- - - - *
Bounding Pipeline and Instruction Cache rformance
Christopher A. HealyRobert D. Arnold, Frank MuelleDavid B. Whallegy, Marion G. Harmoh

Abstract

Predicting the recution time of code gments in eal-time systems ihiallenging Most recently designed mhines con-
tain pipelines and cdws. Pipelinehazads may esult in multicycle delaysinstruction or data memoryefelences may
not be found in cd® and these misses typicalguire veral cycles to esolve Whether an instruction will stall due to
a pipeline hazad or a cache miss depends on the dynamic sequencesabps instructions xecuted and memorgfer
ences performedFurthermoe, these penalties arrot independent since delays due to pipeline stalls andecatss
penalties may erlap. Thispaper describes an appaich for bounding the wat and best-case performance ofglar
code sgments on mdwines that gploit both pipelining and instruction ching. First, a method is used to analyze a-pr
gram’s control flow to statically catgorize the caing behavior of edtinstruction. Ngt, these catgorizations ae used
in the pipeline analysis of sequences of instructi@mesenting paths within the ggram. Atiming analyzer uses the
pipeline path analysis to estimate the stoand best-casexecution performance of dadoop and function in the pr
gram. Hnally, a graphical user interface is ioked that allows a user teequest timing pdictions on portions of the
program. Theresults indicate that the timing analyzefig&ntly poduces tight prdictions of wast and best-case perfor
mance for pipelining and instruction dzing.

Index terms: real-timesystems, wrst-case xecution time, best-casexeution time, timing analysis, instruction cache,
pipelining

1. Introduction

Many architectural features, such as pipelines and caches, present a dilemma for architects of real
time systems.Use of these architectural features can result in significant performanceempras.
In order to &ploit these performance imprements in a real-time system, the WCETofét Case
Execution Tme) must be predicted staticallin addition, sometimes the BCET (Best Case¢&ixion
Time) is also neededHowever, the aforementioned performance enhancing features introduce a
potentially high lgel of unpredictability Dependencies between instructions can cause pipeline haz-

ards that may delay the completion of instructiovhile there has been muclork accomplished

*This work was supported in part by thefloé of Naval Research under contract number N00014-94-1-0006 and the National Scienca-+
tion under the cooperatt agreement HRD-9707076&Preliminary \ersions of this wrk were described in the 19%al-Tme Systems Symposiunder
the title "Bounding Wirst-Case Instruction Cache Performance" and the Re@f-Tme Systems Symposiwmder the title "Intgrating the Tming
Analysis of Pipelining and Instruction Caching."”

TC. A. Healy and D. B. Whaleare with the Department of Computer Science, Florida Stateetdity, Tallahassee, FL 32306-453®R. D.
Arnold is with Peek faffic Systems Inc., 3000 Commonwealth Blvdalldhassee, FL 32303F. Mueller is with the Institut "fiu Informatik,
Humboldt-Unversita zu Berlin, Unter den Linden 6, D-10099 Berlin, Germam. G. Harmon is with the Department of Computer and Information
Systems, Florida A & M Uniersity, Tallahassee, FL 32307-310The authors can be contacted at either [{whdilealy}@cs.fsu.edu, (850) 644-3506,
fax: -0058], [rarnold@transyt.peek-tfaicom, (850) 562-2253xe 272, fix: -4126], [mueller@informatik.hu-berlin.de, (+49) (30) 20181-2a8; f
-280] or [harmon@cisaimu.edu, (850) 599-304%; -3221].

on analyzing thexecution performance of a sequence of instructions within a basic block, the analy-
sis of pipeline performance across basic blocks is more problervattcuction or data cache misses
further complicate the performance prediction problem sincg itbguire seeral more gcles to
resole than cache hitsPredicting the caching bekar of an instruction is\en more dificult since

it may be diected by memory references that occurred long before the instructoaeguted.

The timing analysis of these features is furthexcerbated since pipelining and caching bedra
are not independentor instance, consider the codegsent and pipeline diagram in Figure 1 con-
sisting of three SARC instructions. The pipeline gcles and stages represent tRecation of these
instructions on a MicroS¥RC | processor [1] Each number within the pipeline diagram denotes that
the specified instruction is currently in the pipeline stage/shan the left and is in that stage during
the g/cle indicated abee. The first instruction performs a floating-point addition and requires a total
of 20 g/cles. Fetchinghe second instruction results in a cache miss, which is assumectta hiss
penalty of nine additionalycles in this paperThe third instruction has a data depengenith the

first instruction and thexecution of its MEM stage is delayed until the floating-point addition is

SPARC Instructions
inst 1: faddd 9%2,9%0, %2
inst 2: sub %4, %91, % 2
inst 3: std % 2, [Y%00+8]

Pipeline Diagram

cycle
1/2|3]4|5]..|11|12]13|14|15|16|17|18|19|20| 21|22
stagel IF |1]2|2]2|2|..]2|3

ID 1 2|3

EX 213|3|3|3|3|3

FEX 1j1|1)../1|1|1|1]1|1|1|1|1

MEM 2 3/3|3

WB 2

FWB 1

Figure 1. Example of Qarlapping Pipeline Stages with a Cache Miss

completedl. The miss penalty associated with the access to main memory to fetch the second instruc:
tion is completely werlapped with the xecution of the floating-point addition in the first instruction.
If pipeline stalls and cache misses were treated independiettythe number of estimateylctes

associated with these instructionsuld be increased from 22 to 3k(by the cache miss penalty).

Unfortunately the problem of werestimating WCET and underestimating BCET may become
more sgere in the future.Cache miss penalties are increasing due to th&iggogap between pro-
cessor and main memory spee@®lays due to pipeline stalls become moreliikwvith the introduc-
tion of superscalar and superpipelined architectuiidais, nare iming analysis of programs on

machines with pipelines and caches will result in increasemligon time prediction errors.

Let us define a task as the portion of codeceted between tev scheduling points (cong
switches) in a system with a non-preewpticheduling paradigmWhen a task startsecution, the
cache memory is assumed to bealldated. Duringtask eecution, instructions are brought into
cache and often result in mahits and misses that can be predicted staticdlhese caching predic-

tions can be inggrated with pipeline analysis to estimate tight WCET and BCET bounds.

Figure 2 depicts anverview of the approach described in this paper for bounding trstvand
best-case performance ofdarcode sgments on machines with pipelines and instruction caches.
Control-flov information, which could hee been obtained by analyzing assembly or object files, is
stored as the sidefett of the compilation.This information identifies the loops that are in each
function, the basic blocks that comprise each loop, the instructions that reside in each basic block, an

the reister operands associated with each instructiime control-flov information is passed to a

1 A st d instruction has no write back stage since a store instruction only updates memory andjistéraThe st d instruction also requires
three gcles to complete the MEM stage on the MicrABE |.

Machine User
Dependent Timing
Information Requests

Timing | User
Analyzer | Interface

C Control .
Timing
Source Flow .
) . Predictions
Files Information
Static

Cache
Simulato

Instruction
Caching
Categorizations

Cache
Configuratio

Figure 2. Oerview of Bounding Pipelining and Instruction Caching Performance.

static cache simulatort constructs the control-fl@ graph of the program that consists of the call
graph and the control fiof each function. The prograns control-flow graph is then analyzed for a
given cache configuration to produce a gaigzation of each instructiomjpotential caching belvéor.

The timing analyzer uses these gatézations to determine whether an instruction fetch should be
treated as a hit or a miss during the pipeline analysialso reads machine-dependent and control-
flow information to determine moeach instruction proceeds through the pipelifiée timing ana-
lyzer produces a arst and best-case estimate xéaition time for each loop and function within the
program. Finallya window-based intedce is used to alothe user to request the timing bounds for

portions of the program.

2. Instruction Caching Categorization

Static cache simulatiris used to statically cajerize each instruction according to its caching
behaior using a specific cache configuration in @egiprogram. Thestatic simulation consists of
three phasesFirst, the control-flv graph of the entire program is constructédis graph includes

the control-flev information of each function and a function instance graph, which is simply a call

2 static cache simulation is only briefly introduced in this sectibis. described in more detail elgeere [2, 3, 4, 5, 6].

graph where each function instance is uniquely identified by the sequence of call sites required for its
invocation. Thusa drected agclic call graph (without recursion) is transformed into a tree of func-

tion instances.

Next, this program control-fle graph is analyzed to determine the program lines that may be in
cache at the entry anaieof each basic block within the progranihe iteratve dgorithm in Figure
3 is used to calculate an input and output cache state for each basic block in the function instance
graph. Acache state is simply the subset of all program lines that can potentially be cached at that
point in the control flav. Initially, the top blocks input state (the entry block of thai n function) is
set to all ivalid lines. The input state of a block is calculated by taking the union of the output states
of its immediate predecessor¥he output state of a block is calculated by taking the union of its
input state and the program lines accessed by the block and subtracting the program lines with whic

the block conflicts.The abwe geps are repeated until no more changes occur

input _state(top) = all invalid lines
WHI LE any change DO
FOR each basic bl ock instance B DO
i nput _state(B) = NULL
FOR each imed pred P of B DO
i nput _state(B) += output_state(P)
out put _state(B) =
(input_state(B) + prog_lines(B))
- conf_lines(B)

Figure 3. Algorithm to Calculate Cache States.

The input state for each basic block is used togeaize the caching bewar of each instruction
within the block. The catgorization for each loop Vel is dotained by ramining the cache state for
that instruction with a mask representing the program lines that are accessed by tha lomruc-
tion’s caching behaor is assigned to one of four cgteies for each loop Vel in which an instruc-

tion is contained Note that each function is treated as a loop thetwges for a single iteratiorilhe

categorizations of wrst and best-case instruction cache bieinare gven in Tables 1 and 2When
processing an outer loop that contains an inner loop, the timing analyzer can adjaktdlabtained
from the timing associated with an inner loop kgmining the transitions between guezations of

an instruction from one loopud to the next. Theseadjustments will be described in Section 5.

Informally, an instructions worst-case cache cgtarization for a particular loopvel is determined
as follovs. LetL be the program line that contains an instruction within a basic blbo&.instruc-
tion is catgorized as aalways hitif it is not the first instruction encounteredLinn the block, or ifL
is in the abstract cache state and it does not conflict wytlotaer program line in the same abstract

cache stateThe instruction is cagmrized as dirst hitif it was afirst hit for the preious (deeper)

Instruction Catgory | DefinitionAccording to Beheior in the Instruction Cache

always miss The instruction is noguaranteedo be in cache when it is
referenced.
always hit The instruction iguaranteedto aways be in cache when

it is referenced.

first miss The instruction isnot guaanteedto be in cache on its
first reference each time the loop i®&uted, lot is guar
anteedo be in cache on subsequent references.

first hit The instruction isgguaranteedto be in cache on its first
reference each time the loop iseuted, loit is not guar
anteedo be in cache on subsequent references.

