Ω(2
2

3
Ln) when

n0 ≥ n/3 (see Appendix B).

Bounding and Counting Linear Regions of Deep Neural Networks

−5 0 5
109

1019

1029

Parameter k

U
p

p
er

b
o
u

n
d

Parameterized layers

Extra layer with 16

Figure 4. Upper bound from Theorem 1, in semilog scale, for input

dimension n0 = 32 and the width of the first five layers parame-

terized as 16 + 2k, 16 + k, 16, 16− k, 16− 2k.

10 20 30 40
0

0.5

1

·1018

Input dimension n0

U
p

p
er

b
o
u

n
d

(a) Theorem 1

10 20 30 40
0

0.5

1

·1018

Input dimension n0

(b) Montúfar (2017)

1x60

2x30

3x20

4x15

5x12

6x10

Figure 5. Comparison of bounds for evenly distributing 60 neurons

in 1 to 6 layers, where the single-layer case is exact, according to

the input dimension for (a) Theorem 1 and (b) Montúfar (2017).

We now build towards the proof of Theorem 1. For a given

activation set Sl and a matrix W with nl rows, let σSl(W)
be the operation that zeroes out the rows of W that are inac-

tive according to Sl. This represents the effect of the ReLUs.

We say that a region is at layer l if it corresponds to an acti-

vation pattern (S1, . . . , Sl) up to layer l. For a region S at

layer l − 1, define W̄ l
S := W l σSl−1(W l−1) · · ·σS1(W 1).

Each region S at layer l − 1 may be partitioned by a set

of hyperplanes defined by the neurons of layer l. When

viewed in the input space, these hyperplanes are the rows

of W̄ l
Sx+ b = 0 for some b. To verify this, note that, if we

recursively substitute out the hidden variables hl−1, . . . , h1

from the original hyperplane W lhl−1 + bl = 0 following S ,

the resulting weight matrix applied to x is W̄ l
S .

A central element in the proof of Theorem 1 is the dimension

of the image of a linear region S under the DNN function hl

up to a layer l, which we denote by dim(hl(S)). For a fixed

region S at layer l, that function is linear, and thus the dimen-

sion

dim(hl(S)) = rank(σSl(W l) · · ·σS1(W 1)). This can be

interpreted as the dimension of the space corresponding

to S that the hyperplanes defined by W l+1hl + bl+1 = 0
effectively partitions. A key observation is that, once this

dimension falls to a certain value, the regions contained in S
at subsequent layers cannot recover to a higher dimension.

Zaslavsky (1975) showed that the maximal number of re-

gions in R
d induced by an arrangement of m hyperplanes

is at most
∑d

j=0

(
m
j

)
. Moreover, this value is attained if

and only if the hyperplanes are in general position. The

lemma below tightens this bound for a special case where

the hyperplanes may not be in general position.

Lemma 4. Consider m hyperplanes in R
d defined by the

rows of Wx+ b = 0. Then the number of regions induced

by the hyperplanes is at most
∑rank(W)

j=0

(
m
j

)
.

The proof is given in Appendix C. Its key idea is that it

suffices to count regions within the row space of W . The

next lemma brings Lemma 4 into our context.

Lemma 5. The number of regions induced by the nl

neurons at layer l within a certain region S is at most
∑min{nl,dim(hl−1(S))}

j=0

(
nl

j

)
.

Proof. The hyperplanes in a region S of the input space

are given by the rows of W̄ l
Sx + b = 0 for some

b. By definition, the rank of W̄ l
S is upper bounded

by min{rank(W l), rank(σSl−1(W l−1) · · ·σS1(W 1))} =
min{rank(W l), dim(hl−1(S))}. That is, rank(W̄ l

S) ≤
min{nl, dim(hl−1(S))}, and we apply Lemma 4.

In the next lemma, we show that the dimension of the image

of a region S can be bounded recursively in terms of the

dimension of the image of the region containing S and the

number of activated neurons defining S .

