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Figure 1: In object detection datasets, the ground-truth bounding boxes have inherent ambiguities in some cases. The

bounding box regressor is expected to get smaller loss from ambiguous bounding boxes with our KL Loss. (a)(c) The

ambiguities introduced by inaccurate labeling. (b) The ambiguities introduced by occlusion. (d) The object boundary itself is

ambiguous. It is unclear where the left boundary of the train is because the tree partially occludes it. (better viewed in color)

Abstract

Large-scale object detection datasets (e.g., MS-COCO)

try to define the ground truth bounding boxes as clear as

possible. However, we observe that ambiguities are still in-

troduced when labeling the bounding boxes. In this paper,

we propose a novel bounding box regression loss for learn-

ing bounding box transformation and localization variance

together. Our loss greatly improves the localization accura-

cies of various architectures with nearly no additional com-

putation. The learned localization variance allows us to

merge neighboring bounding boxes during non-maximum

suppression (NMS), which further improves the localization

performance. On MS-COCO, we boost the Average Preci-

sion (AP) of VGG-16 Faster R-CNN from 23.6% to 29.1%.

More importantly, for ResNet-50-FPN Mask R-CNN, our

method improves the AP and AP90 by 1.8% and 6.2% re-

spectively, which significantly outperforms previous state-

of-the-art bounding box refinement methods. Our code and

models are available at github.com/yihui-he/KL-Loss

1. Introduction

Large scale object detection datasets like ImageNet [6],

MS-COCO [35] and CrowdHuman [47] try to define the

ground truth bounding boxes as clear as possible.

However, we observe that the ground-truth bounding

boxes are inherently ambiguous in some cases. The ambi-

guities makes it hard to label and hard to learn the bounding

box regression function. Some inaccurately labeled bound-

ing boxes from MS-COCO are shown in Figure 1 (a)(c).

When the object is partially occluded, the bounding box

boundaries are even more unclear, shown in Figure 1 (d)

from YouTube-BoundingBoxes [40].

Object detection is a multi-task learning problem con-

sisting of object localization and object classification.

Current state-of-the-art object detectors (e.g., Faster R-

CNN [42], Cascade R-CNN [2] and Mask R-CNN [17]) rely

on bounding box regression to localize objects.

However, the traditional bounding box regression loss

(i.e., the smooth L1 loss [13]) does not take such the am-

biguities of the ground truth bounding boxes into account.

Besides, bounding box regression is assumed to be accurate

when the classification score is high, which is not always

the case, illustrated in Figure 2.

To address these problems, we propose a novel bounding

box regression loss, namely KL Loss, for learning bound-

ing box regression and localization uncertainty at the same

time. Specifically, to capture the uncertainties of bound-

ing box prediction, we first model the bounding box pre-
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Figure 2: Illustration of failure cases of VGG-16 Faster R-

CNN on MS-COCO. (a) both candidate boxes are inaccu-

rate in a certain coordinate. (b) the left boundary of the

bounding box which has the higher classification score is

inaccurate. (better viewed in color)

diction and ground-truth bounding box as Gaussian distri-

bution and Dirac delta function respectively. Then the new

bounding box regression loss is defined as the KL diver-

gence of the predicted distribution and ground-truth distri-

bution. Learning with KL Loss has three benefits: (1) The

ambiguities in a dataset can be successfully captured. The

bounding box regressor gets smaller loss from ambiguous

bounding boxes. (2) The learned variance is useful during

post-processing. We propose var voting (variance voting)

to vote the location of a candidate box using its neighbors’

locations weighted by the predicted variances during non-

maximum suppression (NMS). (3) The learned probability

distribution is interpretable. Since it reflects the level of un-

certainty of the bounding box prediction, it can potentially

be helpful in down-stream applications like self-driving cars

and robotics [7, 16, 21].

