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Abstract 

Critical of mechanistic accounts of cognition, Anderson (1990) showed that a 

demonstration that cognition is optimally adapted to its purpose and environment can 

offer an explanation for its structure.  Simon (1992), in contrast, emphasised that the 

study of an adaptive system is not a “logical study of optimization,” but an empirical 

study of the conditions that limit the approach to the optimum.  In response, we sketch 

the requirements for an approach to explaining behaviour that emphasises explanations in 

terms of the optimal behaviour given not only descriptions of the objective and 

environment but also descriptions of the human cognitive architecture and knowledge.  A 

central assumption of the proposal is that a theory explains behaviour if the optimal 

behaviour predicted by the theory shows substantial correspondence to asymptotic human 

performance. 

 

1. Introduction 

How can we explain human behaviour? Our first purpose in this article is to articulate an 

approach that emphasises explanations in terms of the optimal behaviour given not only 

constraints imposed by the objective and environment but also constraints imposed by 

knowledge and the human cognitive architecture. A second purpose is to describe 

techniques that realize this approach by supporting the formal reasoning about such 

constraints. We take as a starting point Simon's (1992) observation that, “behaviour 

cannot be predicted from optimality criteria without information about the strategies and 

knowledge agents possess or acquire. The study of behaviour of an adaptive system is not 

a logical study of optimization but an empirical study of the side conditions that place 
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limits on the approach to the optimum.”… (p. 160). Before articulating our proposal we 

first review two existing classes of explanation of behaviour: (1) rational explanations of 

the functions of cognition (rational analysis; Anderson, 1990), and (2) cognitive 

architecture-based simulations of the mechanisms by which the functions are achieved. 

These two lines of work provide much of the intellectual framework within which to 

motivate and understand the present proposal, in particular, understanding both how it is 

continuous with prior work, and how it departs in significant ways.  

 

 Rational analysis 

Anderson (1990) emphasised the value of explanations in terms of environment (or at 

least its experience) and the goals of the cognitive system. He stated a general principle 

of rationality: “The cognitive system operates at all times to optimize the adaptation of 

the behaviour of the organism.”… (p. 28).  Anderson started with the assumption that 

evolution has to some extent optimized cognition to its environment.  He argued that 

within the limits set by what evolution can achieve, a species is at some stable point in 

time at a local maximum.  Anderson proposed that if the principle of rationality were 

applied to the development of a theory of cognition then substantial benefits would 

accrue. In particular, the rational approach (1) offers a way to avoid the identifiability 

problem, because the theory depends on the structure of an observable world and not on 

the “unobservable structure in the head”; (2) offers an explanation for why people behave 

the way they do rather than just how they behave (i.e. because they gain benefit from 

optimization); and (3) offers guidance to the construction of a theory of the mechanism.  
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One important implication of these benefits is that rational analysis allows the theorist to 

avoid the pitfalls of assuming that the human mind is a random collection of mechanisms 

that are poorly adapted to many of the tasks that people want to achieve. Indeed, explicit 

in articles advocating rational analysis (including Anderson’s) is a critique of mechanistic 

accounts of cognition on just these grounds.  For example, Chater and Oaksford (1999), 

“From the perspective of traditional cognitive science, the cognitive system can appear to 

be a rather arbitrary assortment of mechanisms with equally arbitrary limitations. In 

contrast, rational analysis views cognition as intricately adapted to its environment and to 

the problems it faces.”… (p. 57). 

 

A central and distinguishing feature of rational analysis is that it demands a thorough 

analysis of the task environments to which cognition is adapted.  For example, in light of 

rational analyses such as Oaksford and Chater (1994), normative accounts of the Wason 

four card task can be seen to fail precisely because they do not reflect the structure of the 

general environment experienced by people, but rather are tuned to the simple, 

unrepresentative tasks studied in the laboratory. At the same time, mechanistic accounts 

fail when they implicitly adopt the normative analysis and attribute departures from 

normative behaviour to arbitrary limitations of the underlying cognitive mechanisms. 