Lemma 6. Let S be a region at layer l and S ′ be the re-

gion at layer l − 1 that contains it. Then dim(hl(S)) ≤
min{|Sl|, dim(hl−1(S ′))}.

Proof. dim(hl(S)) = rank(σSl(W l) · · ·σS1(W 1)) ≤
min{rank(σSl(W l)), rank(σSl−1(W l−1) · · ·σS1(W 1)) ≤
min{|Sl|, dim(hl−1(S ′))}. The last inequality comes from

zeroed out rows not counting towards the matrix rank.

We now have the ingredients to prove Theorem 1.

Proof of Theorem 1. As illustrated in Figure 2, the partition-

ing can be regarded as a sequential process: at each layer,

we partition the regions obtained from the previous layer.

When viewed in the input space, each region S obtained at

layer l−1 is potentially partitioned by nl hyperplanes given

by the rows of W̄ l
Sx+ b = 0 for some bias b. Some hyper-

planes may fall outside the interior of S and have no effect.

With this process in mind, we recursively bound the number

of subregions within a region. More precisely, we construct

a recurrence R(l, d) to upper bound the maximal number of

regions attainable from partitioning a region with image of

dimension d using units from layers l, l+1, . . . , L. The base

case is given by Lemma 5: R(L, d) =
∑min{nL,d}

j=0

(
nL

j

)
.

Based on Lemma 6, the recurrence groups together regions

with same activation set size |Sl|, as follows: R(l, d) =
∑nl

j=0 Nnl,d,jR(l + 1,min{j, d}) for all l = 1, . . . , L− 1.

Bounding and Counting Linear Regions of Deep Neural Networks

Here, Nnl,d,j represents the maximum number of regions

with |Sl| = j from partitioning a space of dimension d with

nl hyperplanes. We bound this value next.

For each j, there are at most
(
nl

j

)
regions with |Sl| = j, as

they can be viewed as subsets of nl neurons of size j. In

total, Lemma 5 states that there are at most
∑min{nl,d}

j=0

(
nl

j

)

regions. If we allow these regions to have the highest |Sl|
possible, for each j from 0 to min{nl, d} we have at most
(

nl

nl−j

)
=

(
nl

j

)
regions with |Sl| = nl − j.

Therefore, we can write the recurrence as

R(l, d) =







min{nl,d}∑

j=0

(
nl

j

)

R(l + 1,min{nl − j, d})

if 1 ≤ l ≤ L− 1,
min{nL,d}

∑

j=0

(
nL

j

)

if l = L.

The recurrence R(1, n0) can be unpacked to

min{n1,d1}∑

j1=0

(
n1

j1

)min{n2,d2}∑

j2=0

(
n2

j2

)

· · ·

min{nL,dL}
∑

jL=0

(
nL

jL

)

where dl = min{n0, n1 − j1, . . . , nl−1 − jl−1}. This can

be made more compact, resulting in the final expression.

The bound is tight when L = 1 since it becomes
∑min{n0,n1}

j=0

(
n1

j

)
, which is the maximal number of regions

of a single-layer network.

As a side note, Theorem 1 can be further tight-

ened if the weight matrices are known to have small

rank. The bound from Lemma 5 can be rewritten

as
∑min{rank(W l),dim(hl−1(S))}

j=0

(
nl

j

)
if we do not relax

rank(W l) to nl in the proof. The term rank(W l) follows

through the proof of Theorem 1 and the index set J in

the theorem becomes {(j1, . . . , jL) ∈ Z
L : 0 ≤ jl ≤

min{n0, n1 − j1, . . . , nl−1 − jl−1, rank(W
l)} ∀l ≥ 1}.

A key insight from Lemmas 5 and 6 is that the dimensions

of the images of the regions are non-increasing as we move

through the layers partitioning them. In other words, if at

any layer the dimension of the image of a region becomes

small, then that region will not be able to be further parti-

tioned into a large number of regions. For instance, if the

dimension of the image of a region falls to zero, then that

region will never be further partitioned. This suggests that if

we want to have many regions, we need to keep dimensions

high. We use this idea in the next section to construct a

DNN with many regions.