To demonstrate the generality of KL Loss and var voting,

we evaluate various CNN-based object detectors on both

PASCAL VOC 2007 and MS-COCO including VGG-CNN-

M-1024, VGG-16, ResNet-50-FPN, and Mask R-CNN. Our

experiments suggest that our approach offers better object

localization accuracy for CNN-based object detectors. For

VGG-16 Faster R-CNN on MS-COCO, we improve the AP

from 23.6% to 29.1%, with only 2ms increased inference

latency on the GPU (GTX 1080 Ti). Furthermore, we apply

this pipeline to ResNet-50-FPN Mask R-CNN and improve

the AP and AP90 by 1.8% and 6.2% respectively, which

outperforms the previous state-of-the-art bounding box re-

finement algorithm [27].

2. Related Work

Two-stage Detectors: Although one-stage detection al-

gorithms [36, 41, 30, 51] are efficient, state-of-the-art object

detectors are based on two-stage, proposal-driven mecha-

nism [42, 4, 5, 17, 31, 2]. Two-stage detectors generate

cluttered object proposals, which result in a large number

of duplicate bounding boxes. However, during the standard

NMS procedure, bounding boxes with lower classification

scores will be discarded even if their locations are accurate.

Our var voting tries to utilize neighboring bounding boxes

based on localization confidence for better localization of

the selected boxes.

Object Detection Loss: To better learn object detection,

different kind of losses have been proposed. UnitBox [49]

introduced an Intersection over Union (IoU) loss function

for bounding box prediction. Focal Loss [34] deals with

the class imbalance by changing the standard cross entropy

loss such that well-classified examples are assigned lower

weights. [39] optimizes for the mAP via policy gradient

for learning globally optimized object detector. [28] intro-

duces uncertainties for depth estimation. The idea is further

extended to the 3D object detection [10, 9]. [29] proposes

to weight multi-task loss for scene understanding by con-

sidering the uncertainty of each task. With KL Loss, our

model can adaptively adjust variances for the boundaries of

every object during training, which can help to learn more

discriminative features.

Non-Maximum Suppression: NMS has been an essen-

tial part of computer vision for many decades. It is widely

used in edge detection [44], feature point detection [37] and

objection detection [13, 12, 42, 45]. Recently, soft NMS

and learning NMS [1, 24] are proposed to improve NMS

results. Instead of eliminating all lower scored surrounding

bounding boxes, soft-NMS [1] decays the detection scores

of all other neighbors as a continuous function of their

overlap with the higher scored bounding box. Learning

NMS [24] proposed to learn a new neural network to per-

form NMS using only boxes and their classification scores.

Bounding Box Refinement: MR-CNN [11] is first pro-

posed to merge boxes during iterative localization. Relation

network [25] proposes to learn the relation between bound-

ing boxes. Recently, IoU-Net [27] proposes to learn the IoU

between the predicted bounding box and the ground-truth

bounding box. IoU-NMS is then applied to the detection

boxes, guided by the learned IoU. Different from IoU-Net,

we propose to learn the localization variance from a proba-

bilistic perspective. It enables us to learn the variances for

the four coordinates of a predicted bounding box separately
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instead of only IoU. Our var voting determine the new loca-

tion of a selected box based on the variances of neighboring

bounding boxes learned by KL Loss, which can work to-

gether with soft-NMS (Table 1 and Table 6).

3. Approach

In this section, we first introduce our bounding box pa-

rameterization. Then we propose KL Loss for training de-

tection network with localization confidence. Finally, a new

NMS approach is introduced for improving localization ac-

curacy with our confidence estimation.

3.1. Bounding Box Parameterization

Based on a two-stage object detector Faster R-CNN or

Mask R-CNN [42, 17] shown in Figure 3, we propose to

regress the boundaries of a bounding box separately. Let

(x1, y1, x2, y2) ∈ R4 be the bounding box representation

as a 4-dimensional vector, where each dimension is the box

boundary location. We adopt the parameterizations of the

(x1, y1, x2, y2) coordinates instead of the (x, y, w, h) coor-

dinates used by R-CNN [13]:

tx1 =
x1 − x1a

wa
, tx2 =

x2 − x2a

wa

ty1
=

y1 − y1a
ha

, ty2
=

y2 − y2a
ha

t∗x1
=

x∗

1 − x1a

wa
, t∗x2

=
x∗

2 − x2a

wa

t∗y1
=

y∗1 − y1a
ha

, t∗y2
=

y∗2 − y2a
ha

(1)