Table 1. Definitions of Wrst-Case Instruction Caching Cgieizations

Instruction Catgory | DefinitionAccording to Beheior in the Instruction Cache

always miss The instruction iguaranteedto notbe in cache when it is
referenced.
always hit It is possiblethat the instruction is in cacheeey time it

is referenced.

first miss The instruction isguaranteedto not be in cache on its
first reference each time the loop ieeuted, It may be
in cache on subsequent references.

first hit The instructiomrmay bein cache on its first reference each
time the loop is xecuted, lot is guaranteedto not be in
cache on subsequent references.

Table 2. Definitions of Best-Case Instruction Caching Gaieations

loop nesting leels or if all of the follaving conditions (1)-(6) hold:

(1) Theinstruction is the first reference ltdn the block, and. is in the abstract cache state.
(2) Thereexsts a program line in the abstract cache state for this loop that conflicts with
(3) Lisinthe abstract output cache state of all prehe%déthis loop.

(4) Noneof the conflicting lines is in the abstract output cache state of the preheaders of thiBhlequrpose of this

stipulation is to guarantee that the instruction will be a hit in cache on the first iteration of the loop, in accord with

the definition ofirst hitin Table 1.
(5) Lisinthe post dominator of the logfteadersi.e. the current line will be referenced during each loop iteration.

(6) Noneof the conflicting lines is in the linear cache state of the current hlecfgr each loop iteration, the current
line will be referenced before warmonflicting line. This requirement guarantees ttatan only be replaced by a

conflicting line after the instruction has been referenced at leasP once.
An instruction is dirst misgf it is not already catgorized as amalways hitor first hit, the instruction
was afirst missat the ngt deeper loop nestingJed (if that level exists), it is the first instruction
encountered i in the block and. is in the abstract cache state, and th&igt eonflicting program
lines lut only outside the current loop nestingde In all other cases, the instruction is conserv

tively categorized as aalways miss

The instructiors best-case cag@rization is determined as folls. Theinstruction is catgorized
as analways missf it is the first reference tb in the block and. is not in the abstract cache state.
The instruction is cagwrized an dirst misgf it was afirst missor always hitat the n&t deeper loop

nesting leel (if that level exists), this instruction is the first referenceltan the block,L is in the

3 The loop header of a natural loop is the single basic block in which the loop is initially erfteeedreheader is the basic block that precedes
the header

“ Note that an instruction does nowvkab be referenced during each loop iteration to be classifiediast aniss

® The linear cache state of a block representsythethetical cache state in the absence of lo@pging the static cache simulation, no linear ab-
stract cache state information is propigl along back edges of a loop.

abstract cache state, ainds not in the linear cache state of the biddkhe instruction is cagmrized
as afirst hitif it was afirst hitfor the pr@ious (deeper) loop nestingvles or if the follaving condi-
tions (1)-(5) hold:

(1) Theinstruction is the first reference ltdn the block, and. is in the abstract cache state.

(2) Thereexsts a program line in the abstract cache state for this loop that conflicts with

(3) Lisinthe abstract output cache state of all preheaders of this loop.

(4) Lisinthe post dominator of the los'eadersi.e. the current line will be referenced during each loop iterations.

(5) Lis notin the abstract cache state precedigohmbhe back edges.e. L is replaced by a conflicting line during
each loop iterationThe purpose of this requirement is to guarantee that the program line conflictingwilitibe
encountered onvery iteration after the firstThus, the instruction will be a cache miss on these iterations, in agree-

ment with the definition diirst hitin Table 2.

In all other cases, the instruction is conaévely categgorized as amlways hit Formal definitions of

these instruction cagerizations are gen in the appendix.

The current implementation of the static simulator imposes some restrickoss. only direct-
mapped cache configurations are \atid © Second, recurge programs are not aleed since gcles
in the call graph wuld complicate the generation of unique function instaﬁ@élsally, indirect calls

are not handled since axpdicit call graph must be generated.

% Recent studies ka hown that direct-mapped caches oftenéna faster access time for hits, which sometimes outweigh the benefit of a higher
hit ratio in set-associat aganizations for lage caches [7]We ae currently inestigating the timing analysis of set-assocsiat@aches.

" While g/cles in a call graph can be detectedy tire also dificult to describe to a user and it isfitifilt for the user to estimate the maximum
number of recurse iterations that will be performed.

3. PipelinePath Analysis

This section describes Wwadhe analysis of the pipeline performance of a sequence of instructions is
accomplished. Informatiofor all levels of timing analysis is stored in data structures as depicted in
Figure 4. First, information about each type of instruction is read from a machine-dependent data file.
This pipeline information for each type of instruction includes tloestvand best-case number of
cycles required by each stage of the pipeline for xewtion® The analyzer also reads from the
machine-dependent data file other information for each instrucfibis. information includes the lat-
est stage each source operand of an instruction caneadseialue via hardare forwarding without
causing a pipeline stall and the earliest stage in which the result of the instruction canabaeftbrw
Finally, information about the specific instructions in the sequence is obtained and stored in instance:
of struct inst_node. This information includes the actuabisters associated with the source
and destination operands, which is obtained from the contwlHfitmrmation generated by the com-
piler, and the instruction caching cgtarization of each instruction, which is produced by the static

cache simulator

A path of instructions consists of all the instructions that carxesuted during a single iteration
of a loop (or in the case of a function, all the instructions thatxae®ied in one imocation of the
function). Thusa path consists of a sequence of basic blocks connected by contratdltsitions.

If a loop has no conditional controlWoe.g.i f or swi t ch statements), then there will be only one

path associated with this loop.

During the analysis of a path, the analyzer stores path information in instansés wét

pat h_node. This information includes the total number gtles required by the path and a set of

8 The number ofyxrles required for some floating-point instructions on processorsacanlepending upon thebles of its operands.

struct |oop_node { /* Information stored with each |oop */

int max_iterations; /* Maxi mum nunber of iterations for the loop */
int mn_iterations; /* M ni mum nunber of iterations for the |oop */
int wcet; /* Estimated WCET of the |oop */
int bcet; /* Estimated BCET of the |oop */
struct uni on_node *wc_pi peline_information; /* Worst-Case pipeline info. for detecting hazards */
struct uni on_node *bc_pi peline_information; /* Best-Case pipeline info. for detecting hazards */
struct path_node *path_list; /* Linked list of loop's paths */
struct inst_node *first_m sses_encountered; /* Linked list of first misses encountered in |oop */
struct inst_node *first_hits_encountered, /* Linked list of first hits encountered in |oop */
struct exit_block_node *exit_block_list; /* Linked |ist of blocks to which |oop can exit */
struct | oop_node *next; /* Pointer to next |oop node in program*/
b
struct exit_bl ock_node { /* Information stored with loop’s exit block */
int wet; /* Estimated WCET of |oop exiting to this block */
int bcet; /* Estimated BCET of loop exiting to this block */
struct uni on_node *wc_pi peline_information; /* Worst-case pipeline info. for detecting hazards */
struct uni on_node *bc_pi peline_information; /* Best-case pipeline info. for detecting hazards */
b
struct uni on_node { /* Information to detect structural and data hazards */
int cycles_frombegi n[NUM STAGES] ; /* Cycle when particular stage is initially occupied */
int begi nni ng_occupant [NUM_STAGES] ; /* Nunber of instruction that first occupies stage */
int cycles_fromend][NUM STAGES] ; /* \When stage is |ast occupied */
int endi ng_occupant [NUM STACES] ; /* Nunber of instruction occupying stage |ast */
int reg_first_needed[NUM REGS]; /* Cycle when val ue of register is first needed */
int reg_l ast_produced] NUM REGS] ; /* Cycle when register is |last used as destination */
b
struct path_node { /* Information stored for each path in a | oop */
int path_type; /* Type of path: continue, exit, or both */
int wet; /* Estimated WCET of the path */
int bcet; /* Estimated BCET of the path */
struct uni on_node *wc_pi peline_i nformation; /* Worst-Case pipeline info. for detecting hazards */
struct uni on_node *bc_pi peline_information; /* Best-Case pipeline info. for detecting hazards */
struct bl ock_node *block_list; /* Linked list of basic blocks in path */
struct path_node *next; /* Pointer to next path in loop */
b
struct bl ock_node { /* Basic blocks contain list of instructions */
struct inst_node *inst_list; /* Linked list of instructions in block */
struct bl ock_node *next; /* Pointer to next block in path */
b
struct inst_node { /* Information stored for each instruction */
int inst_type; /* Opcode for this instruction */
int register_operands[NUM_ REGS_PER | NST] ; /* Regi ster operands for this instruction */
struct cat_node *cat_list; /* Instruction cache categorization for this inst */
struct inst_node *next; /* Pointer to next instruction in path */
|
struct cat_node { /* Instruction cache categorizations */
char wc_cat; /* Wbrst-case categorization */
char bc_cat; /* Best-case categorization */
struct cat_node *next; /* Pointer to next deeper nesting level cat’s */
b

Figure 4. Data Structures foirfling Analysis

-10-

pipeline information. This information includes when each pipeline stages virst and last used
within the path for woiding structural hazardblt is represented as the number g€les from the
beginning and end of the path for each pipeline stdgeaddition, information indicating when each
register vas first and last used in the path is also maintainegbtd data hazard®’ Again, this infor
mation is represented as the numbenyalas from the bginning and end of the path for eaclyise
ter. The set of pipeline information, as storedpat h- >wc_pi pel i ne_i nf or mat i on, for
avading hazards after the three instructions in Figureve lmen analyzed is stvm in Tables 3 and
4. Table 3 represents the information faoiding structural hazardsOnly the numbers skmn in
bold are required to be store@ihese alues represent when each stages Wirst used from the -
ning of the path and last used from the efitie \alues in the table correspond to the information
associated with the instruction numbers that are represented in bold in Figlalelel4 represents

the information for @iding data hazards.

Stage IF| ID | EX | FEX | MEM | WB | FWB
Beginning Inst 1 1 2 1 2 2 1
Cycles from Bg 0 1 © 2 3 14 19
Ending Inst 3| 3 3 1 3 2 1
Cycles from End| 10 9 3 3 0 7 2

Table 3. Structural Hazard Information for the Instructions in Figure 1.