Such considerations led Anderson to critique of his own mechanistic theory of cognition, 

ACT* (Anderson, 1983) (though see Young and Lewis (1998) for a description of an 

alternative functional approach to cognitive limitations pursued in the Soar architecture).  
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 Bounding rational analysis  

Understanding the relationship between rational analysis and Simon's seminal work on 

bounded rationality is instructive.  Although rational analysis may at first appear at odds 

with bounded rationality, Anderson (1990) argued that there was no incompatibility 

between rational analysis and satisficing: it might be rational and optimal to find a 

normatively satisfactory solution when rational is defined relative to time and processing 

constraints.  Despite this possible in-principle compatibility, Simon (1991, 1992) was 

critical of rational analysis.  His critique focused on the fact that Anderson placed 

emphasis on the analysis of the environment and backgrounded the role of what Simon 

called “side conditions”.  By “side conditions” Simon meant the constraints that were 

placed on cognition by knowledge, by strategies, and by the human cognitive 

architecture—the very constraints that rational analysis were intended to abstract away 

from.  Simon (1992),  “There is no way to determine a priori, without empirical study of 

behaviour, what side conditions govern behaviour in different circumstances. Hence, the 

study of the behaviour of an adaptive system like the human mind is not a logical study 

of optimization but an empirical study of the side conditions that place limits on the 

approach to the optimum. Here is where we must look for the invariants of an adaptive 

system like the mind.”… (p. 157). 

 

 Accounting for the side conditions: Simulations of behaviour based 
on cognitive architectures 

The most sophisticated current techniques for representing and reasoning about such side 

conditions are based on computational cognitive architectures (Anderson and Lebier, 
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1998; Meyer and Kieras, 1997). We focus here on ACT-R, because it uniquely represents 

the confluence of rational analysis and mechanistic approaches to cognition. Anderson 

(1990) was clear that there are benefits to both and that the two approaches are 

complementary. Accordingly, Anderson modified ACT* to reflect the insights gained 

from rational analyses of memory and choice (Anderson and Milson, 1989; Lovett and 

Anderson, 1996). The resulting theory, ACT-R (R is for rational), combines a model of 

the decay of activation in declarative memory, derived from the rational analysis of 

Anderson and Milson (1989), with a model of production rule conflict-resolution derived 

from a rational analysis of the selection of action on the basis of history of success 

(Lovett and Anderson, 1996).  

 

One of the strengths of a theory of the cognitive architecture is that it shows how the 

mechanisms of cognition, perception, and action work together as a single integrated 

system to produce behaviour.  ACT-R has been a spectacular success in just this way.  

But despite the grounding of ACT-R in rational analysis, models of specific tasks 

situations constructed in ACT-R are still subject to the rational analysis critique of 

mechanistic explanations, for two reasons.  First, ACT-R integrates a range of 

mechanisms that are necessary to complete a comprehensive model of human cognition, 

but that are not directly motivated by rational analysis.  Examples include the model of 

perceptual/motor processing (ACT-R/PM) that was motivated by efforts to build 

architectures capable of interaction (Byrne and Anderson, 2001; Meyer and Kieras, 

1997), and the limits on source activation, which is used to model working memory 

constraints (Anderson, Reder, Lebiere, 1996).  The problem here is not simply that some 
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components are motivated by rational analyses and others are not –perhaps the more 

fundamental problem is that motivations of individual components fail to take into 

account the fact that it is the system as a whole that is adapting to the environment, not 

components.  As cognitive architectures make exceptionally clear, components only have 

behavioural consequences in conjunction with the set of other components required to 

produce behaviour.  

 

Second, ACT-R must be provided with specific strategies in the form of production rules 

in order to perform specific tasks.  This is a theoretically necessary feature of 

architectures (Newell, 1990), but in practice this variable content provides theoretical 

degrees of freedom to the modeller that may obscure the explanatory role of the 

architecture in accounting for psychological phenomena.  And although Newell's (1990) 

time-scale analysis was in principle correct –that the architecture shows through at the 

level of immediate behaviour– recent work is making it increasingly clear that 

considerable strategic variability is evident even at the level of tasks operating in the sub-

second range. A prime example is elementary dual-tasking situations (Meyer and Kieras, 

1997), which we turn to below in order to illustrate our new approach.  

 

 Local and global adaptation and the role of mechanism and 
strategy  

The current state of affairs can be summarized as follows, and clearly points to new 

directions for modelling research:  
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1. A strength of rational analysis is that it provides deeper explanations for both 

components of the cognitive architecture, and behaviours in particular task situations. 

These explanations take the form of demonstrations that the components and behaviours 

are rational adaptations to the structure of the environment viewed from a sufficiently 

global perspective, rather than departures from local optima that point to arbitrary 

limitations in the underlying cognitive mechanisms.  

 

2. A weakness of rational analysis is that it does not provide a way to systematically and 

incrementally take into account the side-conditions that bound the approach to optimality 

in any given local task situation.  Although it may in fact provide an explanation for 

some of the side-conditions themselves (to the extent that rational analysis explanations 

of architectural components are successful), there is no way to systematically draw out 

the detailed implications of these side conditions for understanding what behaviour is 

adaptive in a particular task environment.  

 

3. A related weakness of rational analysis is that it does not provide a way to explore the 

adaptation of the system as a whole –and the interaction of all its parts– as opposed than 

individual components or classes of behaviours.  