3.2. The Case of Dimension One

If the input dimension n0 is equal to 1 and nl = n for all

layers l, the upper bound presented in the previous section

reduces to (n + 1)L. On the other hand, the lower bound

given by Montúfar et al. (2014) becomes nL−1(n+ 1). It

is then natural to ask: are either of these bounds tight? The

answer is that the upper bound is tight in the case of n0 = 1,

assuming there are sufficiently many neurons.

Theorem 7. Consider a deep rectifier network with L lay-

ers, nl ≥ 3 rectified linear units at each layer l, and an

input of dimension 1. The maximal number of regions of

this neural network is exactly
∏L

l=1(nl + 1).

The expression above is a simplified form of the upper

bound from Theorem 1 in the case n0 = 1.

The proof of this theorem in Appendix D has a construction

with n+1 regions that replicate themselves as we add layers,

instead of n as in Montúfar et al. (2014). That is motivated

by an insight from the previous section: in order to obtain

more regions, we want the dimension of the image of every

region to be as large as possible. When n0 = 1, we want all

regions to have images with dimension one. This intuition

leads to a new construction with one additional region that

can be replicated with other strategies.

3.3. Lower Bounds on the Maximal Number of Linear

Regions

Both the lower bounds from Montúfar et al. (2014) and

from Arora et al. (2018) can be slightly improved, since

their approaches are based on extending a 1-dimensional

construction similar to the one in Section 3.2. We do both

since they are not directly comparable: the former bound

is in terms of the number of neurons in each layer and the

latter is in terms of the total size of the network.

Theorem 8. The maximal number of linear regions in-

duced by a rectifier network with n0 input units and L
hidden layers with nl ≥ 3n0 for all l is lower bounded

by
(∏L−1

l=1

(⌊
nl

n0

⌋
+ 1

)n0
)∑n0

j=0

(
nL

j

)
.

The proof of this theorem is in Appendix E. For comparison,

the differences between the lower bound theorem (Theorem

5) from Montúfar et al. (2014) and the above theorem is the

replacement of the condition nl ≥ n0 by the more restrictive

nl ≥ 3n0, and of ⌊nl/n0⌋ by ⌊nl/n0⌋+ 1.

Theorem 9. For any m ≥ 1 and w ≥ 2, there exists a

rectifier network with n0 input units and L hidden layers of

size 2m + w(L − 1) that has 2
∑n0−1

j=0

(
m−1
j

)
(w + 1)L−1

linear regions.

The proof of this theorem is in Appendix F. The differences

between Theorem 2.11(i) from Arora et al. (2018) and the

above theorem is the replacement of w by w + 1. They

Bounding and Counting Linear Regions of Deep Neural Networks

construct a 2m-width layer with many regions and use a

one-dimensional construction for the remaining layers.

4. An Upper Bound on the Number of Linear

Regions for Maxout Networks

We now consider a deep neural network composed of max-

out units. Given weights W l
j for j = 1, . . . , k, the output of

a rank-k maxout layer l is given by

hl = max{W l
1h

l−1 + bl1, . . . ,W
l
kh

l−1 + blk}

In terms of bounding number of regions, a major difference

between the next result for maxout units and the previous

one for ReLUs is that dimensionality plays less of a role,

since neurons may no longer have an inactive state with zero

output. Nevertheless, using techniques similar to the ones

from Section 3.1, the following theorem can be shown (see

Appendix G for the proof).

Theorem 10. Consider a deep neural network with L layers,

nl rank-k maxout units at each layer l, and an input of

dimension n0. The maximal number of regions is at most

L∏

l=1

dl∑

j=0

(k(k−1)
2 nl

j

)

where dl = min{n0, n1, . . . , nl}.

Asymptotically, if nl = n for all l = 1, . . . , L, n ≥ n0, and

n0 = O(1), then the maximal number of regions is at most

O((k2n)Ln0).