where tx1
, ty1

, tx2
, ty2

are the predicted offsets. t∗x1
, t∗y1

,

t∗x2
, t∗y2

are the ground-truth offsets. x1a, x2a, y1a, y2a,

wa, ha are from the anchor box. x1, y1, x2, y2 are from

the predicted box. In the following discussions, a bounding

box coordinate is denoted as x for simplicity because we

can optimize each coordinate independently.

We aim to estimate the localization confidence along

with the location. Formally, our network predicts a prob-

ability distribution instead of only bounding box location.

Though the distribution could be more complex ones like

multivariate Gaussian or a mixture of Gaussians, in this pa-

per we assume the coordinates are independent and use sin-

gle variate gaussian for simplicity:

PΘ(x) =
1√
2πσ2

e−
(x−xe)2

2σ2 (2)

where Θ is the set of learnable parameters. xe is the esti-

mated bounding box location. Standard deviation σ mea-

sures uncertainty of the estimation. When σ → 0, it means

our network is extremely confident about estimated bound-

ing box location. It is produced by a fully-connected layer

on top of the fast R-CNN head (fc7). Figure 3 illustrates

Class

Box

Box std

Lcls

Lreg

(KL loss)

fc7fc6

RoI

Figure 3: Our network architecture for estimating local-

ization confidence. Different from standard fast R-CNN

head of a two stage detection network, our network esit-

mates standard deviations along with bounding box loca-

tions, which are taken into account in our regression loss

KL Loss

the fast R-CNN head of our network architecture for object

detection.

The ground-truth bounding box can also be formulated

as a Gaussian distribution, with σ → 0, which is a Dirac

delta function:

PD(x) = δ(x− xg) (3)

where xg is the ground-truth bounding box location.

3.2. Bounding Box Regression with KL Loss

The goal of object localization in our context is to esti-

mate Θ̂ that minimize the KL-Divergence between PΘ(x)
and PD(x) [43] over N samples:

Θ̂ = argmin
Θ

1

N

∑
DKL(PD(x)||PΘ(x)) (4)

We use the KL-Divergence as the loss function Lreg for

bounding box regression. The classification loss Lcls re-

mains the same. For a single sample:

Lreg = DKL(PD(x)||PΘ(x))

=

∫
PD(x) logPD(x)dx−

∫
PD(x) logPΘ(x)dx

=
(xg − xe)

2

2σ2
+

log(σ2)

2
+

log(2π)

2
−H(PD(x))

(5)

Shown in Figure 4, when the location xe is estimated inac-

curately, we expect the network to be able to predict larger

variance σ2 so that Lreg will be lower. log(2π)/2 and

H(PD(x)) do not depend on the estimated parameters Θ,

hence:

Lreg ∝
(xg − xe)

2

2σ2
+

1

2
log(σ2) (6)

2890



𝑁(𝑥$, 𝜎
2)

𝛿(𝑥 − 𝑥+)

Figure 4: The Gaussian distributions in blue and gray are

our estimations. The Dirac delta function in orange is the

distribution of the ground-truth bounding box. When the

location xe is estimated inaccurately, we expect the network

to be able to predict larger variance σ2 so that Lreg will be

lower (blue)

When σ = 1, KL Loss degenerates to the standard Eu-

clidean loss:

Lreg ∝
(xg − xe)

2

2
(7)

The loss is differentiable w.r.t location estimation xe and

localization standard deviation σ:

d

dxe
Lreg =

xe − xg

σ2

d

dσ
Lreg = − (xe − xg)

2

σ−3
− 1

σ

(8)

However, since σ is in the denominators, the gradient some-

times can explode at the beginning of training. To avoid gra-

dient exploding, our network predicts α = log(σ2) instead

of σ in practice:

Lreg ∝
e−α

2
(xg − xe)

2 +
1

2
α (9)

We convert α back to σ during testing.