 

4. A strength of computational cognitive architectures is that they provide a way to 

explore the interactions of what Simon called the "side conditions" on the approach to 

optimality, including knowledge and basic mechanisms of cognition, perception, and 

action. They can thereby be applied in detail to a wider range of specific task situations 
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than can rational analysis, and, as ACT-R demonstrates, offer one way to explore 

architectural mechanisms that may themselves be motivated by rational analysis.  

 

5. A weakness of cognitive architectures is that they do not yield the deep explanations of 

rational analysis (even if partially grounded in RA-motivated components), because 

behaviour arises as a function of both architecture and posited strategies, and the latter 

represents a major source of theoretical degrees of freedom, where strategies may be 

posited not because they are maximally adaptive, but because they match the empirical 

results.  

 

In short, we believe that cognitive architectures have made only partial progress in 

addressing the critique of rational analysis, and rational analysis has made only partial 

progress in addressing Simon's critique that it has backgrounded the role of mechanistic 

and knowledge constraints. What we seek is a framework that will permit us to reason 

about what behaviours are adaptive in a specific local task situation, given a posited set of 

constraints (architectural and knowledge constraints) on the approach to optimal 

behaviour, and an explicit payoff function.  

 

The framework we propose here is an initial attempt to achieve this goal.  The framework 

is consistent with rational analysis, but differs from cognitive architectures, in that it 

values calculation of what is optimal. It differs from rational analysis, and is consistent 

with cognitive architectures, in that it directly takes into account the complex interaction 

of architectural mechanisms and how they give rise to the details of behaviour. It differs 



 10 

from both approaches in that it seeks explanations of specific behaviours as optimal 

adaptations to both external task constraints and internal system constraints. More 

precisely, the proposed framework demands that (a) optimality is defined relative to the 

entire set of constraints acting on the behaving system (internal as well as external 

constraints), (b) there is an explicit payoff function, known as an objective function, and, 

(c) the optimal performance predicted by the theory corresponds to the empirically 

asymptotic level of adaptation.  

 

In the discussion section, we briefly consider other related approaches in psychophysics 

and cognitive modelling. We will also make recommendations for the types of data 

collection and reporting that is needed for the sorts of analysis that we are proposing. We 

turn first to a description of the approach and its application to modelling a specific task.   

 

2. How to explain behaviour 

In our recent work we have developed an approach designed to complement rational 

analysis and architectural simulation (Vera, Howes, McCurdy, Lewis, 2004; Howes, 

Vera, Lewis, McCurdy, 2004).  There are three commitments: (1) A commitment to 

exploring the implications of constraints for the asymptotic bounds on adaptation; (2) a 

framework for representing theories as sets of constraints; (3) a computational 

mechanism for calculating the implications of constraints.   
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2.1. Exploring the Bounds on Adaptation 

When people acquire a skill they are able to adapt behaviour so as to incrementally 

improve the value of some payoff, or objective function.  With practice, the scope for 

improvement attenuates and performance asymptotes.  It may asymptote at a level that is 

consistent with constraints imposed by the environment or perhaps at a level determined 

by the knowledge that is brought to the task.  The bounds may instead be imposed by the 

human cognitive architecture, including its resource limits (Norman and Bobrow, 1975, 

1976). More plausibly, the asymptote may be determined by a combination of 

constraints, including the stochastic and temporal profiles of the particular task 

environment and the human cognitive, perceptual, and motor systems.  

 

We assume that under such circumstances people seek to iteratively improve payoff.  

Effort is oriented towards increasing the value of an objective function that specifies the 

perceived costs and benefits of action.  In seeking to improve a payoff people adapt 

performance by adopting specific strategies.  Improvement eventually asymptotes, and if 

we ignore for the moment the possibility that people are trapped by local maxima, 

performance should asymptote at a level where it generates the optimal payoff given the 

constraints (including those imposed by architecture and knowledge).  For a theory of the 

human cognitive architecture to explain an empirically observed asymptotic bound, 

substantial correspondence is required between the asymptote and the optimal 

performance given the theory.  A theory that predicts better performance than the 

observed asymptote is under constrained, a theory that predicts worse performance is 

over constrained. 
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Importantly, explanations of the causal role in behaviour of for example, memory, must 

account for the fact that such component systems have behavioural consequences only 

when working together with the entire cognitive system. In contrast to rational analysis, 

the idea is to explore the implications for asymptotic performance of theories of an 

integrated set of mechanisms applied to a local task environment.  The approach can 

therefore be thought of as a bounded rational analysis.   

