
BIT21 (1981), 203-211

B O U N D I N G S O L U T I O N S O F S Y S T E M S O F

E Q U A T I O N S U S I N G I N T E R V A L A N A L Y S I S

ELDON HANSEN and SAUMYENDRA SENGUPTA

Abstract.
We introduce some variations of the interval Newton method for bounding solutions to

a set of n nonlinear equations. It is pointed out that previous implementations of
Krawczyk's method are very inefficient and an improved version is given. A superior type
of Newton method is introduced.

1. Introduction.

Given a vector f = (fl f .) r of n real, nonlinear functions of a real vector x
= (x 1 Xn) r, we consider some Newton-like methods for finding and bounding
solutions to

(1.1) f (x) = O.

These methods use interval analysis to obtain error bounds on the solutions.
One such method due to Krawczyk [9] is discussed in detail. It is shown that

previous implementations of this method are very inefficient, and an improved
version is given. We shall also introduce a new method which is faster than the
Krawczyk method even in the improved version we develop.

We assume the reader is familiar with interval analysis. Any relevant concepts
not defined here are discussed in [10].

2. A survey of interval Newton methods.

R. E. Moore [10] first introduced an interval analytic method for finding and
bounding a solution y of (1.1). Let x be an approximate solution. Using Taylor 's
theorem and expanding f (y) about x, we obtain

(2.1) f (x) + J ({) (y - x) = f (y) = 0

where J({) is the Jacobian evaluated at a point {. Moore observed that if X is an
interval vector containing both x and y, then { • X. Hence, he replaced J (0 in
(2.1) by the interval matrix J(X). The set (say Z) of points z satisfying

(2.2) f (x) + a (X) (z - x) = 0

contains y. For simplicity, we assume x is the midpoint of X.

Received October 20, 1980.

204 ELDON HANSEN AND SAUMYENDRA SENGUPTA

The size of the set Z depends on the widths of the intet;,val elements of J(X).
Hansen [2], [4] showed that by writing the Taylor expansion of f (x) in an
appropriate way, the widths of these interval elements could be substantially
reduced. This reduces the size of Z and speeds convergence of t heNewton
methods.

We would like to know the set Z. However, as pointed out by Hansen [3], this
set can be difficult to represent. Instead, interval Newton methods find a box
(interval vector) containing Z. Geometrically it is a parallelepiped with sides
parallel to the coordinate axes and thus easy to describe.

The first interval Newton method introduced by Moore [10] involved finding a
kind of inverse of the interval matrix J(X). That is, it required an interval matrix
M containing J - i for every real (i.e., non-interval) matrix J e J (X) and assumes
that each such J is nonsingular. For the new method described below, this
nonsingularity is not necessary.

Hansen [2] pointed out that it is not necessary to find an interval inverse in
order to solve the linear equations in an interval Newton method. Instead, a
Gaussian elimination procedure could be used as in the real counterpart. Define
Jc to be the center of J(X), i.e. each element of Jc is the midpoint of the
corresponding interval element of J(X). Hansen and Smith [6] showed that a set
of linear algebraic equations such as (2.2) with interval coefficients is best solved
by first premultiplying (2.2) by an approximate inverse of J~. Let B be this
approximation. We thus rewrite (2.2) as

(2.3) By(x) + B J (X) (z - x) = O .

The products Bf(x) and BJ(X) are computed in interval arithmetic to bound
rounding errors.

Krawczyk [9] introduced a variation of the interval Newton method which
avoided the Gaussian elimination of an interval matrix by not attempting to
obtain a sharp solution of (2.3). Thus he computes the box

(2.4) K(X) = x - By(x) + [I - BJ(X)] (X - x) .

This box contains every solution of (2.2). In effect, this solves (approximately) the
ith equation of (2.3) for a bound K~(X) on the ith component of the solution set Z.

This is a kind of simultaneous iteration. We shall see that a corresponding
successive iteration can be used which greatly improves convergence. Successive
iteration is also used in our improved method.

3. The Krawezyk method.

As pointed out in Section 2, the Krawczyk method involves computation of the
box K(X) given by (2.4). If a solution y of (1.1) is contained in a box X, then it is
also corttained in K (X) (see [9]). Since K(X) may not be contained in X, we use
the iteration

BOUNDING SOLUTIONS OF SYSTEMS... 2 0 5

X ti+l> = X ~° N K (X ~°) (i=0, I ,2)

where the initial box X ~°~ is given.
As described by Krawczyk and others (e.g., see [,11"1, and [,,123) who have used

this method, it is a method of simultaneous iteration. However, convergence is
improved if it is used in a successive iteration mode. Thus, a component Ki
(i= 1 n) of K(X) should be computed as

i - 1

(3.1) K i = xi -gi 'q- ~ R i j (g) - x j) ' q - Ri~(X~-xj)
j=l j=i

where

g = Bf(x), R = I - B J (X) , K~ = Kj fl X~.