Reagister %g1l| .. %00 %04 e | %I2 %f0 %f2
First Needed 12 N/A 13 N/A 12 N/A | N/A | N/A 2 N/A 2 N/A
Last Produced| N/A | N/A | N/A | N/A | N/A | N/A 9 N/A | N/A | N/A 3 N/A

Table 4. Data Hazard Information for the Instructions in Figure 1.

9 A structural hazard indicates that a stage of an instruction cannréheed earlier due to the pipeline stage already being used.

10 A data hazard indicates that a particular stage of an instruction cannachéed earlier due to the pipeline stage using a sougigeethat
matches the destinationgister not yet updated by a pipeline stage of another instruction.

-11-

This set of pipeline information is created by processing one instruction at a time from the
sequence of instructions that comprise a p&igure 5 depicts an algorithm that creates this pipeline
information for worst-case analysisThe best-case path analysis algorithm is analogdtesch
instruction can be represented by the same form of pipeline information thavis ish@ables 3 and
4 for a path. This information is modified if it is found that the instruct®aching catgorization
indicates that the instruction fetclasva miss.The miss penalty is used to increment the total number
of cycles and theycles from the bginning (structural hazard information) for all other stages besides
the IF stage and the first neededisters (data hazard information) for that instructidie addition
of an instruction to the pipeline information for a path will not only update the total numbgres c
and the information associated with the end of the pipelitealbo the bginning of the pipeline if a

referenced stage orgister in the instruction had not beenyioesly used.

void Time_Path (struct path_node *path) {
struct bl ock_node *bl ock;
struct inst_node *instruction;

pat h- >wc_pi pel i ne_i nformati on = NULL.
FOR each bl ock in path->block_|ist DO
FOR each instruction in block->inst_|list DO

IF (instruction->cat_list->wm_cat == first mss AND
this instruction has not been encountered already) OR
(instruction->cat _list->w_cat == first hit AND
this instruction has not been encountered already) OR
instruction->cat _|ist->aw_cat == miss THEN
Treat this instruction fetch as a miss in the pipeline.
ELSE

Treat this instruction fetch as a hit in the pipeline.
Concatenate w.c. pipeline information for instruction->inst_type
wi t h pat h->wc_pi pel i ne_i nformati on.
END FOR
END FOR
path_ptr->wet = tenporal |ength of path->wc_pipeline_information.

Figure 5. Vérst-Case &h Analysis Algorithm.

-12-

Retaining this set of pipeline information ail® additions to the Iggnning or end of a pathSince
both the pipeline requirements for a path and a single instruction can be represented with this set ¢
pipeline information, concatenating dvpaths together can be accomplished in the same manner as
concatenating an instruction onto the end of a patie concatenation is accomplished one stage at a
time. Astage from the second set of pipeline information igsethdo the earliest ycle that does not

violate ary of the folloving conditions.

(1) Thereis no structural hazard with another instructidtor instance, the lgginning of the IF stage of instruction 2 in
Figure 1 could not be placed ipate 1 since that stageaw already occupied.

(2) Thereis no data hazard due to aiois instruction producing a result that is needed by a source operand of the cur
rent instruction in that stagd=or example, the bginning of the MEM stage for instruction 3 in Figure 1 could not be
moved past the FEX stage of instruction 1 stike 19 due to the data hazard betweenf theédd andst d instruc-

tions.
(3) Theplacement of the instruction does not violate W& @ipeline requirementg-or instance, the 1D stage of instruc-

tion 2 has to occur at least 1yctes after the lggnning of its IF stage in Figure 1.

Other information associated with the pipeline analysis of a path need not be Bwrattance,
it does not matter when instruction 2 entered the ID stage after the pipeline information has been cal
culated for all three instructions in Figure Mo instruction being added to either thegipaing or
end of the pipeline could possiblyveaa $ructural hazard with the ID stage of instruction 2 since it
would first hare a $ructural hazard with the ID stage of instruction 1 or instruction 3, resggcti
Thus, the amount of pipeline information associated with a path is dramatically reduced as opposed t
storing haov each stage is used duringegy cycle. Furthermoreno limit need be imposed on the

amount of potentialwerlap when concatenating the analysis of paths.

-13-

4. LoopAnalysis

In order to predict the arst-case xecution time of a loop, the timing analyzer has to predict the
execution time of each possible path within the lodjhe static cache simulator pides catgoriza-
tions for each instructionThe timing analyzer will reseevather one gcle or the number ofycles
associated with a cache miss for the IF (instruction fetch) stage for each instrucgonizadeas an
always hit or alvays miss, respestély. Note, additional gcles in the IF stage may be required due to
other pipeline stallsIf an instruction is catgporized as a first miss, then the timing analyzer will treat
the instruction fetch as a miss if the program line has not yet been encountered as a first miss in th
timing of the loop.If the program line has been encountered, then the instruction fetch will be treated
as a hit insteadLikewise, if an instruction is cagerized as a first hit, then the timing analyzer will

treat the instruction fetch as a cache hit on the first reference and a cache miss thereafter

Each path starts with the loop header and is terminated by a block with a bajckcmmeransi-
tion to an &it block outside the loopFigure 6 shars a simple xample that identifies a loop header
back edges,at blocks, continue paths, andiepaths. Each path is designated as either a continue
path (the last block is the head of a back edge transitionkitapa¢h (the last block has a transition
to an «it block outside the loop), or bothiThe number of loop iterations indicates the number of

times the header of the loop eeeuted once the loop is entered.

1 A back edge is a control-fiotransition from a basic block in a loop to its loop header

-14-

Figure 6. Example Introducing Loogiminology

With pipelining it is possible that the combination of a set of paths may produce a larger w
case gecution time than just repeatedly selecting the longest gaghinstance, consider a loop with
two paths that tad ebout the same number ofates to &ecute. Onepath has a floating-point addi-
tion near the bgnning of the path and the other path has a floating-point addition near the end.
Alternation between the paths will produce therst case »xecution time since there will be a struc-

tural hazard between thedvloating-point additions.

To avoid the problem of calculating all combinations of paths, whiolld/be the only method for
obtaining perfectly accurate estimations, &sadecided to union the pipelindests of the paths for a
single iteration of a loop togetheA union, an instance aft ruct uni on_node in Figure 4, is
dynamically allocated for each path and lo&alculating the union of the gmning pipeline struc-
tural hazard information for avgn sage in the WCET analysis is accomplished by determining the
earliest initial occupation of that stage by guath in the union.Likewise, we calculate the WCET
union of the ending pipeline structural hazard information fovengitage by finding the last occu-
pation of that stage, relaé o the last gcle of the longest path, byyapath in the union.The BCET
unioning of pipeline information is accomplished in an analogous mafiher bginning (ending)

pipeline structural hazard information for each stage is updated to contain the latest initial (earliest

-15-

final) occupation of that stagéf a path does not use a particular stage, then the BCET union will
record that stage as empfjhe data hazard information is handled similarly with the earliest and lat-
est use of eachgester from the paths in the union being updat€his unioning of pipeline informa-
tion simplified the algorithm and also did not cause a noticeabfestimation or underestimation in
the worst or best-case analysis, respetfi The bginning pipeline information (stages andjige

ters) is rarely décted since all paths through a loop start with the same loop header Blok.
through a loop often end with the same block of instructionsaddition, one path may be signifi-
cantly longer or shorter than the others, so the ending pipeline informatiorofsir amd best-case

analysis is often not fcted.

Figure 7 shws a ty function and its corresponding ARC assembly cod¥ There are tw

C Source Code I nst Assenbly Code
mai n() 0 nov %90, %01
{ 1 sethi %i (LO1), %0
int i, cnt = 0; 2 | dd [%00+% o(LO1)], 9% 2
doubl e dcnt = 0.0; 3 nov %90, %02
extern int incr; 4 sethi %i (_dincr), %03
extern doubl e dincr; 5 sethi %i (_incr), %4
6 cnp %02, 5
for (i=0; i < 10; i++) 7 L8: bge,a L9
if (i <05) 8 Id [%04+% o(_incr)], %0
dcnt += dincr; 9 | dd [%©3+% o(_dincr)], %0
el se 10 ba L6
cnt += incr; 11 faddd 9% 2,9 0, % 2
} 12 L9: add %1, %00, %01
13 L6: add %02, 1, %02
14 cnp %02, 10
15 bl,a L8
16 cnp %02, 5
17 retl
18 nop

Figure 7. Example C Source Code and CorrespondiAfR SRnstructions.

12 Note that the generated assembly code has been optimized by the confltocal ariables , count , anddcount have been allocated to
registers¥o2, %01, and % 2, respectrely. The instruction folling each transfer of control te& efect before the transfer of control is émksince the
SRARC has delayed brancheShecnp comparison preceding thge branch (instruction 7) has beenvad to both immediately precede the loop and
in the delay slot (instruction 16) of tl branch (instruction 15)Branches with a,"a" represent that the result of the instruction within the delay slot
will be annulled if the branch is not &k

-16-

possible paths of instructions through an iteration of the loop in the program, <7,8,12,13,14,15,16>
and <7,8,9,10,11,13,14,15,16%igure 8 shas the instructions and the corresponding pipeline dia-
grams for the tw paths within the I00|f}.3 To smplify the example, it is assumed that the loop has
already beenxecuted and all of the instructions and data are in caahehere are no instruction

fetch or data memory misses)able 5 shavs the structural hazard information for theotpaths in

Figure 7 and ho the information in path 1 has to be adjusted before being unidrfeslworst-case

union of the number ofycles from the bginning and end of the paths for aeyi gage will simply

be the minimum number encounterddkewise, the best-case union will be the maximum number
encountered. Thstructural hazard information indicating the numberyaies from the end of path

1 has to be adjusted since its total numberyotes is 13 less than thgates required by path ZThe

Path 1 Instructions Path 1 Pipeline Diagram
inst 7: bge,a L19 cycle
inst 8 Id [%04+% o(_incr)], %0 1/2|3|4|5|6|7|8]|9]|10/11]12|13|14|...|24|25
inst 12: add %1, %0, Yol stage IF |7|8(12/13|13|14|15|16
inst 13: add %02, 1, %02 ID 718(12|12|13|14|15|16
inst 14: cnp %2, 10 EX 8 12|13|14 16
inst 15: bl,a L18 FEX
inst 16: cnp %02, 5 MEM 8 12/13(14 16

WB 8 12|13(14 16
FWB

Path 2 Instructions Path 2 Pipeline Diagram
inst 7: bge,a L19 cycle
inst 8: Id [%©4+% o(_i ncr)], %00 1/2|3|4|5[6|7|8|9/|10/11|12|13|14|...|24|25
inst 9: ldd [%©3+% o(_dincr)], %0 stage IF | 7|8]9|10{11]13|13|14|15|16
inst 10: ba L16 ID 718(19(10/11|11|13|14|15|16
inst 11: faddd 9% 2,9%0, % 2 EX 8|9 13|14 16
inst 13: add %02, 1, Y02 FEX 11/11)11(12)12|11|11]...|11
inst 14: cnp %02, 10 MEM 8199 13|14 16
inst 15: bl,a L18 wWB 8 13|14 16
inst 16: cnmp %2,5 FWB 9 11

Figure 8. Pipeline Diagrams for thevd Paths through the Loop in Figure 7.