 

Following Card, Moran, and Newell (1983) we can think in terms of behaviour as being 

determined by the objective function plus three sets of constraints: 

 

Objective  + Task Environment  + Knowledge  + Architecture  → Behaviour 

 

Each set of constraints generally underspecifies behaviour in the absence of an explicit 

objective function.  Thus, the task environment alone affords a large space of possible 

behaviours; this space is further constrained by architecture constraints, For our present 

purposes, this space of possible behaviours represents the space of possible strategic 

variations and may be constrained yet further by knowledge constraints.  The objective 

function then selects a single surface in this subspace that represents the optimal set of 

possible behaviours satisfying the joint set of constraints. 

 

Obviously, an explanation in terms of objective and environment (i.e. a rational analysis) 

is to be preferred to a bounded rational analysis on the grounds of parsimony.  Such 
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explanations are possible when the objective and the environment constraints alone yield 

a subspace of behaviours that corresponds with observed behaviour.  However, in many 

circumstances such explanations are not possible. 

 

2.2. A framework for representing theories as sets of constraints 

The second requirement is for a theoretical ontology that provides a language for 

expressing constraints on information processing mechanisms.  By definition, 

information processes receive, transform, and transmit information.  A process receives 

and transmits information from and to other processes.  We assume that in order for two 

processes to exchange information they must overlap in time, or each must overlap in 

time with a common mediating, or buffering process, which stores the information for 

some, perhaps very short, period of time.  McClelland (1979) introduced the hypothesis 

that information processes were cascaded, that is that they overlapped in time, and in 

addition that the quality of information passed from one process to another increased with 

time.  

 

Our version of cascade theory commits to the following assumptions: (1) Processes must 

overlap in time if they are to transfer information; (2) a process is executed by a 

processor (also known as a resource); (3) some function relates the accuracy of 

information produced to the duration since the process started (Howes, et al., 2004).  (It 

follows from 3 that a process has a minimum duration, before which no transmission 

occurs, and a maximum duration, after which no transmission occurs.) 
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In addition to a framework for representing the constraints on information flow we need 

some commitment to the process and processing capabilities of the human cognitive 

architecture.  What processes characterize human cognition?  What kinds of processors 

are they executed by?  Here we are interested in an account in which information 

processing is conceived of in terms of an interacting set of processes each with defined 

resource requirements, temporal duration, and input/output characteristics. As a starting 

point we take Card, Moran, and Newell’s (1983) Model-Human Processor (MHP).  The 

representation of processes abstracts over representation and algorithm.  For the purposes 

of explaining behaviour it is not always necessary to define the precise mapping between 

input and output representations of individual processes.  It is sufficient for example to 

state that a stimulus is perceived and that a response is retrieved in some mean time with 

some standard deviation. 

 

2.3. Calculating the implications of constraints on behaviour 

The third requirement is for a language in which constraints on human information 

processing (Section 2.2) can be specified in a computable form and the implications for 

the asymptotic bound on performance calculated.   

 

The fact that human performance depends on a multiplicity of complex interacting 

constraints deriving from the environment, from the human cognitive architecture, and 

from knowledge makes calculating the implications of constraints difficult. Skilled 

performance of a routine task usually involves the execution of a number of parallel but 

interdependent streams of activity: For example, one hand may move to a mouse; while 
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the other finishes typing a word; and the eyes begin to fixate on a menu while the 

required menu label is retrieved from memory.  Each of these processes takes a few 

hundred milliseconds, but together they form behaviours that take many seconds.  

Importantly, the details of how processes are scheduled has significant consequences for 

the overall time and resource requirements.  

 

Vera et al. (2004) proposed that one response is to represent theories as sets of constraints 

using a predicate calculus constraint logic.  A constraint is simply a logical relation 

between variables.  Constraint satisfaction has the potential to provide a formal 

framework for the specification of theories of interactive cognition, and thereby for the 

construction of mathematically rigorous tools for supporting the prediction of the bounds 

that the constraints imply for adaptation.  Of central importance is the fact that constraints 

are declarative and additive.  They are declarative in that relationships between variables 

can be stated in the absence of a mechanism for computing the relationship.  They are 

additive in the sense that the order in which constraints are specified does not matter.  

These properties should allow theoretical assumptions to be expressed in a computable 

form that is relatively independent of the arbitrary constraints that are sometimes imposed 

by the machine, or software algorithms, with which computation is conducted. 

 

The fact that constraints allow the specification of what is to be computed without 

specification of how the computation is carried out (the algorithm), means that 

considerable flexibility is enabled in the desired properties of the schedule. Importantly, it 

does not matter which algorithm is used to derive the optimal solution (as long as it 
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works!).  It happens that our previous work has made use of a branch-and-bound 

algorithm (Howes et al., 2004; Vera et al., 2004) but tools based on dynamic 

programming or whatever other algorithm would do just as well. Similarly, Monte Carlo 

simulation can be used to generate an estimate of the optimal adaptation as long as care is 

taken to search the space of possible strategies within which the optimal solution in 

located.   