5. Exact Counting of Linear Regions

If the input space x ∈ R
n0 is bounded by minimum and

maximum values along each dimension, or else if x corre-

sponds to a polytope more generally, then we can define

a mixed-integer linear formulation mapping polyhedral re-

gions of x to the output space y. The assumption that

x is bounded and polyhedral is natural in most applica-

tions, where each value xi has known lower and upper

bounds (e.g., the value can vary from 0 to 1 for image pix-

els). Among other things, we can use this formulation to

count the number of linear regions.

In the formulation that follows, we use continuous variables

to represent the input x, which we can also denote as h0,

the output of each neuron i in layer l as hl
i, and the output

y as hL+1. To simplify the representation, we lift this

formulation to a space that also contains the output of a

complementary set of neurons, each of which is active when

the corresponding neuron is not. Namely, for each neuron i

in layer l we also have a variable h
l

i := max{0,−W l
ih

l−1−
bli}. We use binary variables of the form zli to denote if each

neuron i in layer l is active or else if the complement is.

Finally, we assume M to be a sufficiently large constant.

For a given neuron i in layer l, the following set of con-

straints maps the input to the output:

W l
ih

l−1 + bli = hl
i − h

l

i (1)

hl
i ≤ Mzli (2)

h
l

i ≤ M(1− zli) (3)

hl
i ≥ 0 (4)

h
l

i ≥ 0 (5)

zli ∈ {0, 1} (6)

Theorem 11. Provided that |W l
ih

l−1 + bli| ≤ M for any

possible value of hl−1, a formulation with the set of con-

straints (1)–(6) for each neuron of a rectifier network is such

that a feasible solution with a fixed value for x yields the

output y of the neural network.

Proof. It suffices to prove that the constraints for each

neuron map the input to the output in the same way that

the neural network would. If W l
ih

l−1 + bli > 0, it fol-

lows that hl
i − h

l

i > 0 according to (1). Since both vari-

ables are non-negative due to (4) and (5) whereas one is

non-positive due to (2), (3), and (6), then zli = 1 and

hl
i = max

{
0,W l

ih
l−1 + bli

}
. If W l

ih
l−1 + bli < 0, then

it similarly follows that hl
i − h

l

i < 0, zli = 0, and thus

h
l

i = min
{
0,W l

ih
l−1 + bli

}
. If W l

ih
l−1 + bli = 0, then

either hl
i = 0 or h

l

i = 0 due to constraints (4) to (6) whereas

(1) implies that h
l

i = 0 or hl
i = 0, respectively. In this case,

the value of zli is arbitrary but irrelevant.

A systematic method to count integer solutions is the one-

tree approach (Danna et al., 2007), which resumes the search

after an optimal solution has been found using the same

branch-and-bound tree. This method also allows for count-

ing feasible solutions within a threshold of the optimal value.

Note that in constraints (1)–(6), the variables zli can be ei-

ther 0 or 1 when they lie on the activation boundary, whereas

we want to consider a neuron active only when its output

is strictly positive. This discrepancy may cause double-

counting when activation boundaries overlap. We can ad-

dress that by defining an objective function that maximizes

the minimum output f of an active neuron, which is positive

in the non-degenerate cases that we want to count. We state

this formulation for rectifier networks as follows:

max f

s.t. (1)–(6) ∀ neuron i in layer l (P)

f ≤ hl
i + (1− zli)M ∀ neuron i in layer l

x ∈ X

Bounding and Counting Linear Regions of Deep Neural Networks

101 103 105 107
0

1

2

3

Number of linear regions

T
ra

in
in

g
er

ro
r

(C
E

)

101 103 105 107
0

20

40

60

80

100

Number of linear regions

T
es

t
er

ro
r

(%
M

R
)

Figure 6. Number of linear regions versus cross-entropy error on

the training set, and misclassification rate on the testing set. The

colors represent the number of neurons in each of the first two lay-

ers. The color gradient from red to blue corresponds to increasing

the size of the first layer and decreasing the size of the second.