13 Note instructions 7, 10, and 15 are transfers of conTrok actual transfer of contrdld. updating the program counter) occurs in the ID stage.
Thus, there are no additional pipeline stages associated with these instruatsznaote the oneycle stall between instructions 8 and 12 in the EX
stage of path 1 due to a load hazdrihally, thel dd (instruction 9) requires twcycles to complete the MEM stage [1].

-17-

resulting vorst-case union of the structural hazard information of tloepaths would be identical to

the structural hazard information for path [Zkewise, the best-case uniorould be identical to the
information for path 1.Note that the data hazard informatioould change slightly since instruction

12 references gister%0 as a source operand a#l as both a source and destinatiofet, repre-
senting access to thesgisters vould not likely have an efect when the timing analysis is performed
between this path and its predecessor and successor paths since the EX stage is used before and &

cycle 6, which is when instruction 12 enters the EX stage.

Peh 1 Info IF | ID | EX | FEX | MEM | WB | FWB
Cycles from Bg 0 1 3 N/A 4 5 N/A
Cycles from End| 4 3 2 | N/A 1 0 N/A
AdjEnd Cycles | 17 | 16 | 15 | N/A 14 13 | N/A

Peh 2 Info IF | ID | EX | FEX | MEM | WB | FWB
Cycles from Bg 0 1 3 7 4 5 7
Cycles fromEnd| 15 | 14 | 13 1 12 11 0

Table 5. Structural Hazard Information for thatls in Figure 8.

Let n be the maximum number of iterations associated with a I@tye. algorithm for estimating
the worst-case xeecution time for a loop is sk in Figure 9. The algorithm contains three phases.
During the first phase, the loop is analyzed one iteration at a faresach iteration, the algorithm
chooses the path with the greatest WCHIhe first phase continues as long as fiest miss instruc-
tions are encountered on each iteratidhe WHILE loop in the algorithm represents this first phase,
and it terminates when the number of calculated iterations reachiesr no more first misses (first
hits) are encountered as misses (hiBus, the WHILE loop will iterate up tan(- 1) or (m + 1),
wheremis the number of paths in the loop since a first miss (first hit) can miss (hit) at most ence dur

ing the loop ®ecution. Duringthe second phase of the algorithm, a longest path is calculated for all

-18-

struct | oop_node *I oop;
struct path_node *path, *chosen_path;

| oop->first_misses_encountered = NULL.
| oop->first_hits_encountered = NULL.
| oop->wc_pi pel i ne_i nformati on = NULL.
curr_iter = 0.
VWH LE curr_iter !'=n - 1 DO
curr_iter += 1.
Invoke Tinme_Path() for all continue paths in | oop->path_list.
chosen_path = |l ongest continue path for this iteration.
Append first misses that were misses in chosen_path to | oop->first_mni sses_encount ered.
Append first hits that were hits in chosen_path to | oop->first_hits_encountered.
For every continue path in | oop->path_list,
concat enate path->wc_pi peline_information with | oop->wc_pi peline_information.
IF no new first misses or first hits are encountered in chosen_path THEN
BREAK.
Concat enat e pat h->wc_pi peline_information with | oop->wc_pi peline_information
for all paths (n- 1 - curr_iter) tines.
FOR each set of exit paths in |loop->path_list that have a transition
to a unique exit block in | oop->exit_block_|ist DO
I nvoke Time_Path() for each path in the set.
chosen_path = longest exit path in the set.
Append first misses that were misses in chosen_path to | oop->first_mni sses_encount ered.
Append first hits that were hits in chosen_path to | oop->first_hits_encountered.
Concat enat e pat h->wc_pi peline_informati on with | oop->wc_pi peline_infornation
for all exit paths in the set.
Store this information with this exit block in | oop->exit_block_|ist.

Figure 9. Wrst-Case Loop Analysis Algorithm.

the remaining iterationsxeept the last iterationln the third and final phase, the last iteration of the
loop is handled separatelyf the loop being analyzed has only one iteration, as is the case with a

function, only this third phase is performed.

The algorithm selects the longest path on each iteration of the Inagrder to demonstrate the
correctness of the algorithm, one mustvgltbat no other path for agn iteration of the loop will
produce a longer @rst-case time than that calculated by the algorit®ince the pipeline &fcts of
each of the paths within the loop are unioned, it only remains to ke ghat the caching fefcts are
treated properly The instruction fetch time used for each instruction depends on whether it is
assumed to be a hit or miss, which depends on itgaréation. Thecache hit time is oneycle on

most machinesThe cache miss time is the cache hit time plus the miss pewhlgh is the time

-19-

required to access main memowll categorizations are treated identically on repeated references,
except for first misses and first hitdssuming that the instructions\Jeabkeen catgorized correctly
for each loop and the pipeline analysigswcorrect, it remains to be sWothat first misses and first

hits are interpreted appropriately for &eg iteration of the loop.

A first hit implies that the instruction will be a hit on its first reference after the loop is entered and
all subsequent references to the instruction duringxésugon of the loop will be misseslhe defi-
nition the authors used for a first hit requires that the instruction be witkip path of the loop.
Thus, the first path chosen in the WHILE loop of the algorithm will encouméey &rst hit in the

loop. Afterthe first iteration, first hits are treated as misses.

A first miss implies that the instruction will be a miss on its first reference after the loop is entered
and all subsequent references will be his. instruction classified as a first miss will be counted as a
miss only the first time it is encountered within the WHILE loop of Figur&®&cause of this dual
caching behaor of a first miss instruction, it is necessary to perform more than one pipeline analysis
of a path since the caching betwa of the instructions comprising the path can change between itera-

tions.

Once no more first miss instructions are encountered that miss, the pipelote @&$sociated with
the path chosen will not change since the cachingvimehaf the instructions within a path will
always be treated the sam@&he pipeline d&cts of the last chosen continue path afieiently repli-
cated for all bt one of the remaining iteration3.he last iteration of the loop is treated separately
The longestét path for a loop may be shorter than the longest continue Batiexamining the rit
paths separately tighter estimate can be obtainethus, the algorithm estimates a bound that is at

least as great as the actualrst-case bound.

-20-

The algorithm used for estimating the best-casewion time for a loop is somdat simpler Let
n be the minimum number of iterations associated with a ladlpe the corresponding algorithm for
worst case, the best-case loop analysis algorithm contains three phiaseser, during the first
phase, a shortest path is found only for the first iteration of the [Dlop.second phase of the algo-
rithm determines the shortest path for the middie?2 iterations of the loopThe third phase finds
the shortestyat path from the loop in the final iteratio.he algorithm for estimating the BCET for a

loop is shavn in Figure 10.

The best-case algorithm selects the shortest path on each iteration of thimloaper to demon-

strate the correctness of the algorithm, one musw shat no other path for agn iteration will

struct | oop_node *| oop
struct path_node *path, *chosen_path;

oop- >bc_pi pel i ne_i nformati on = NULL.
Fn>1 THEN
Invoke Tinme_Path() for all continue paths in |oop->path_list,
where all first msses are treated as misses and all first hits are treated as hits.
chosen_path = shortest continue path for this iteration
For every continue path in | oop->path_list,
concat enat e path->bc_pipeline_information with | oop->bc_pi peline_information
Find the shortest continue path where all first msses are
treated as hits and all first hits are treated as mi sses
Concat enat e pat h->bc_pi peline_information with | oop->bc_pipeline_information
for all paths (n-2) tines.
For each set of exit paths that have a transition to a unique exit block DO
I nvoke Time_Path() for each path in the set.
Find the shortest exit path in the set where all first msses
are treated as hits and all first hits are treated as mi sses.
Concat enat e pat h->bc_pi peline_information with | oop->bc_pi peline_information
for all the exit paths in this set.
Store this information with this exit block in | oop->exit_block_list.

ELSE
For each set of exit paths in |oop->path_list that have a transition

to a unique exit block in |oop->exit_block_ |list DO

I nvoke Time_Path() for each path in the set.

Find the shortest exit path in the set where all first msses
are treated as misses and all first hits are treated as hits.

Concat enat e pat h->bc_pi peline_information with | oop->bc_pi peline_information
for all the exit paths in this set.

Store this information with this exit block in | oop->exit_block_list.

Figure 10. Best-Case Loop Analysis Algorithm.

-21-

produce a shorter best-case time than that calculated by the algofittenpipeline information for
the first iteration is typically calculated within the IF-THEN portioe. (vhen the loop iterates more
than once).The first time program lines are referenced in a loop, first misses will be misses and first
hits will be hits. Thus, the algorithm will calculate the shortest path for the first iterafibe. short-
est continue path will then be calculatedegi that first misses will be hits and first hits will be
misses. Allthe first hits within the loop will be encountered on the first iteration according to the def-
inition of first hits that s used by the author$hus, thg can be safely treated as misses on subse-
guent iterations.A first miss will be a hit if it has been encounteredripresly. Even if a first miss
had not been encountered in the first iteration, treating the reference as a hit in the second iteratio
will only cause a slight underestimatiofhe pipeline information for the first iteration will be con-
catenated to the pipeline information calculated for the ne iterations. The algorithm in Figure
10 examines the last iteration separately since paths associated witkittbeoeks may be shorter
than the shortest continue paWhen the number of loop iterations is one. the loop is actually a
function), first misses and first hits will be treated as misses and hits, redpéctihe pipeline anal-
ysis of the git path. Thus, the algorithm estimates a bound that is at least as small as the actual best:
case bound.

It is important to note that theanst-case and best-case loop analysis algorithms are not perfectly
analogous. Consider loop haing three paths with information depicted iable 6. Pahs 1 and 2

each hge a distinct first miss instruction, whilea®h 3 has no first misse#ccording to the wrst-

How Path Is Exaluated RAth1l| Pah2 | Pah3

Treat first misses as misses 19 18 13
Treat first misses as hits 10 9 13

Table 6. Information about Hypothetical Loop with Thresth3

-22-

case loop analysis algorithm, the timing analyzer selets P for the first iteration,&h 2 for the
second iteration, andakh 3 for all other iterationsk-or this ekample, the wrst-case algorithm com-
putes the WCET»actly for aty number of loop iterationsFor best case, &h 3 will be chosen for
the first iteration.But starting with the second iteration, all first misses will be treated as hitattso P
2 will be selected for all iterations after the firgthus, the timing analyzer will compute a BCET of

13 + 9*(h — 1) ¢ycles for this loop, whereis the minimum number of loop iterations.