 

The point of our paper is not to argue for the value of a particular optimisation algorithm 

but to argue for the scientific utility of considering the relationship between the optimum 

under constraints and the empirically observed asymptote.  From the perspective of the 

scientific aims, the set of possible optimal solutions is defined precisely by the payoff 

function (the objective) and by the set of (declarative) constraints: There is no need to 

specify the optimization algorithm in order to specify a theory; the optimization 

algorithm is simply the means by which one derives the implications of the theory. 

 

3. Example: Constraints on dual task performance 

Consider how we might predict performance on simple Psychological Refractory Period 

(PDP) tasks.  For example, in Schumacher et al.’s (1999) experiment 3 participants were 

required to respond to a tone and a visual pattern (simple or complex) with key presses 

that depended on whether the tone was high or low and whether the pattern contained a 

particular feature.  The tone and the pattern were presented with a small gap of between 

50 and 1000ms (Stimulus Onset Asynchrony - SOA).  Participants were asked to 

prioritize the tone task (task 1) over the pattern task (task 2).  The tone task response 
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times were, on average, unaffected by SOA. In contrast, the mean pattern task response 

time, at a short SOA (50ms), was less than the sum of the tone task and pattern response 

times at long SOAs (> 500ms). This finding has been taken as evidence that some 

elements of tone and pattern task were performed in parallel at short SOAs.  Byrne and 

Anderson were interested in modelling Schumacher’s data using ACT-R/PM in order to 

demonstrate that cognitive parallelism is not required to explain these results.  They 

argued that the results can be modeled with either the EPIC or ACT-R/PM assumptions 

and that Schumacher’s data provides evidence for strategic deferment of the pattern task 

response. 

 

3.1. Optimizing over the statistics of interaction 

Our previous work, Howes et al. (2004), demonstrated the potential analytic role of 

optimization (as described in Section 2 of this chapter) in exploring the space of possible 

adaptations.  What it did not do was articulate how constraint analyses can be used to 

explore how people adapt to the statistics of interaction with an uncertain environment 

and with uncertainty in the duration of internal processes. One such adaptation is required 

in the PRP task where participants need to ensure the ordering of task 1 and task 2 

responses despite fluctuations in the durations of each response.  Here we develop a 

constraint model of a generic PRP task and describe its predictions. 

 

Asked to respond as quickly as possible to a single stimulus an individual will produce a 

range of approximately normally distributed responses. In a dual task situation, such as 

the psychological refractory period task, each response has its own distribution.  If in the 
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dual task situation there is some benefit, a gain, from responding rapidly and some cost to 

making a response reversal, responding to task 2 (the pattern task) before task 1 (the tone 

task), then participants will weigh the costs and benefits of fast and slow responses.  

Parameterised with the response means for individual responses, their standard 

deviations, and estimates of the costs and benefits of the space of possible behaviours, an 

adequate theory of the human cognitive architecture must predict the asymptotic mean 

and standard deviations of the response times in a dual task scenario. 

 

Imagine an architecture A’ in which there are no mechanisms by which the processing of 

task 1 can influence the processing of task 2.  That is there are no necessary task 

interactions and no shared cognitive or perceptual/motor resources.  How do we test 

whether A’ can predict and explain performance on a PRP task?  According to the 

assumptions of our framework we need to determine whether the best possible 

performance predicted by the architecture corresponds to the asymptotic human 

performance. If the processing for each task is entirely independent then the extent to 

which the response distributions overlap will determine the frequency with which 

response reversals occur.  If participants intend to avoid response reversals then a strategy 

is required.  In the case of the very simple architecture A’ the only strategy available that 

mitigates against response reversals is to delay the response to task 2.  By delay we mean 

to wait a fixed, trial independent, amount of time that is added to what would otherwise 

be required to make the task 2 response.  This simple strategy will temporally separate 

the task 1 and task 2 response distributions.   
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If the best available strategy is to delay the task 2 response then the next question is by 

how much?  If we know what the payoff function is for participants (i.e. how much they 

gain for a correct response and how much they lose for a response reversal) then we can 

derive exactly the optimal amount of time to delay response 2.  According to the theory, a 

participant should select a value to delay task 2 that is consistent with the constraints and 

which maximizes the value of the payoff.   

 

We can specify the constraints and the objective function (the payoff) for different values 

of the delay as a constraint model.  However, rather than fixed durations, here we sample 

duration from a normal probability distribution. 