A discusssion on the choice for the M constants can be

found in Appendix H. In addition, we discuss the mixed-

representability of DNNs in Appendix I, the theory for un-

restricted inputs in Appendix J, and a mixed-integer formu-

lation for maxout networks in Appendix K, respectively.

6. Experiments

We perform an experiment to count linear regions of small-

sized networks with ReLU activation units on the MNIST

benchmark dataset (LeCun et al., 1998). In this experiment,

we train rectifier networks with two hidden layers summing

up to 22 neurons. We train 10 networks for each config-

uration for 20 epochs or training steps, and we count all

linear regions within 0 ≤ x ≤ 1. The counting code is

written in C++ (gcc 4.8.4) using CPLEX Studio 12.8 as

a solver and ran in Ubuntu 14.04.4 on a machine with 40

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz processors

and 132 GB of RAM. The runtimes for counting different

configuration can be found in Appendix L.

Figure 1 shows the average, minimum, and maximum num-

ber of linear regions for each configuration of these net-

works. The plot also contains the corresponding upper

bounds for each configuration from Theorem 1 and those

from Montúfar et al. (2014) and Montúfar (2017), which are

the first and the tightest bounds from prior work respectively.

Note that upper bound from Theorem 1 is tighter.

Figure 6 shows how the number of regions for each trained

DNN compares with Cross-Entropy (CE) error on training

set, and Misclassification Rate (MR) on testing set. If an

intermediate layer in a network has only 1 or 2 neurons, it

is natural to expect very high training and test errors. We

discard such DNNs with a layer of small width in Figure 7.

7. Discussion

Our ReLU upper bound indicates that small widths in early

layers cause a bottleneck effect on the number of regions. If

104 105 106 107
0.2

0.4

0.6

0.8

Number of linear regions

T
ra

in
in

g
er

ro
r

(C
E

)

104 105 106 107

5

10

15

Number of linear regions

T
es

t
er

ro
r

(%
M

R
)

Figure 7. Scatter plot for the number of linear regions versus train-

ing and testing errors on DNNs with minimum width at least 4.

The colors follow the same convention used in Figure 6.

we reduce the width of an early layer, the dimension of the

image of the linear regions become irrecoverably smaller

throughout the network and the regions will not be able to

be partitioned as much. This intuition allows us to develop

a 1-dimensional construction with the maximal number of

regions by eliminating a zero-dimensional bottleneck. In our

experiment, we validate the bottleneck effect by observing

that the actual number of linear regions is asymmetric when

one layer is increased and another decreased in size.

An unexpected consequence of one of our results is that

shallow networks can attain more linear regions when the

input dimensions exceed the number of neurons. This com-

plements prior work, which has not considered large input

dimensions, a common case in practice.

We also observe in Figure 5 that the depth that maximizes

the upper bound from Theorem 1 increases with the number

of units and decreases with the size of the input. It would be

interesting to investigate if this also happens with respect to

the actual number of regions, in which case the depth could

be chosen according to those parameters.

However, it would be possible that DNNs configurations

with large number of linear regions do not generalize well

if there are so many regions that each training point can be

singled out in a different region, in particular if regions with

similar labels are unlikely to be compositionally related.

Nevertheless, we have initial evidence that training and

classification accuracies relate to the number of regions for

configurations where no layer is too small, hence suggesting

that the number of regions can be a metric for comparing

similar DNN configurations. However, in the cases where

one layer is too small, we have also observed that the num-

ber of regions can be large and do not reflect the capacity

of the DNN. We hypothesize that the presence of low di-

mensionality negatively affects the accuracy of the network,

even when the number of regions is large because of other

layers. This indicates that potentially more insights could

be gained from investigating the shape of linear regions.

Bounding and Counting Linear Regions of Deep Neural Networks

Acknowledgements

We thank the anonymous reviewers for useful suggestions.

References

Anthony, M. and Bartlett, P. Neural network learning: The-

oretical foundations. 1999.