However, the true BCET of this loop can be slightly greatéithe loop has just one iteration, the
timing analyzer correctly predicts thaatR 3 should be tak, and there is no underestimation in the
BCET. If the loop has tw iterations, then &h 3 should be tak for both iterations, yielding 26
cycles for the loop.The timing analyzer auld compute 22ycles if there are twiterations, a BCET
underestimation of fourycles. Onthe other hand, if there are three or more iterations, the BCET is
realized if the loop tads Rith 2 for @ery iteration. In this case, the timing analyzer will underesti-
mate the BCET of the loop by &wycles, and this underestimation is due to the incorrect prediction
of which path had been chosen for the first iterationorder to ma& an exact prediction in best
case, it becomes necessary toxaraine path choices for prior iterationd/e kelieve that haing to
re-examine all combinations of path choices for prior iterations to compute the BCET of a current
iteration is @erly inefficient. Asa result, the best-case loop analysis algorithmwshim Figure 10
assumes that the same path will beetakluring the middle iterations of the loop at thpemse of a

small underestimation in the total BCET

5. Program Analysis
A timing analysis tree is constructed to predict tlogstvcase times of codegeents containing

nested loops and function callk the contgt of the notation in Figure 4, the root of this tree is an

-23-

instance oSt ruct | oop_node representingrai n() . Each node of the tree represents either a
loop or a function in the function instance grafitach node is assumed to be a natural ilé‘o'ﬁ]e
nodes representing the outevdeof function instances are treated as natural loops that will iterate

only once when entered.

The loops in the timing analysis tree are processed in a bottom-up mamragner words, the
worst-case and best-case times for a loop are not calculated until the times for all of its immediate
child loops are knon. Thealgorithm gven in the preious section described Waa loop containing
no other loops wuld be analyzedThe timing of a non-leaf loop is accomplished using this algo-
rithm and the pipeline information and total times from its immediate child loApsociated with
each loop is a set okie blocks, which indicates the possible blocks outside the loop that can be
reached from the last block in eackitgpath. A unique set of timing information is stored for the
child loop with each of theseigeblocks. If a path within a loop enters a child loop, then the pipeline
information and total time from the appropriatét élock are used at that point during the analysis of
the path.For instance, if the loop in Figure &its to block 5, then the last iteration of the loop will
be shorter than if it hadkged to block 7.Thus, the possible paths within non-leaf loops that contain
child loops can also be calculated.

The transition of an instruction cgtarization from the child loop Y&l to the current loop kel
will be used to determine if gnadjustment to the child loop time is require@he transitions

between catgorizations requiring adjustments are describecallel 7.

14 A natural loop is a loop with a single entry blocdklhile the static simulator can process unnatural loops, the timing analyzer is restricted to
only analyzing natural loops since ibuld be dificult for both the timing analyzer and the user to determine the set of possible blocks associated with a
single iteration in an unnatural loofi.should be noted that unnatural loops occur quite infrequently

BThe timing analysis across looés is only briefly introduced in this sectioft.is described in more detail elgkere [2, 4].

-24-

Child => Rarent Actionto Adjust Child Loop Tme

fm =>fm Use the child loop time for the first iteration.
For al remaining iterations subtract the miss
penalty from the child loop time.

m =>fh For the first iteration subtract the miss penal
ty from the child loop time.For al remain-
ing iterations use the child loop time directly

Table 7. Use of Child Loopimes.

The fm=>fm adjustment is necessary since there should be only one miss associated with the
instruction and a miss should only occur the first time the child loop is er]i?elFedjnstance, con-
sider a program with tavnested loops and each loop iterates 10 tinfgs.instruction within both
loops is classified asfan at both the inner and outer loowéis. Theinstruction should miss only
during the first iteration of the inner loop within the first iteration of the outer loop (1 miss, 99 hits).
If no adjustment were made and the inner (child) loop pipeline informatisruged direct/ythen an
overestimation wuld result since the analyzepuld treat the instruction as initially missing for each
iteration of the outer loop (10 misses, 90 hifEhe m=>fh adjustment is necessary since the first ref-
erence to the instruction in the outer loop will be a fittese same adjustments were used ixipre

ous work on bounding only instruction cache performance [4, 6].

Making these adjustments when pipelining #olned resulted in some slight mispredictioishe
problem is that the caching bef@ of a particular instruction depends on the looglleeing ana-
lyzed. Whena worst-case adjustment at an outer loofllevould be needed for an instructionvha
ing a transition in able 6, we conseatively added the maximum number ofates associated with a

cache miss penalty to the total time of the path containing the instruction and treated the instructior

16 Note that additional wrk was required when the number of distinct paths containing first missefeterifprogram linesxeeeds the number
of loop iterations.This situation can commonly occur within functions.maximum adjustmentalue was used to compensate in aficefnt manner
for the remaining loop iterations.

-25-

fetch as a cache hit within the path pipeline analysis for the inner Wb@n the instruction fetch
should be viered as a cache hit at an outer loogelethe preiously added miss penaltyaes were
subtracted from the looptme. Thisstratgy permitted a single pipeline analysis of each loop, yet
adjustments could still be made at outesele of the program.A worst-case eerestimation occurs
when the instruction fetch isgaded as a miss and the cache miss penalty couwigl leen oer-

lapped with other pipeline delays (aswhadn Figure 1).

For best-case estimations we treated the fetch of an instructiangha transition in @ble 6 as a
cache miss within the path pipeline analysis of the inner [88pen the instruction fetch should be
viewed as a cache hit at an outer loogelethen the miss penalty will be subtracted from the total
time of the path.If the miss penalty could beverlapped with some hazard (as smoin Figure 1),

then an underestimation will result.

The timing analyzer could achie an exact prediction by storing pipeline information about both
cases (whether an instructionviray such a instruction cagerization transition between loopvéts
should be treated as a miss or a hit in the pipelifbgre could be seral instructions within a sin-
gle loop ha&ing such caching cagerization transitions between loopvdks. Storingpipeline infor
mation about both cases for each instructiaulel result in an »xponential space and compiy

since all combinations of caferizations wuld have © be analyzed.

During best-case analysis, it is sometimes necessary to ignore a potential data hazard between
parent and child loop toveid a potential gerestimation in recution time. This situation can occur
when a hazard isverlapped with some other delay (e.g. an instruction cache miigg) timing ana-
lyzer determines the number gfctes that a particular stage igcant from the point it is first occu-

pied to the point it is last occupiedf. a data or structural hazard is detected for a particular stage

-26-

between a parent and child loop, then the delay is reduced by numlaeaat gcles for that stage
in the child loop. If there were no acant gcles, then the hazard could not hertapped with other
delays. Thigotential underestimation could beoaled by storing more information about the child
loop. Again, this would result in increasing the compity of the algorithm.A more detailed discus-

sion about dealing withacant gcles for best-case timing analysis igegi dsewhere [8].

Fortunately these adjustments are not that commbar. instance, results indicated that only about
4.5% of the instructions within the function instance graph were classified as first misses or first hits
and maw of these did not require adjustmentBhus, these adjustments resulted in only small and

relatively infrequent vorst-case werestimations and best-case underestimations.

6. Results

Measurements were obtained on code generated for &RRCS&rchitecture by thepo optimizing
compiler [9]. Six simple programs described iable 8 were used to assess tHeatif/eness of the
timing analyzer A direct-mapped instruction cache configuration containing 8 lines of 16 bges w
used. Thusthe cache contained 128 bytes of instructioAsvery small cache size ag chosen
because the test programs were nethtismall themselgs. Theinstruction cache performance of
each entire programas predicted.The sizes of these test programs may be comparable to the size of
typical code sgments containing timing constraints in real-time applicatidnsaddition, the code
executed between tev scheduling points (conkt switches) in a non-preemydi g/stem is often
smaller than the code of a typical prograsing a small cache also prded a more realistic simu-
lation of a typical ratio of program to cache siZéhe programs were 4 to 17 timesglar than the
cache as shn in column 2 of @ble 8. The analysis of test cases with smaller ratios, where test pro-

grams fit into the instruction cache, could be accomplished quite easilyatd mot represent a

-27-

significant challengeUsing a smaller cache demonstrates the ability of the timing analyzer to predict
tight bounds under a more filiult setting. Column 3 shws that each programas highly modular

ized to illustrate the handling of timing predictions across functi@mwumn 4 shas the vorst-case

hit ratio of each programOnly Matmul had a ‘ery high ratio due to three tightly nested loops in a

single function to perform the matrix multiplication.

The results ofealuating these programs are shoin Table 9. For each of the six modes of timing
analysis, four &lues are gen for each test progranilhe first \alue is the Obseed Cycles, which
represents the actual duration abeuting the program.The second alue is the Estimated Cycles,
which is the timing analyzes’redicted WCET/BCET of the progranThe net value, the Estimated
Ratio, is the ratio of the estimateyctes to the obseed g/cles. Thisis a measure of Roaccurate
the timing analysis isA perfect prediction wuld result in a ratio of 1The last alue gven is the
Naive Ratio, which is what the estimated ratiowid have keen if the analysis had not been-per

formed.

The obsergd g/cles for these measurements were obtained by enhanciBgsbeache simulator
[10]. Thissimulator produced thgipeline only observedycles and the timing analyzer produced the
pipeline only estimatedycles by assuming that all instruction fetches (IF stages) were cache hits and

only required a singleycle. Thepipeline only wost-case naiveycles were obtained by assuming

Num Num Hit . .
Name Bytes | Func| Ratio Descriptiomr Emphasis
Des 2,240| 5 81.41% | Encryptaind Decrypts 64 Bits

Matcnt 812 8 81.81% | Countand Sums Nonmgtive Values in a 100x100 Inger Matrix
Matmul 768 7 99.24% | MultipliesTwo 50x50 Intger Matrices

Matsum 644 7 | 88.22% | Sum$lonnagative Values in a 100x100 Irger Matrix

Sort 556 5 83.99% | Bubblesorfrray of 500 Intgers into Ascending Order

Stats 1,428, 9 83.41% | StdDev. & Corr. Coef. of Two Arrays of 1000 Floating-pointalues

Table 8. st Programs.