For |xg − xe| > 1, we adopt a loss similar to the smooth

L1 loss defined in Fast R-CNN [12]:

Lreg = e−α(|xg − xe| −
1

2
) +

1

2
α (10)

We initialize the weights of the FC layer for α prediction

with random Gaussian initialization. The standard deviation

and mean are set to 0.0001 and 0 respectively, so that KL

Loss will be similar to the standard smooth L1 loss at the

beginning of training. (Equation 9 and Equation 10).

3.3. Variance Voting

After we obtain the variance of predicted location, it is

intuitive to vote candidate bounding box location accord-

ing to the learned variances of neighboring bounding boxes.

Shown in Algorithm 1, we change NMS with three lines of

code:

Algorithm 1 var voting

B is N × 4 matrix of initial detection boxes. S contains

corresponding detection scores. C is N × 4 matrix of cor-

responding variances. D is the final set of detections. σt is

a tunable parameter of var voting. The lines in blue and in

green are soft-NMS and var voting respectively.

B = {b1, .., bN}, S = {s1, .., sN}, C = {σ2
1 , .., σ

2
N}

D ← {}
T ← B
while T 6= empty do

m← argmax S
T ← T − bm
S ← Sf(IoU(bm, T )) ⊲ soft-NMS

idx← IoU(bm, B) > 0 ⊲ var voting

p← exp(−(1− IoU(bm,B[idx]))2/σt)
bm ← p(B[idx]/C[idx])/p(1/C[idx])
D ← D⋃

bm
end while

return D,S

We vote the location of selected boxes within

the loop of standard NMS or soft-NMS [1]. Af-

ter selecting the detection with maximum score b,
{x1, y1, x2, y2, s, σx1

, σy1
, σx2

, σy2
}, its new location is

computed according to itself and its neighboring bound-

ing boxes. Inspired by soft-NMS, we assign higher weights

for boxes that are closer and have lower undertainties. For-

mally, let x be a coordinate (e.g., x1) and xi be the coordi-

nate of ith box. The new coordinate is computed as follow:

pi = e−(1−IoU(bi,b))
2/σt

x =

∑
i pixi/σ

2
x,i∑

i pi/σ
2
x,i

subject to IoU(bi, b) > 0

(11)

σt is a tunable parameter of var voting. Two types of neigh-

boring bounding boxes will get lower weights during vot-

ing: (1) Boxes with high variances. (2) Boxes that have

small IoU with the selected box. Classification score is not

involved in the voting, since lower scored boxes may have

higher localization confidence. In Figure 5, we provide a

visual illustration of var voting. With var voting, the two

situations as mentioned earlier in Figure 2 that lead to de-

tection failure can sometimes be avoided.

4. Experiments

To demonstrate our method for accurate object detection,

we use two datasets: MS-COCO [35] and PASCAL VOC
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Figure 5: Results of var voting with VGG-16 Faster R-CNN on MS-COCO. The green textbox in the middle of each boundary

is the corresponding standard deviation σ we predicted (Equation 2). Two failure situations corresponding to Figure 2 that can

be improved by var voting: (a) When each candidate bounding box is inaccurate in some coordinates (women on the right),

our var voting can incorporate their localization confidence and produce better boxes. (b) The bounding box with a higher

classification score (train 0.99) actually has lower localization confidence than the bounding box with a lower classification

score (train 0.35). After var voting, the box scored 0.99 moves towards the correct location. (better viewed in color)

2007 [8]. We use four GPUs for our experiments. The train-

ing schedule and batch size are adjusted according to the

linear scaling rule [15]. For VGG-CNN-M-1024 and VGG-

16 Net [48], our implementation is based on Caffe [26]. For

ResNet-50 FPN [18, 33] and Mask R-CNN [17], our im-

plementation is based on Detectron [14]. For VGG-16 [48]

Faster R-CNN, following py-faster-rcnn1, we train

on train2014 and test on val2014. For other object

detection networks, we train and test on the newly defined

train2017 and val2017 respectively. We set σt to

0.02. Unless specified, all hyper-parameters are set to de-

fault2.