 

Constraints 

 

 SOA in { SOAmin... SOAmax  } 

 RT1i = normal( M1, SD1  ) 

 RT2i = normal( M2, SD2 ) + DELAY 

 

In addition to the constraints, the objective captures a speed/accuracy trade-off between 

going fast and avoiding response reversals. The payoff for a trial is the gain minus the 

total time cost and minus the cost of reversal.  The time cost is defined as a weight times 

the duration of the latest of the two responses.  The cost of reversal is defined as some 

weight times 1 if a response reversal occurred and 0 otherwise.  Higher values of the 

strategically set delay variable will tend to decrease the proportion of response reversals 

but at the cost of increasing the total time required to perform the task. 
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Payoff: For trials 1 to N, 

 

Average Payoff = ( ∑i=1 to N : GAIN – Ct - Cr ) / N   - (1) 

 

Time cost Ct = Wn x max(RT1i, (SOA + RT2i ))) 

 

Cost of reversal Cr = Wm x  f( SOA + RT2i – RT1i )) 

 

 f( X > 0 ) =  0 

 f( X =< 0 ) = 1 

 

Despite the simplicity of this model, to our knowledge none of the reported PRP data sets 

are suitable for testing its validity.  While some experiments, such as those reported by 

Schumacher et al. (1999), were controlled for the cost/benefit trade-off between a fast 

response and a response reversal, neither the payoff achieved by participants, nor details 

of standard deviations and reversals rates are reported.  

 

The constraint model makes predictions dual task performance given parameters 

determined from single task performance.  What needs to be calculated is a prediction of 

the asymptotic performance time and error rate at short SOAs given (a) mean and 

standard deviations of performance time at long SOAs and (b) an experimental paradigm 

in which participants are subject to a payoff regime enforcing a trade-off between RT and 

rate of response reversal.  Importantly, in order to test the model, each trial would take a 

fixed amount of time independently of the response time.  This assumption eliminates the 
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additional benefit of a rapid response, beyond the reward that determines the weightings 

in the objective function, though other payoff regimes are possible.   

 

Calculation of the optimal value of the task 2 delay requires Monte Carlo simulations for 

each potential duration.  The payoff achieved on each trial can then be aggregated to give 

a total payoff for each possible strategy (value of the delay).  For A’ there will be an N-

shaped relationship between duration of delay and payoff.  The optimal performance 

(maximal payoff) implied by A’, and therefore the predicted asymptote on human 

performance, given task environment, constraints, and payoff function will correspond to 

the peak of this curve.  

 

Note that unlike in model fitting methodologies (e.g. as used in Meyer and Kieras (1997) 

to determine the length of the defer process) we are not proposing to choose a value of 

the delay parameter so that the model fits the data.  Rather we are claiming that the model 

predicts that participants will delay task 2 by a particular duration (the optimal duration 

of the delay process), subject to an estimable confidence interval, and given only 

parameters set from single task performance.  If at asymptote participants delay by more 

or less than the predicted duration then the A’ theory is wrong or at least incomplete. To 

the extent that the theory cannot be successfully modified by adding or removing 

constraints, we have learned something interesting about the limits on the mechanisms of 

adaptation. 
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3.2. Discussion 

The example that we have developed above demonstrates a method for calculating the 

asymptotic bound predicted by a theory.  However, the constraints are based on overly 

simplistic assumptions about the internal processing mechanisms.   Calculating the 

implications of more elaborate theories such as Byrne and Anderson’s (2001) or Meyer 

and Kieras’s (1997) over the statistics of interactive behaviour requires constraint models 

such as those developed in Howes et al. (2004). 

 

Comparison of the predicted asymptote to the observed asymptote provides a test of the 

adequacy of the theory.  If people do not perform as well as the predicted asymptote then 

the implication is that the theory is under-constrained.  If people perform better than the 

predicted asymptote then the implication is that the theory is over-constrained.  It follows 

that there is no role for the notion of suboptimality within the explanatory framework that 

we have described.  If global maxima are discoverable and if optimality is defined 

relative to the entire set of constraints and the objective function rather than relative to 

the task and environment only then the extent to which the optimal performance 

corresponds to the asymptotic human behaviour is a measure of the goodness of the 

theory, not of the suboptimality of the human behaviour. 

 

4. General Discussion 

We have sketched the requirements for an approach to explaining behaviour that 

emphasises the importance of explanations in terms of the optimal behaviour given not 

only descriptions of the objective and environment but also descriptions of the human 
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cognitive architecture and knowledge. We illustrated the approach with a model of 

strategic processing in Psychological Refractory Period (PRP) tasks.  The model made 

limited assumptions about response variance and we described how a prediction of dual-

task response separation given an objective function that traded time taken against 

response reversal could be derived.  We claimed that a theory could be said to explain the 

data if it could be established that there was substantial correspondence between the 

optimal performance implied by the theory and the asymptotic performance observed in 

human behaviour.  In the remainder of the general discussion we (a) describe related work; 

(b) describe how to design experiments that provide data amenable to constraint-based 

explanations; (c) reflect further on how a bounded rational analysis complements rational 

analysis (Anderson, 1990). 