-28-

that only a single pipeline stage could lxeceiting at one timei.e. no overlap). Thecading only
observedcycles andcadiing only estimatedtycles were obtained with the assumption that the
pipeline had only a single stage (an IF), a cache hit required a syetge and a cache miss required
an additional miss penalty of ningates. Thecaching only wost-case naiveycles were calculated
by assuming \&ry instruction fetch resulted in a cache mig$e pipeline and caging estimated
cycles were produced by the techniques that were described in this paperdi@timgethe analysis
of pipelining and instruction caching bef@. Thebest-case pipeline and dang naivecycles were
obtained by assuming that each instruction required only a sipgle. cAll data cache references

were assumed to be hits in the three sets of measurements.

Analysis Worst-Case Best-Case
Pipeline Obserd Estimated | Estim. | Nave || Cbsened | Estimated| Estim. | Nave
Only Cycles Cycles Ratio | Ratio Cycles Cycles Ratio | Ratio
Des 66,594 68,254 1.02 3.82 34,837 15,684 0.45 | 0.36
Matcnt 1,063,572 1,063,572 1.00| 2.38| 1,013,307, 1,013,207 1.00| 0.38
Matmul 4,347,806, 4,347,806 1.00 2.13 || 4,347,541 4,347,541 1.00| 0.33
Matsum 933,540 933,540 1.00 2.28 913,275| 913,175 1.00 | 0.35
Sort 3,380,660 6,748,925 2.00| 8.13 11,158 4,174 0.37 | 0.32
Stats 900,231 900,231 1.00 1.70 447,478 447 477 1.00 | 041
Caching Obserd Estimated | Estim. | Nave || Cbsened | Estimated| Estim. | Nave
Only Cycles Cycles Ratio | Ratio Cycles Cycles Ratio | Ratio
Des 142,956 163,015 1.14 3.86 59,998 19,345 032 | 021
Matcnt 1,169,055/ 1,259,055 1.08| 3.79 929,073| 929,073 1.00 | 0.41
Matmul 1,527,648, 1,527,648 1.00 9.36 | 1,527,648 1,527,648 1.00| 0.94
Matsum 707,219 707,219 1.00 4.85 687,219 687,219 1.00 | 0.47
Sort 7,639,611 15,253,902 2.00| 8.17 10,439 3,901 0.37 | 0.35
Stats 372,410 372,410 1.00 4.90 372,410 372,410 1.00 | 0.49
Pipeline Obserd Estimated | Estim. | Nave || Cbsened | Estimated| Estim. | Nave
& Caching Cycles Cycles Ratio | Ratio Cycles Cycles Ratio | Ratio
Des 149,706 169,613 1.13 5.02 65,615 22,247 0.34 0.19
Matcnt 1,769,321 1,859,323 1.05| 3.69| 1,549,095 1,548,798 1.00| 0.25
Matmul 4,444 911| 4,445,413 1.00 498 || 4,444,666 4,420,068 0.99 | 0.32
Matsum 1,277,465 1,277,477 1.00 4.08 || 1,257,239 1,157,240 0.92| 0.26
Sort 7,765,125| 15,504,172 2.00| 10.78 19,957 4,428 0.22 | 0.18
Stats 1,016,048 1,016,145 1.00 3.12 607,399 601,406 0.99 | 0.30

Table 9. Results for theeBt Programs.

-29-

The worst-case pipelining onlyiming analysis hadxact predictions for all programseeptDes
andSort The analysis of these twprograms depicts problemaded by all timing analyzersThe
timing analyzer did not accurately determine ttarstrcase paths in a function witHres primarily
due to data dependencies.longer path deemed feasible by the timing analyzer could not & itak
a function due to aariables value in ani f statement. Th&ort program contains an inner loop
whose number of iterations depends on the counter of an outer Addpis point the timing tool
either automatically rece#s the maximum loop iterations from the controkflonformation pro-
duced by the compiler or requests a maximum number of iterations from thé&fesdhe tool vould
need a sequence dlues representing the number of iterations for eadtation of the inner loop.
The number of iterations performedsvaverrepresented onverage by adctor of two for this spe-
cific loop. Note that both of these problems are encountered by other timing tools and are not directly

related to the pipeline analysis.

Thebest-case pipeline ontyming analysis resulted irxact predictions foMatmulandStats The
predictions foMatcntandMatsumwere slightly underestimated due to diminishing tHeatfof data
hazard because oawant gcles within a child loop.Even thoughMatmulhas no conditional control
flow, its BCET is less than its WCET because thegmtenultiply instructiorsmul can spend 1-19
cycles in the EX stageFloating-point instructions also taka \arying time to gecute, which can
result in a WCET that is significantly greater than the corresponding BCEE best-case predic-
tions for Des and Sort were substantially underestimated for the same reasopswvére weresti-

mated in the wrst-case analysis.

The worst-case and best-casading onlytiming analysis results were also quite accurdtbis

analysis had »act predictions fotMatmul Matsum and Statssince there were e conditional

-30-

constructs xcept to &it loops. The Matcnt program used anf - t hen- el se construct to either
add a nonrggtive value to a sum and increment a counter for the number of gaiveedements or

just increment a counter for thegaive dements. Thedding of the nonrggtive value to a sum as
accomplished in a separate function, whichsvpurposely placed in a location thaiuhd conflict

with the program line containing the code to increment a counter for glagveedements. Multiple
executions of thet hen path, which includes the call to the function to perform the addition, still
required more yrles than alternating between theotpaths. “et, the algorithm for estimating the
worst-case instruction caching performance assumes that the first reference to a program line within
path would alvays be a miss if there were accesses yoatimer conflicting program lines within the
same loop.This assumption simplified the algorithm since thfeatfof all combinations of paths
need not be calculated'hus, one referenceas counted repeatedly as a miss instead of a hit in the
worst-case analysis.This path vas eecuted 10,000 times and accounted for a 90,09€lec
[10,000*miss penalty] or an 8%verestimation. Notehat the gecution of this single path accounted
for 40.61% of the total instructions referenced during the prograoutton. Thebest-case analysis
for Matcntwas exact since the shorter path did not contain the call to add a gaiveevalue. The
programsDes and Sort had werestimations for the wrst-case predictions and underestimations for
the best-case predictions due to the same problems describemliglgefor thepipeline onlymea-
surements. Thworst-case nae ratio was laver than initially anticipated by the authorBhese test
programs contained mgriong running instructions (floating-point operations andgetemultiply

and dvides) that were frequentlyiecuted and often resulted in stally addition, transfers of con-

trol were also quite frequent and were only considered to requrgipeline stages in our analysis.

The intgratedpipeline and calting worst-case analysis also resulted in quite tight predictions.

-31-

Again the predictions for the programatmul Matsum and Statswere \ery accurate Note that the
estimated wrst-case ycles were slightly greater than the obsehg/cles for these programdhis
overestimation vas due to the problem of an instruct®aching behaor changing between loop
levels. Thesechanges require an adjustment asassho Table 6. The approach used by the authors
was to treat such an instruction as a hit in the pipeline analysis and simply add the miss penalty to the
total time. When the instruction should be wied as a hit at an outewt, then this miss penaltyas

simply subtracted and an accurate estimation is obtaifkesiever, in these three programs the
potential werlap between a miss penalty and a stall due to a hazard werevays detected” The

Des Matcnt and Sortprograms had its usualonst-case werestimations due to data dependencies, a
cache conflict, and an inaccurate number of estimated loop iterations, kebpedtihe nave ratio
indicates that much tighter WCET bounds can be obtained when the benefits of pipelining and

instruction caching are analyzed.

The intgratedpipeline and calging best-case analysis for the four programkatcnt Matmul
Matsum and Stat§ without data dependeycor loop iteration problems as within 8% of the
obsered gcles. Theunderestimations were ely due to inaccuracies resulting fronfra=>fm
transition between inner and outer loodhe timing analyzer treats the instruction in this case as a
miss in the pipeline best-case analysis and subtracts the miss penalty from the time of the path whe
the instruction will be vi@ed as a hit.Thus, if a portion of the miss penalty can bertapped with a
delay due to a data hazard, an underestimation will occur on each iteratsmt #he first.In con-
trast, the wrst-case analysisomld treat the instruction as a hit in the pipeline analysis and waty o

estimate in a similar situation on the first iteration of the loop when the instruction referagnce w

1 For instance, the 502/cle overestimation inMatmuloccurred from 50 miss penalties completahgriapping with stalls from an ingeer multi-
ply instruction and 52 missesa@lapping with one gcle load hazards.

-32-

regaded as a missln addition, some of the underestimation in the best-case anabsisam disre-
gading data hazard stallycles between a parent and a child loop due to subtracicent gcles
from the stall. Thus, it vas common to ha& a hrger underestimation in best-case analysis than an
overestimation in wrst-case analysig-ortunately most timing constraints are associated with meet-
ing deadlines, which requiresovst-case analysis, instead of finishing a task too soon, whnaldw
require best-case analysi§he other tw programs DesandSor) were significantly underestimated

due to data dependencies and loop iteration problems discusged gise

If the pipeline and calsing analysis had been handled independetiign the cache miss penalty
would not hae the opportunity to werlap with a pipeline stall, as sla in Figure 1. Thus, one
would anticipate a greaterverestimation in predicting WCET with an independent analysis
approach. Theffect of an independent analysis stggtevould be to add the cache miss penalty to
the total time of a path when an instruction fetch is predicted to be a miss and treat the instruction as
hit in the pipeline.The benefit of intgrating the pipeline and instruction cacherst-case analysis is
depicted in &ble 10. Without an intgrated analysis, the test programewd hae keen weresti-
mated by an additional 3% onesage. Notethat the most significant fett was on the wrst-case
prediction ofStats which was the only floating-point inten& test program.Programs requiring
floating-point operations result in more frequent and lgngtiays that may sometimes beep
lapped with instruction cache misses oy ather source of multiccle pipeline stage occupation.
Thus, the benefit of using an igtated analysis approachowld be more pronounced in floating-

point intensie programs.