4.1. Ablation Study

We evaluate the contribution of each element in our de-

tection pipeline: KL Loss, soft-NMS and var voting with

VGG-16 Faster R-CNN. The detailed results are shown in

1github.com/rbgirshick/py-faster-rcnn
2github.com/facebookresearch/Detectron

Table 1.

KL Loss: Surprisingly, simply training with KL Loss

greatly improves the AP by 2.8%, which is also observed

on ResNet-50 Faster R-CNN and Mask R-CNN (1.5% and

0.9% improvement respectively, shown in Table 3 and Ta-

ble 4). First, by learning to predict high variances for sam-

ples with high uncertainties during training, the network

can learn more from useful samples. Second, the gradient

for localization can be adaptively controlled by the network

during training (Equation 8), which encourages the network

to learn more accurate object localization. Third, KL Loss

incorporates learning localization confidence which can po-

tentially help the network to learn more discriminative fea-

tures.

The learned variances through our KL Loss are inter-

pretable. Our network will output higher variances for chal-

lenging object boundaries, which can be useful in vision ap-

plications like self-driving cars and robotics. The first row
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KL Loss soft-NMS var voting AP AP50 AP75 APS APM APL AR1 AR10 AR100

23.6 44.6 22.8 6.7 25.9 36.3 23.3 33.6 34.3

X 24.8 45.6 24.6 7.6 27.2 37.6 23.4 39.2 42.2

X 26.4 47.9 26.4 7.4 29.3 41.2 25.2 36.1 36.9

X X 27.8 48.0 28.9 8.1 31.4 42.6 26.2 37.5 38.3

X X 27.8 49.0 28.5 8.4 30.9 42.7 25.3 41.7 44.9

X X X 29.1 49.1 30.4 8.7 32.7 44.3 26.2 42.5 45.5

Table 1: The contribution of each element in our detection pipeline on MS-COCO. The baseline model is VGG-16 Faster

R-CNN

method latency (ms)

baseline 99

ours 101

Table 2: Inference time comparison on MS-COCO with

VGG-16 Faster R-CNN on a GTX 1080 Ti GPU, CUDA

8 [38] and CUDNN 6 [3]

fast R-CNN head backbone KL Loss AP

2mlp head FPN
37.9

X 38.5+0.6

2mlp head + mask FPN
38.6

X 39.5+0.9

conv5 head RPN
36.5

X 38.0+1.5

Table 3: Comparison of different fast R-CNN heads. The

model is ResNet-50 Faster R-CNN

of Figure 5 shows some qualitative examples of the standard

deviation learned through our KL Loss.

Soft-NMS: As expected, soft-NMS performs consistently

on both baseline and our network trained with KL Loss. It

improves the AP by 1.2% and 1.4% on the baseline and our

network respectively, shown in Table 1.

Variance Voting: Finally, with var voting, the AP is fur-

ther improved to 29.1%. We made the observation that im-

provement mainly comes from the more accurate localiza-

tion. Notice that the AP50 is only improved by 0.1%. How-

ever, AP75, APM and APL are improved by 1.8%, 1.8%,

and 1.6% respectively, shown in Table 1. This indicates that

classification confidence is not always associated with lo-

calization confidence. Therefore, learning localization con-

fidence apart from classification confidence is important for

more accurate object localization.

0.0 0.005 0.01 0.025 0.05 0.1
t

1.0

0.5

0.0

0.5

1.0

 A
P 

(%
)

AP
AP50

AP75

AP80

AP90

Figure 6: Varying σt for var voting with ResNet-50 Faster

R-CNN. (better viewed in color)

We also found that var voting and soft-NMS can work

well together. Applying var voting with the standard NMS

improves the AP by 1.4%. Applying var voting after soft-

NMS still can improve the AP by 1.3%. We argue that soft-

NMS is good at scoring candidate bounding boxes which

improve overall performance, whereas var voting is good

at refining those selected bounding boxes for more accurate

object localization. The second row of Figure 5 shows some

qualitative examples of our var voting.