Arora, R., Basu, A., Mianjy, P., and Mukherjee, A. Under-

standing deep neural networks with rectified linear units.

In ICLR, 2018.

Balas, E. Disjunctive programming. Annals of Discrete

Mathematics, (5):3–51, 1979.

Balas, E., Ceria, S., and Cornuéjols, G. A lift-and-project

cutting plane algorithm for mixed 0–1 programs. Mathe-

matical Programming, 58:295–324, 1993.

Bianchini, M. and Scarselli, F. On the complexity of neu-

ral network classifiers: A comparison between shallow

and deep architectures. IEEE Transactions on Neural

Networks and Learning Systems, 2014.

Camm, J. D., Raturi, A. S., and Tsubakitani, S. Cutting big

M down to size. Interfaces, 20(5):61–66, 1990.

Cheng, C.-H., Nührenberg, G., and Ruess, H. Maximum

resilience of artificial neural networks. In ATVA, pp. 251–

268, 2017.

Ciresan, D., Meier, U., Masci, J., and Schmidhuber, J. Multi

column deep neural network for traffic sign classification.

Neural Networks, 32:333–338, 2012.

Cybenko, G. Approximation by superpositions of a sig-

moidal function. Mathematics of Control, Signals and

Systems, 2(4):303–314, 1989.

Danna, E., Fenelon, M., Gu, Z., and Wunderling, R. Gener-

ating multiple solutions for mixed integer programming

problems. In IPCO, pp. 280–294. 2007.

Delalleau, O. and Bengio, Y. Shallow vs. deep sum-product

networks. In NIPS, 2011.

Eldan, R. and Shamir, O. The power of depth for feedfor-

ward neural networks. In Conference on Learning Theory,

pp. 907–940, 2016.

Fourier, J. Solution dune question particuliére du calcul des

inégalités. Nouveau Bulletin des Sciences par la Société

Philomatique de Paris, pp. 317–319, 1826.

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A.,

and Bengio, Y. Maxout networks. In ICML, 2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual

learning for image recognition. In CVPR, 2016.

Hinton, G., Deng, L., Dahl, G., Mohamed, A., Jaitly, N.,

Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., and

Kingsbury, B. Deep neural networks for acoustic mod-

eling in speech recognition. IEEE Signal Processing

Magazine, 2012.

Jeroslow, R. Representability in mixed integer program-

ming, I: Characterization results. Discrete Applied Math-

ematics, 17(3):223 – 243, 1987.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks.

In NIPS, 2012.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

Maass, W., Schnitger, G., and Sontag, E. A comparison of

the computational power of sigmoid and boolean thresh-

old circuits. Theoretical Advances in Neural Computation

and Learning, pp. 127–151, 1994.

Mhaskar, H., Liao, Q., and Poggio, T. A. Learning real

and boolean functions: When is deep better than shallow.

CoRR, abs/1603.00988, 2016.

Montúfar, G. Notes on the number of linear regions of deep

neural networks. In SampTA, 2017.

Montúfar, G., Pascanu, R., Cho, K., and Bengio, Y. On

the number of linear regions of deep neural networks. In

NIPS, 2014.

Pan, X. and Srikumar, V. Expressiveness of rectifier net-

works. In ICML, 2016.

Pascanu, R., Montúfar, G., and Bengio, Y. On the number

of response regions of deep feedforward networks with

piecewise linear activations. In ICLR, 2014.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-

Dickstein, J. On the expressive power of deep neural

networks. In ICML, 2017.

Stirling, J. Methodus Differentialis sive Tractatus de Summa-

tione et Interpolatione Serierum Infinitarum. G. Strahan,

London, 1730.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,

A. Going deeper with convolutions. In CVPR, 2015.

Telgarsky, M. Representation benefits of deep feedforward

networks. CoRR, abs/1509.08101, 2015.

Zaslavsky, T. Facing up to arrangements: face-count for-

mulas for partitions of space by hyperplanes. American

Mathematical Society, 1975.