-33-

Name Estimated Ratio with| Estimated Ratio with

Integrated Analysis | Independent Analysis
Des 1.133 1.174
Matcnt 1.051 1.057
Matmul 1.000 1.000
Matsum 1.000 1.016
Sort 1.997 2.029
Stats 1.000 1.082
Average 1.197 1.226

Table 10. Ratios for Infgrated ersus Independentdist-Case Analysis

7. UserlInterface
Once the initial timing analysis has been completed, a graphical useadetesfivoked that is
depicted in Figure 11The main windw on the left allavs the user to quickly request timing predic-

tions for functions, loops, paths, subpaths, or ranges of machine instructions and reports the

[#] time.bin 2 C Source Code of des.c Assenbly Code of des.s
line # source code blk assenbly code
Select a subpath within path 3 N ble.. Lz2zz
within the function des, 23 49,17 57,25} 1? a e
24 static great kns[171: = 04,1, 0
blocks source lines 25 static int initflag=1:
26 int ii.i,j.ks
27 unsigned long ic.shifter getbit():
28 immense itmp:
23 void cyfund), ks(): .
30 st]
Il if {initflag) € # block B (lines 37-38)
32 initflag=0: st dgh, [¥oB]
33 bit[1]=shifter=1L: mowy 1L ELD
34 Ford j=25j<=325j++) bit[j] = Cshifter <<= 1}; add Zsp, 0_STHRG,X14
3 sethi Zhi<l214},%16

add Z1B,Xlo(lL214} 213

PR add #13,12,216

23 forti=1ti<=16¢i++} kstkeu, i, tknslil): add x1_3,192,2i2
23 T # block 7 (lines 38-38)
" L227:

Cycles to Execute Subpath from Block 5 To
Block 12 Best Case 3619 Horst Case 4835

1d [#il + 41,401

st #ol,[¥sp + (LO_STARG + 431
1d [#i11.%00

st Zo0,[¥sp + ,0_STARG]

Exit | |Cunstraints| |Hnre Detail‘ ‘ Back

i
45 for {i=1ri<=16zi++) { moy El4, ¥al
46 ii = {isw==1717-1 ¢ i’ mow 210,20l
47 cyfuniitmp, 1, knsliil, &ic): call _ks.3

mowy A16,%02

48 ic "= itmp,r:

49 itmpr=itmp,1: # hlock & (lines 36-38%

50 itmp,l=icy add 216,12,%16

51 F cmp A16,Xi2

52 ic=itmp.rs ble L227

63 itmp,r=itnp, 1t add 210,1,%10

54 itmp,l=ic: # block 9 (lines 40-40)

55 {kouty,r=dkouty, 1=0L: st [isp + itnpl

96 for €j=32,k=Bd4: j >= 1: j—, k=) £

57 Ohoutd,r = ({koutd,r <<= 1) | getbit{itmp,ipm(jl1,32};

54 Okouty,l = (Ckout),l <<= 1) | getbit(itmp, ipm(k].320;

53 ¥

60 ¥ _
ot - i

| Select Path | ?§Em‘,eg>€§ Soansel D Cleas #11 |Best Pipeline Dia.| |[Horst Pipeline Dia.

Figure 11. Tming Analyzer User Intedce

-34-

associated timing predictiong.he middle windw depicts the C source code and the right wimdo
depicts the corresponding assembly codtheneer a dfferent construct is selected in the main win-
dow, the highlighted lines in the source and assembly wisdare automatically updated and scrolled

to the appropriate positionNote the source lines within the middle wimdare numbered.This

allows the user to identify constructs that are referenced by line numbers within the mawv anddo

to correlate the source line ranges associated with each basic block depicted in the assembly coc
window. Selection of paths via the mouse on the source windadso supported.Since there may

be more than one instance of a function within the timing analysis tree, the usacatisplays the
worst-case and best-case times from all of the instances of the construct associated with the use
request. Whener a dfferent construct is selected, the highlighted lines in wiwrsdoontaining the
source and assembly code are automatically updated and scrolled to the appropriate pbsision.

the user can quickly obserthe relationship between timing constraints associated with the source
code and sequences of machine instructionisis interfice is described in more detail elbere

[11].

8. Comparisonwith Previous Work

There has been muchovk on the issue of predictingeution time of programsHowever, most
approaches in the pastvearot dealt with the décts of pipelining and instruction caching [12, 13,
14]. Therehave dso been some recent studies on predicting pipeline performance by Heiralon
[15] and Narasimhan and Nilsen [16Yet, these studies did not address caching isfliBarther
more, the former study ag limited to nonnested functions and the latter study required the sequence

of executed instructions to be knm. Finally there has been some recernrkv on predicting

18 Harmon assumed the entire codgreent would fit into cache.Thus, at most one miss could occur for each instruction reference.

-35-

instruction caching performancérnold et al. [4] implemented a timing analysis system to tightly

bound instruction cache performandd¢owever, this approach did not address pipelining issues.

Li et al.[17, 18] used an inteer linear programming (ILP) approach to model instruction caching
behaior. Their approach is also used to predict data and set-asseamthing behaor [19]. The
authors automatically demd constraints from a prograsioontrol-flow graph that could be sad
using ILP Additional usetprovided constraints gerding data dependencies within the controlvflo
can be easily inggated into the analysisln their control-flev analysis, each set of instructions
within a basic block mapping to the same cache lins identified as a line-blockl'hree possible
states were identified for each cache likérst, if only one line-block is mapped to it, then it will
experience at most one miss penal8econd, if two or more non-conflicting line-blocks map to it,
then these line-blocks will ke & most one miss penalty among thefinally, if two or more con-
flicting line-blocks map to it, then a cache conflict graph is constructed for this cach&€lmedges
between the line-blocks in this graph represent a possible path betweerothentlicting line-
blocks. Additionalconstraints are generated to represent the number of times these edges are tra
versed. Wheneer a line-block is reached from a conflicting line-block, it is assumed that there is a

miss penalty associated with iteseution.

Apparently the pipeline behaor was not modeled and it is uncleamhwell Li's gproach will
work when pipelining is addresseddowever, it is possible that pipeline bewar for instructions
within a single basic block can be modeled withsULP approach.By performing no general
pipeline analysis, this alleed their approach to diggad the potential éécts of diferent paths on
pipeline beheior. Thus, thg had only two possible times for the instructions within a line-block, one

with an instruction cache miss and one without a mistortunately the state of the pipeline can

-36-

affect the gecution time associated with a sequence of instructidimsis, there &s also no method

shown for detecting pipeline stalls or potentiaedap between stalls and cache misses.

There has been only one yieus study that attempted to address the issue of predicting the WCET
of programs on machines with both pipelining and an instruction cdghreet al.[20] described a
method of predicting the performance of pipelining and instruction caching, which is based on an
extension of a pngous timing tool [21]. They havealso etended this tool to address data caching as
well [22]. It has been proposed that the Lim approach canxtemded to analyze set-assodsiati
caching behaor as well. Lim’s method difers quite significantly from our approach described in
this paperwhich instead bilds on flav analysis techniques found in optimizing compiletsm’s
method uses a timing schema associated with each souetéaleguage program constructhey
stored information about the number gtles at the head and tail of a resgion table produced as a
result of the pipeline analysis on the instructions associated with a program constradtlition,
this method stored information about the set of memory blocks whose first reference depends upo
the cache contents prior to theeeution of the constructLim also stored the set of memory blocks
known to remain in cache after thgeeution of the constructEventually this timing information is
concatenated with another construct thatild be &ecuted immediately before the current construct.
Their timing analyzer attempted toalap the head of the resation table of the current construct
with the tail of the reseation table of the other construct as much as possitieir row-based
approach of concatenating res#ion tables is equalent to our tables of structural and data hazard
information depicted in dbles 3 and 4Likewise, the list of memory blocks kwa to be in cache
after executing the other construct is used to adjust the time of the current construct by comparing this

list to the list of first reference blocks in the current constriibis method stored multiple paths for

-37-

conditional constructs, such as ah-t hen-el se. They pruned or eliminated a particular path
when it was found that the @vst-case xecution time of the path as fster than the best-caseseu-

tion time of another path within the same construct.

The approach that Lirat al. used to analyze caching bela limits the accuracof the analysis.
They used a single bottom-up pass when performing the timing analysis of a proghantaching
behaior of a lage percentage of the instruction fetches within a constraatdabe unknevn until
mary of the surrounding constructs were processHteir approach as to treat the instruction fetch
as a hit within the pipeline and add theles associated with a cache miss penalty to the total time of
the constructWhen it was later found that an instruction referen@s\a hit, the would subtract the
miss penalty from the total time-lowever, an overestimation may result when the instruction is not
found in cache.As shavn in Figure 1, the instruction fetch miss penalty of one instruction (instruc-
tion 2) can be completely hidden by a stall with a long running instruction (data hazard stall on
instruction 3). Whether the fetch of instruction 2as a hit or a misseuld have o efect on the total
number of gcles. TheLim method would rarely detect instruction fetches thabuld alvays be
misses until the surrounding constructs are analyzed, which is after the pipeline analysis of a con
struct has already occurre@ur approach of cagerizing the caching beti@r of each instruction
before starting the timing analysis alt®the detection of such situatiorsor instance, about 25% of
the instructions within the function instance graphs of the programsamaied were statically cate-
gorized asalways missesAs Table 10 abee indicates, we found that thpgpeline and calaing esti-
mated ratio for the six test programs increased vanage by about 3% when the complete miss

penalty vas alvays added for each predicted miss.

-38-

9. Future Work

We ae working on seeral enhancements to the timing analy2éfe dan to automate the detection
of mary data dependencies usingisting compiler optimization techniques to obtain tighter perfor
mance estimations [23\We dso plan to accurately calculate the number of iterations for loops which
are dependent on thalue of a loop counteraviable of an outer loopThe retagetability of the tim-
ing analyzer will also be enhanced by isolating emaining machine dependent information in data

files.

We ae eploring methods to predict the timing of other architectural features associated with RISC
processors. ¥tk is currently ongoing toerify that our technique accurately predicts performance
for the MicroSRRRC | by using a logic analyzerThis will require predicting the performance of
other features, such as wrap-around filling of cache lifiég efect of data caching is also an area
that we are pursuingUnlike instruction caching, mgnof the addresses of references to data can
change during thexecution of a program.Thus, obtaining reasonably tight bounds farsi-case
and best-case data cache performance is significantly more challekignwgver, mary of the data
references are kma. For instance, static or global data references retain the same addresses during
the execution of a programDue to the analysis of a function instance tree (no recursiomea)o
addresses of run-time stack references can be statically deterwgnashen the addresses may dif-
fer for different irvocations of the same functiorCompiler flav analysis can be used to detect the
pattern of may calculated references, such as kidg through an arrayWhile the benefits of using
a data cache for real-time systems will probably not be as significant as using an instruction cache, its
effect on performance should still be substanti&e ae also currently wrking on etending the tim-

ing analyzer to predict the performance of set-assoeiediches.