Note that we find the intersection K~ of Kj and X~ as soon as K i is found using the
best currently available data.

It might appear as if another modification of the Krawczyk method could be
useful. As described by previous authors, the matrix

g = I - B J (X)

is computed explicitly. This involves computing the matrix product BJ(X). But we
need only R (X - x) which could be obtained as

R (x - x) = x - x - B J (X) (X - x)

where J (X) (X - x) is computed first. This procedure would involve multiplying a
vector by a matrix (twice) but not a matrix by a matrix and hence involving fewer
operations.

Unfortunately, this more efficient calculation tends to increase the number of
iterations necessary to obtain a solution of prescribed accuracy. We can see this as
follows.

Since xj (j= 1 n) is the midpoint of Xj, we can write

X j - x i = ½wj[- 1, 1]

where w~ is the width of X~. Therefore

[,J (x) ix - x)]i = ~ [J (x)],~(x - x)~
j = l

= ½ [- 1,1] ~ l[,J(g)lolwj.
j = l

Here we have used the absolute value of an interval which is defined as follows.
If V=[,vl,v2] , then IVI =max @11, Ivzl). When we multiply J (X) (X - x) by B, we

find the kth element of the result

(3.2) [,BJ (X) (X-x)] k : ½[- 1,1] Z Ibu[~. IU(X)q~+lw+.
i = I j = l

BIT 21--14

206 ELDON HANSEN AND SAUMYENDRA SENGUPTA

If, instead, we compute BJ(X) first, we obtain

~ bki[J(X)]ij [BJ(X)(X-x)] k = ½ [- 1, 1] wj.
j = l i = 1

This result is obviously a narrower interval in general than that given by (3.2).
In the problems of low dimension on which we have tried these options, it was

more efficient overall to compute the matrix product BJ (X) explicitly. However,
this may not be the case for large problems.

4. A more efficient method.

In each iteration of the Krawczyk method the box K(X) is computed (see
(2.4)). This box bounds the solution set of the linearized equation (2.3). However,
it is not the smallest such box. We now present a method which also bounds the
solution to (2.3). However, the box which it obtains is generally smaller than
K(X). Since each iteration of our method tends to produce a greater reduction of
the current box than does Krawczyk's method, fewer steps are required for
numerical convergence.

Denote g=Bf(x) and P=BJ(X) so that equation (2.3) becomes

(4.1) g + P (z - x) = O.

Hopefully, P closely approximates the identity matrix. Thus, we simply solve the
ith equation for the ith variable and replace the others by bounding intervals. As
in our improved version of the Krawczyk method, we use successive iteration. In
effect, the Krawczyk method adds the term (P u - 1) (Xi-x~) before solving
which widens the resulting interval.

Write the interval matrix P as

(4.2) P = L + D + U

where the matrices L, D, and U are lower triangular, diagonal, and upper
triangular, respectively. Our approximate solution X' is obtained as

(4.3) Y = x - D - l [g + L (X ' - x) + U(X-x)] , X' = Y f) S .

As each new component Yi (i = 1 n) is obtained, it is immediately intersected
with X~ so that the newest result X'~ = Y~ n X~ can be used in finding Y~ + 1 , I1,.

Thus we compute componentwise, for i= 1 n,

(4.4a) Yi = x~- (D.) - 1 g~ + ~ pi~(X)_ xj) + Pi i (Xj- xi) ,
j = l j = i + l

(4.4b) X'~ = Yi fq X, .

Note that even though P is supposed to approximate the identity matrix, it is
possible for an interval D u to contain zero for one or more values of i. This creates

B O U N D I N G S O L U T I O N S O F S Y S T E M S . . . 207

no real difficulty and we simply use extended interval arithmetic to compute Y~
from (4.4a). The intersection (4.4b) then produces a finite result. We give the
details below.

In [5], Hansen derived a globally convergent, one-dimensional interval Newton
method using extended interval arithmetic. At the time of publication of that
paper, he was unaware that extended interval arithmetic had already been used in
the interval Newton method by Alefeld [1].

We now consider the computational details when D~i contains zero. We make
use of extended interval arithmetic as introduced by Hanson [7] and by Kahan
[8].

Let A = [al, a2] and B = [b 1, b2] be finite intervals. If B does not contain zero,
we can divide A by B using ordinary interval arithmetic. The resulting interval is
the set

{a/b: a e A, b e B} .

We want this same set in the extended case. When 0 e B we have the following
cases:

[a2/bl, + ~] if a 2 < 0 and b 2 = 0 ,

[-~x~,a2/b2] U [a2/b 1, + ~] if a2<0, b l < 0 , and b 2 > 0 ,

[- cx), a2/b2] if a 2 < 0 and b 1 = 0 ,

(4.5) A/B = [- ~ , a l / b l] if a l > 0 and b 2 = 0 ,

[- c ~ , a l / b l] U [al/b2, +c~] if a l > 0 , b l < 0 , and b 2 > 0 ,

[al/b2, +c~] if a l > 0 and b l = 0 ,

[- ~ , + c x ~] if a 1 < 0 and a 2 > 0 .