Shown in Figure 6, we test the sensitivity of the tunable

parameter σt for var voting. When σt = 0, var voting is not

activated. We observe that the AP75, AP80 and AP90 can

be significantly affected by σt, while AP50 is less sensitive

to σt. Acceptable values of σt varies from around 0.005 ∼
0.05. We use σt = 0.02 in all experiments.

Inference Latency: We also evaluate the inference time

of our improved VGG-16 Faster R-CNN on a single GTX

1080 Ti GPU with CUDA 8 and CUDNN 6, as it is cru-

cial for resource-limited applications [50, 20, 23, 19, 32].
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AP AP50 AP60 AP70 AP80 AP90

baseline [14] 38.6 59.8 55.3 47.7 34.4 11.3

MR-CNN [11] 38.9 59.8 55.5 48.1 34.8+0.4 11.9+0.6

soft-NMS [1] 39.3 59.7 55.6 48.9 35.9+1.5 12.0+0.7

IoU-NMS+Refine [27] 39.2 57.9 53.6 47.4 36.5+2.1 16.4+5.1

KL Loss 39.5+0.9 58.9 54.4 47.6 36.0+1.6 15.8+4.5

KL Loss+var voting 39.9+1.3 58.9 54.4 47.7 36.4+2.0 17.0+5.7

KL Loss+var voting+soft-NMS 40.4+1.8 58.7 54.6 48.5 37.5+3.3 17.5+6.2

Table 4: Comparisons of different methods for accurate object detection on MS-COCO. The baseline model is ResNet-50-

FPN Mask R-CNN. We improve the baseline by ≈ 2% in AP

Shown in Table 2, our approach only increases 2ms latency

on GPU. Different from IoUNet [27] which uses 2mlp head

for IoU prediction, our approach only requires a 4096×324
fully-connected layer for the localization confidence predic-

tion.

RoI Box Head: We test the effectiveness of KL Loss with

different RoI box heads on a deeper backbone: ResNet-

50. res5/conv5 head consists of 9 convolutional lay-

ers which can be applied to each RoI as fast R-CNN head.

2mlp head consists of two fully connected layers. res5

head can learn more complex representation than the com-

monly used 2mlp head. Shown in Table 3, KL Loss can

improve the AP by 0.9% with mask. KL Loss can further

improve the AP by 1.5% with conv5 head. We hypoth-

esize that the localization variance is much more challeng-

ing to learn than localization, therefore KL Loss can ben-

efit more from the expressiveness of conv5 head. Since

conv5 head is not commonly used in recent state-of-the-

art detectors, we still adopt the 2mlp head in the following

experiments.

4.2. Accurate Object Detection

Table 4 summarizes the performance of different meth-

ods for accurate object detection on ResNet-50-FPN Mask

R-CNN. With KL Loss, the network can learn to adjust the

gradient for ambiguous bounding boxes during training. As

a result, Mask R-CNN trained with KL Loss performs sig-

nificantly better than the baseline for high overlap metrics

like AP90. Variance Voting improves the localization results

by voting the location according to the localization confi-

dences of neighboring bounding boxes. AP80 and AP90 are

further improved by 0.4% and 1.2% respectively. Variance

Voting is also compatible with soft-NMS. Variance Voting

combined with soft-NMS improves the AP90 and the over-

all AP of the final model by 6.2% and 1.8% respectively.

Compared with IoUNet [27]: (1) our variance and localiza-

tion are learned together with KL Loss, which improves the

performance. (2) KL Loss does not require a separate 2mlp

backbone method mAP

baseline 60.4

VGG-CNN- KL Loss 62.0

M-1024 KL Loss+var voting 62.8

KL Loss+var voting+soft-NMS 63.6

VGG-16

baseline 68.7

QUBO (tabu) [46] 60.6

QUBO (greedy) [46] 61.9

soft-NMS [1] 70.1

KL Loss 69.7

KL Loss+var voting 70.2

KL Loss+var voting+soft-NMS 71.6

Table 5: Comparisons of different approaches on PASCAL

VOC 2007 with Faster R-CNN.

head for learning localization confidence, which introduces

nearly no additional computation. (3) var voting does not

require iterative refinement, which is much faster.