 

Related Work 

The approach to explaining cognition that we have discussed was motivated in part by 

Roberts and Pashler (2000) and also by Kieras and Meyer (2000).  Both have observed 

the potential problems with failing to explore the contribution of strategies and 

architectural constraints to the range of possible models of human performance. Kieras 

and Meyer (2000) responded by proposing the use of a bracketing heuristic.  A bracket 

was defined by the speed of the fastest-possible strategy for the task, and the slowest-

reasonable strategy.  Kieras and Meyer predicted that observed performance should fall 

somewhere between the performance of these two strategies. They also articulated the 
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importance of exploring the space of strategies to explaining the phenomena being 

modeled.  While there are similarities, there are two differences to our approach.   First 

Kieras and Meyer (2000) focused on bracketing the speed of strategies rather than their 

payoff.  Second, they saw bracketing as a means of coping with the problem that 

optimisations cannot be forecast. Kieras et al. state that bracketing was a way to 

construct, “truly predictive models in complex task domains where the optional strategy 

optimizations users would devise cannot be forecast.”... (p. 131). 

 

Others have also used analyses of optimal performance to bracket predictions.   There is 

a long and active tradition in analyses of optimal performance in psychophysics (Swets, 

Tanner, Birdsall, 1961; Trommershäuser, Maloney and Landy, 2003; Geisler, 2003).  

More recently authors such as Kieras and Meyer, (2000) and Neth, Sims, Veksler and 

Gray (2004) have contrasted human performance to optimal performance on more 

complex cognitive tasks.  Neth et al. (2004) used analysis of the best possible 

performance given a particular strategy to predict a bracket for behaviour on a decision 

making task.  Others, for example Fu and Gray (2004) and O’Hara and Payne (1998), 

have exposed apparent suboptimalities in behaviour and sometimes offered explanations 

that allow those behaviours to be interpreted as rational adaptations given additional 

constraints. 

 

Exploring optimality criteria has been particularly fruitful in psychophysics.  An Ideal 

Observer Theory is a computational theory of how to perform a perceptual/cognitive task 
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optimally given properties of the environment and the costs/benefits associated with 

different outcomes (Geisler and Diehl, 2003).  However, Geisler and Diehl (2003) state: 

"While ideal observer theory provides an appropriate benchmark for evaluating 

perceptual and cognitive systems, it will not, in general, accurately predict the design and 

performance of real systems, which are limited by a number of factors..."  Also, Geisler 

(2003): "Organisms generally do not perform optimally, and hence one should not think 

of an ideal observer as a potentially realistic model of the actual performance of the 

organism. " Geisler and Diehl (2003) particularly focus on the fact that the real observer 

may correspond to a local maximum in the space of possible solutions, whereas the ideal 

observer corresponds to the global maximum.   The Ideal Observer corresponds to Marr’s 

computational theory and is a theory of what the organism should compute given the task 

and stimuli (Geisler and Diehl, 2003), not what it is rational to compute given the entire 

set of constraints. 

 

Kieras and Meyer (2000) and Geisler and Diehl (2003) may be right, in general, to be 

pessimistic about the prevalence of task domains in which it is possible to forecast 

people’s strategy optimizations.  However, if task domains where it is possible can be 

identified and if it is accepted that architectures show through at the limit, particularly 

when resources are limited (Norman and Bobrow, 1975, 1976), then these task domains 

may be particularly useful for evaluating theories of the human cognitive architecture: The 

optimal solution given the theory can be taken as a forecast of the asymptote.  In 

addition, Kieras and Meyer’s view may have been influenced by the lack of available 
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techniques for calculating the optimal solution given a complex and heterogeneous set of 

constraints on information processing models.  Our previous work (Howes, Vera, Lewis, 

McCurdy, 2004; Vera, Howes, McCurdy, Lewis, 2004) has articulated general purpose 

analytic techniques for predicting strategy optimizations.  

 

Experimental Methodology 

The predictions made by the analyses could not be tested against results from 

experiments that failed to control for the trade-off between speed and accuracy.  

Unfortunately, despite the work of Meyer and Kieras (1997) the absence of controls on 

speed/accuracy trade-offs is wide spread in experimental cognitive psychology.  With a 

few exceptions, error rates tend to be dismissed as small or are excluded from analysis 

presumably motivated by the view that they are an aberration, just noise that distracts 

from the main picture.  The reality is that human adaptation to the objective function 

within the limits set by the constraints is pervasive.  People adapt enthusiastically and 

continuously (Charman and Howes, 2003).  They adapt tasks that take hundreds of 

seconds to complete and they adapt tasks that take hundreds of milliseconds to complete.  