-30-

10. Conclusions

This paper has presented a technique for predicting dh&t wnd best-caseeeution time of pro-
grams on machines with pipelining and instruction cackést, a static cache simulator analyzes the
control flov of a program to statically cagerize the caching bewar of each instruction within the
program. Seconda tming analyzer uses these instruction gateations when analyzing the
pipeline performance of a path of instructiofiird, the timing analyzer uses a concise representa-
tion of the pipeline information to concatenate the performance of paths ificeeneimanner when
predicting the performance of loopBourth, a timing analysis tree is used to predict the performance
of an entire programFinally, a gaphical user intesice has been implemented thatwafausers to
obtain timing predictions of portions of the prograithe results indicate that the timing analyzer can

quickly obtain tight predictions of performance.

11. Acknowvledgements
Lo Ko and Emily Ratlif implemented the user intade. V& ae also grateful to the angmous

referees who praded helpful suggestions that impeol the quality of the paper

12. Refeences
[1] Texas Instruments, IncBroduct Peview of the TMS390S10 Ingjeated SRRC Ppcessoy1993.

[2] F. Mueller, Static Cabe Simulation and Its ApplicationBhD Dissertation, Florida State Waisity, Tallahassee, FL (August
1994).

[3] F. Mueller and D. B. Whallg “Efficient On-the-fly Analysis of Program Betiar and Static Cache Simulatidrgtatic Analysis
Symposiumpp. 101-115 (September 1994).

[4] R. D. Arnold, E Mueller, D. B. Whalley, and M. G. Harmon, “Bounding Wfst-Case Instruction Cache Performah&epceed-
ings of the Fteenth IEEE Realifhe Systems Symposiupp. 172-181 (December 1994).

[5] F. Mueller and D. B. Whallg “Fast Instruction Cache Analysis via Static Cache SimuldtiBroceedings of the 28th Annual
Simulation Symposiunpp. 105-114 (April 1995).

[6] C. A. Healy, D. B. Whalley, and M. G. Harmon, “Intgrating the Tming Analysis of Pipelining and Instruction CachinByo-
ceedings of the Sixteenth IEEE Reahd Systems Symposiupp. 288-297 (December 1995).

[7] M. D. Hill, “A Case for Direct-Mapped Cache;EE ComputeR1(11) pp. 25-40 (December 1988).

[8] C. A. Healy, Predicting Pipeline and Instruction Che Rerformance Masters Thesis, Florida State Maisity, Tallahassee, FL
(1995).

[9] M. E. Benitez and J. WDavidson, ‘A Portable Global Optimizer and Liek” Proceedings of the SIGPLAN '88 Symposium on
Programming Languge Design and Implementatiorpp. 329-338 (June 1988).

-40-

(10]

(11]

(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]

(20]

(21]
(22]
(23]

(24]

J.W. Davidson and D. B. Whallg “A Design Erironment for Addressing Architecture and Compiler InteractioM$cropro-
cessos and Microsystemd 5(9) pp. 459-472 (Neember 1991).

L. Ko, D. B. Whalley, and M. G. Harmon, “Supporting Usé&iriendly Analysis of Tming Constraint§,Proceedings of the@M
SIGPLAN Notices 1995 ahkshop on Languges, Compiles, and ©ols for Real-ime System80(11) pp.99-107 (N@ember
1995).

C. Y. Park, “Predicting Program Ecution Tmes by Analyzing Static and Dynamic Programth®; Real-Tme Systems
5(1) pp. 31-61 (March 1993).

D. Niehaus, “Program Representation andnElation for Predictable RealrTe System$,Proceedings of thewlfth IEEE
Real-Tme Systems Symposiupp. 53-63 (December 1991).

P Puschner and C. ¢za, “Calculating the Maximum Exgution Tme of Real-Tme Programs, Real-Tme System4(2) pp.
159-176 (September 1989).

M. G. Harmon, TP. Baker, and D. B. Whallg, “A Retagetable €chnique for Predicting Exution Tme; Proceedings of the
Thirteenth IEEE Realifne Systems Symposiupp. 68-77 (December 1992).

K. Narasimhan and K. D. Nilsen, “Portabledextion Tme Analysis for RISC Processdr&roceedings of the@M SIGPLAN
Wakshop on Languge, @mpiler and Tool Support for Realifme SystemgJune 1994).

Y. S Li, S. Malik, and A. Vlfe, “Performance Estimation of Embedded Saftevwith Instruction Cache Modeliignterna-
tional Confeence on Computekided Design(November 1995).

Y. S. Li, S. Malik, and A. WlIfe, “Efficient Microarchitecture Modeling ancath Analysis for Realiime Software; Proceed-
ings of the Sixteenth IEEE RealrE Systems Symposiupp. 298-307 (December 1995).

Y. S Li, S. Malik, and A. \Wlfe, “Cache Modeling for Realihe Software: Bgond Direct Mapped Instruction CacHeBro-
ceedings of the 8enteenth IEEE Realiffie Systems Symposiuidecember 1996).

S.S. Lim, Y. H. Bae, G. TJang, B. D. Rhee, S. L. Min, C. Yark, H. Shin, K. Brk, and C. S. Kim,An Accurate Wrst Case
Timing Analysis E€chnique for RISC Processér&roceedings of the iffeenth IEEE Realifne Systems Symposiump.
97-108 (December 1994).

A. C. Shav, “Reasoning aboutifie in HighefLevel Language Softare]} IEEE Transactions on Softwar Engineering
15(7) pp. 875-889 (July 1989).

S.-K.Kim, S. L. Min, and R. Ha, “Hicient Worst Case iming Analysis of Data CachirigProceedings of the 1996 Reafrie
Technology and Applications Symposiurpp. 230-240 (June 1996).

F. Mueller and D. B. Whallg “Avoiding Conditional Branches by Code ReplicatidProceedings of the SIGPLAN '95 Confer
ence on Resgramming Languge Design and Implementatiorpp. 56-66 (June 1995).

A. V. Aho, R. Sethi, and J. D. Ullma@pmpiles Principles, Bdniques, and dols,Addison-Weslg/, Reading, MA (1986).

-41-

Appendix

In the following, the informal description on instruction categorization of section 2 will be formalized. The catego-
rization for direct-mapped instruction caches is based on the following definitions:

Definition 1 (Potentially Cached) A program line | can potentially be cached if there exists a sequence of tran-
sttions in the combined control-flow graphs and function-instance graph such that | is cached when it is reached in
the current block.

The traversal of every possible sequence of blocks leads to an exponential explosion. We avoid this overhead by
restricting the analysis to abstract cache states:

Definition 2 (Abstract Cache State (ACS)) The abstract cache state of a program line | within a block and a
function instance is the set of program lines that can potentially be cached prior to the execution of | within the block
and the function instance.

Given the control-flow information of a program and a cache configuration, the ACSs for each block have to be
calculated. Using data-flow analysis (DFA), each block has an input state and an output state, corresponding to the
ACS before and after the execution of the block, respectively. An iterative algorithm for the calculation of ACS’ via
DFA is given in Figure 3. The DFA requires a time overhead comparable to that of inter-procedural DFA performed
in optimizing compilers. The space overhead is O(pl * bb * fi), where pl, bb, fi denote the number of program lines,
basic blocks, and function instances, respectively. The correctness of iterative DFA has been discussed elsewhere [24].
Additional DFA is required to determine the linear cache state and the post-dominator set for each block before a
definition for instruction categories can be specified.

Definition 3 (Linear Cache State (LCS)) The linear cache state of a program line | within a block and a func-
tion wnstance is the set of program lines that can potentially be cached in the forward control-flow graph prior to the
execution of | within the block and the function instance.

The forward control-flow graph is the acyclic graph resulting from the removal of back edges (backwards edges
forming loops, see Figure 5 and [24]) in the regular control-flow graph. Informally, the LCS represents the hypothetical
cache state in the absence of loops. It will be used to determine whether a program line may be cached due to loops
or due to the sequential control flow.

Definition 4 (Post-dominator Set) The posi-dominator set of a program line | within a block and a function
instance is the self-reflexive transitive closure of post-dominating program lines.

Informally, the post-dominator set describes the program lines certain to be reached from the current block,
regardless of the taken paths in the control low. A more detailed discussion of post dominators can be found elsewhere
[24]. The instruction categories can now be defined with respect to DFA. The following definition formalizes the
worst-case instruction categories for each loop level.

Definition 5 (Instruction Categorization) :

e Let i be an instruction within a block, a loop A, and a function instance.

o Let [=4p..4,m—1 be the program line containing 7; and let 7f;,5; be the first instruction of { within the block.
e Let s be the ACS for [within the block.

e Let [map into cache line ¢, denoted by [— c.

o Let u be the set of program lines in loop A.

o Let child()) be the child loop (inner-next loop within nesting) of A for this block and function instance, if such
a child loop exists.

-42-

e Let header(X) be the set of header blocks and preheader()) be the set of preheader blocks of loop A,
respectively.'®

Let s(p) be the abstract output cache state of block p.
Let linear be the LCS for [within the block.
Let postdomn(p) be the set of self-reflexive post-dominating programming lines of block p.

Then,
always-hit if k # first V(IEsAN Y més)
m—cm#l
first-hit if worst(iy, child())) =first-hitv
k=firstANlesn T me(sNu)A
m—c,m#l
[¥ lesp)A ¥ még(s(p)nua
WCET—category (Zk; A): pEpreheaders(A) m—c,m#l
Y L €postdom(p) N YV m¢& (linear Nu)
pEheaders(X) m—c,m#l
first-miss if worst(ix, child())) =first-missANk = first Nl € sA
I mesn ¥ még(sNu)
m—c,m#l m—c,m#l

always-miss otherwise

always-miss if k = first Nl & s
first-hit if best(ig, child(X)) =first-hitv
k=first N\lesA T me(sNu)A

m—c,m#l
v L€ s(p)A
BCET-category (lk;)\): pEpreheaders(X)
vV 1 € postdom(p) A Y 1 & s(b)
pEheaders(X) bebackedges(X)

first-miss if best(ig, child())) € {first-miss, always-hit}A
k= first Nl € s A1 ¢ linear
always-hit otherwise

While the definition seems complex, it can be implemented rather efficiently once DFA has been performed. First,
simple set operations on bit vectors suffice to test the conditions. Second, if one conjunct in a condition fails, the
remaining ones are not tested. Third, the implementation orders the conjuncts such that the least likely ones are
tested first. The informal description in Section 2 describes each conjunct of the above definition verbally and may
be used as a reference to further motivate the formal definition.

19The common notion of “natural loops” defines a loop to have only a single header [24]. This work extends this notion to handle
more general control flow with unstructured loops. Multiple loop headers occur only for unstructured loops, which are handled by the
simulator. Multiple loop preheaders occur when the loop can be entered from more than one block outside the loop, which can occur
even for natural loops.

-43-

-44-