We further evaluate our approach on the feature pyramid

network (ResNet-50 FPN) [33, 18], shown in Table 6.

For fast R-CNN version, training with KL Loss increases

the baseline by 0.4%. After applying var voting along with

soft-NMS, our model achieves 38.0% in AP, which outper-

forms both IoU-NMS and soft-NMS baselines. Training

end-to-end with KL Loss can help the network learn more

discriminative features, which improves the baseline AP by

0.6%. The final model achieves 39.2% in AP, which im-

proves the baseline by 1.3%.

4.3. Experiments on PASCAL VOC 2007

Even though our approach is designed for large

scale object detection, it could also generalize well on

small datasets. We perform experiments with Faster

R-CNN [42] on PASCAL VOC 2007, which consists

of about 5k voc_2007_trainval images and 5k

voc_2007_test images over 20 object categories.

Backbone networks: VGG-CNN-M-1024 and VGG-16
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type method AP AP50 AP75 APS APM APL

fast R-CNN

baseline (1x schedule) [14] 36.4 58.4 39.3 20.3 39.8 48.1

baseline (2x schedule) [14] 36.8 58.4 39.5 19.8 39.5 49.5

IoU-NMS [27] 37.3 56.0 - - - -

soft-NMS [1] 37.4 58.2 41.0 20.3 40.2 50.1

KL Loss 37.2 57.2 39.9 19.8 39.7 50.1

KL Loss+var voting 37.5 56.5 40.1 19.4 40.2 51.6

KL Loss+var voting+soft-NMS 38.0 56.4 41.2 19.8 40.6 52.3

Faster R-CNN

baseline (1x schedule) [14] 36.7 58.4 39.6 21.1 39.8 48.1

IoU-Net [27] 37.0 58.3 - - - -

IoU-Net+IoU-NMS [27] 37.6 56.2 - - - -

baseline (2x schedule) [14] 37.9 59.2 41.1 21.5 41.1 49.9

IoU-Net+IoU-NMS+Refine [27] 38.1 56.3 - - - -

soft-NMS[1] 38.6 59.3 42.4 21.9 41.9 50.7

KL Loss 38.5 57.8 41.2 20.9 41.2 51.5

KL Loss+var voting 38.8 57.8 41.6 21.0 41.5 52.0

KL Loss+var voting+soft-NMS 39.2 57.6 42.5 21.2 41.8 52.5

Table 6: Performance comparison with FPN ResNet-50 on MS-COCO

Net [48] are tested.

Shown in Table 5, we compare our approach with

soft-NMS and quadratic unconstrained binary optimization

(QUBO [46]). For QUBO, we test both greedy and clas-

sical tabu solver (we manually tuned the penalty term for

both solvers to get better performance). We observe that it

is much worse than the standard NMS, though it was re-

ported to be better for pedestrian detection. We hypothesize

that QUBO is better at pedestrian detection since there are

more occluded bounding boxes [47]. For VGG-CNN-M-

1024, training with var voting improves the mAP by 1.6%.

var voting further improves the mAP by 0.8%. For VGG-

16, our approach improves the mAP by 2.9%, combined

with soft-NMS. We notice that var voting could still im-

prove performance even after soft-NMS is applied to the

initial detection boxes. This observation is consistent with

our experiments on MS-COCO (Table 1).

5. Conclusion

To conclude, the uncertainties in large-scale object de-

tection datasets can hinder the performance of state-of-the-

art object detectors. Classification confidence is not always

strongly related to localization confidence. In this paper, a

novel bounding box regression loss with uncertainty is pro-

posed for learning more accurate object localization. By

training with KL Loss, the network learns to predict local-

ization variance for each coordinate. The resulting vari-

ances empower var voting, which can refine the selected

bounding boxes via voting. Compelling results are demon-

strated for VGG-16 Faster R-CNN, ResNet-50 FPN and

Mask R-CNN on both MS-COCO and PASCAL VOC 2007.
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