To understand this adaptation it is critical to fully understand the objective to which 

participants are adapting.   

 

Knowing what the participant was instructed is probably not sufficient (Kieras and 

Meyer, 2000).  Participants do not merely do what they are told to do, rather they 
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interpret instructions to generate objective functions that are consistent with longer-term 

traits. A challenge is to find experimental paradigms for resource-limited tasks that expose 

participant’s objective functions and thereby support the rigorous calculation of the 

predicted asymptote.  While the work of Trommershäuser, Maloney and Landy, (2003) 

provides an example of what can be done for pointing tasks, more needs to be done for 

tasks that involve sequential ordering. 

 

Bounding Rational Analysis 

The role of optimality criteria in cognitive science has been controversial.  Indeed, one 

objection to our approach might be: People do not optimise, they satisfice.   The critique 

would seem consistent with Simon’s critique of the assumption that people make optimal 

economic decisions (Simon, 1957).  But this would be to miss the fundamental distinction 

between the idea that Simon rejected (i.e. the hypothesis that people are optimally 

adapted to the environment) and the idea proposed in this article: That given the adaptive 

nature of human cognition, an explanation of behaviour must explain why people do not 

do better than they do.  It must explain the approach to the asymptote in terms of the 

implications of psychological bounds.  Despite a shared value in determining optimal 

adaptations, the approach that we have described is not rational analysis.  Where 

Anderson emphasised optimality in terms of the task and environment, the approach that 

we have articulated gives equal emphasis to constraints on architecture and knowledge. 

Our approach is more closely aligned with Simon (1992) who emphasised the need to 
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investigate the side conditions that place limits on the approach to the optimum.   

 

In fact, to the extent that predictions made through optimisation are constrained by 

hypotheses concerning internal processing limits, the predictions are not optimal relative 

to the goal and environment.  Our approach is therefore consistent with Simon’s reminder 

that explaining behaviour requires reference to internal processing limits and capabilities 

and it is consistent with the idea that people satisfice.  The challenge that we are 

addressing could be characterised, perhaps, as how to precisely articulate what it means 

to satisfice. 

 

We also expect that there are many task environments where incremental improvement is 

unlikely to lead to an optimal solution.  In these cases suboptimal performance may result 

from too many local maxima.  Here incremental improvement may lead to an asymptote 

but not the asymptote that corresponds to the optimal solution given the theory.   

 

In general, task environments where the optimal solution is within the grasp of 

incremental improvement may be more suitable for evaluating the consequences of 

theories of psychological resources for the asymptotic bound on the adaptation of 

behaviour.  For these environments, the absence of a correspondence between the 

optimum implied by a theory and the behavioural asymptote is evidence for the 

inadequacy of the theory.  In contrast, in task environments where the optimal solution is 

unlikely to be generated incrementally, the absence of correspondence could be due to 
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either the shape (availability of local maxima) of the task environment or to the 

inadequacy of the theory.  Behaviour in these task environments is unlikely to offer a 

good basis for empirical tests of a theory of what bounds adaptation. 

 

Analyses similar to that which we have described in this paper could assist the 

development of rigorous answers to questions of optimality and therefore rationality in 

interactive cognitive skill.  Questions have been raised by a number of authors about the 

extent to which people make optimal adaptations (Fu and Gray, 2004; Gray and Boehm-

Davis, 2000; Taatgen, 2005).  First, to explain cognition, optimality must take into 

account constraints on architecture and knowledge, not only constraints on the 

environment.  Second, a claim that behaviour is suboptimal or biased, or that it is not 

rational, does not explain behaviour.  A claim of suboptimality carries little content in the 

absence of an explicit theory of what is optimal, and a means for calculating the 

implications of that theory. An apparent suboptimality raises the question as to what 

modification is required to the theory so as to align the predicted performance bound with 

the empirically observed asymptotic bound.  

 

Conclusion 

To conclude, we have argued that neither rational analysis nor computational simulation 

are sufficient approaches to explaining cognition.  Another promising approach may be to 

test for correspondence between theories of optimal performance given both 
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environmental and psychological constraints, and empirically observed asymptotic 

bounds in particular task environments.  Such an approach requires not only theories of 

the constraints imposed by the task environment but also theories of the constraints 

imposed by the cognitive architecture and by knowledge, it not only requires exploration 

of the trajectories through the space of possible adaptations but also systematic analysis 

of the bounds on that space. 
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