The computation of Y~ from (4.4a) can be completed using (4.5) and the following

rules of extended interval arithmetic:

x i - [c~, + ~] = [- co, x ~ - c d ,

x i - [- c~, d J = [x i - d i, ~] ,

x ~ - [- ~ , o o] = [- ~ , o o] ,

x i - [- oo, di] LJ [ci, + cxD] = [- c<), xi - c,] U [x , - di, ~] •

5. Convergence.
The iteration defined by (4.3) is

(5.1) y(k) = x (k) _ (D (k)) - l [g (k) d _ L (k) (x (k + l) _ x (k)) q _ u (k) (x (k) _ x (k))]

x(k+l) = ytk) A X (k) (k=0 ,1 ,2 ) .

208 ELDON HANSEN AND SAUMYENDRA SENGUPTA

In this section, we prove that this algorithm converges under appropriate
conditions. To this end, denote

~k = max w(Xlk)), 6 k = max IP~ k)- 1[, Ok = max ~ IP~k)l
j = l
j * i

where each maximum is for i= 1 , n and w(Xl k)) denotes the width of XI k).

THEOREM. I f f has a single simple zero x* in X (°) and i f f o r some k=0, 1,2 the

conditions 6k<2/3 ½ - 1 and Ok< (1--6)/2 hold, then X tk) ~-~ x*.

If w (X tk)) is sufficiently small, the conditions on 6 k and Qk will hold. In fact, if
X tk) were a single point, we would have 6 k = Qk = 0. Since w(Ji~(X))= 0 (w(X)) (see
[10]), 6 k and Qk are arbitrarily small for w (X tk)) sufficiently small.

From the derivation of our algorithm, it follows that x * ~ X tk) for all k
= 0, 1, 2 since x* ~ X C°). We use this fact in the following proof of the theorem.

Note that X ~k + 1) c X ~k) so that if we replace X ~k + 1) by X ~k) in the right member
of (5.1), the result contains ytk). Since x tk) is the midpoint of X tk),

= ½w(X k)E- 1,12 = 1,1] - - y~j

Therefore from (5.1)

j = l
j * l

. (k) c ~i - {g t k)+½~kOk[- 1, 1]}/[-1 --6, 1 .+ 6]

for i = 1 n, from which w (Y l kJ) < Igtk)126k/(1 -- 62) + ~ROk/(1 -- 6).

If we e x p a n d f (x Ck)) about x*, then in the same way we obtained equation (2.3), we
find gtk) ~ ptk)(xtk)_ X*). Replacing the point x* by X tk) which contains it, we can
proceed as before and obtain

gtk) ~ ½~k(1 +6k+Qk) [-- 1, 1] .

Using this result and the hypotheses of the theorem, we find from (5.2) that

w (YI k)) < o~ k .

That is, the widest interval component of ytk) (and hence of X tk+ 1)) is strictly less
than that of X tk).

Because of the inclusion monotonicity of interval arithmetic, ptk+l) will be
contained in ptk~ for all k=0 ,1 ,2 This implies that 6 k and 0k are
monotonically decreasing with k. Therefore if the hypotheses of the theorem are
satisfied for any specific k, they are satisfied for all larger values of k. Hence X tk + 1)

is strictly contained in X tk) for all sufficiently large k. This completes the proof. |

BOUNDING SOLUTIONS OF SYSTEMS... 209

6. A simplification.
When 0 ~ D,, it is possible for X'i to be composed of two disjoint intervals. If

this were the case for all i= 1 , . . . , n, the box X' would be composed of 2" disjoint
boxes. We wish to prevent the number of boxes from getting large in this way.
Also, if X~ is composed of two intervals, we do not wish to have to use each
separately to find X'~ for i > j . We now consider how to simplify the computations
and reduce the number of boxes generated.

If X) is composed of two intervals, we do not use X) in (4.4a) when computing
X'i. Instead, we simply use the single interval X r

If X~ is composed of two intervals for more than one value of i, we replace X~
by X i for only one value of i. Thus X' will be composed of only two boxes. We

choose the particular value of i by retaining the intervals with the largest gap.
Let I denote the set of values of i for which X'g is two disjoint intervals. For i e I,

denote
X'i = [ai, bi] U [c i, di] •

The gap between the disjoint intervals [a~, bi] and [c i, dJ is of length c ~ - bi. (We
are free to assume that b~ < ci.) Let j be the index of the largest gap so that

c j - b~ > c i - b i

for all i ~ I. Then we use X) but we use X~ rather than X'~ for the other values of
i E I. Thus the new set X' will be composed of two boxes; one whose j th
component is [at, bj] and one whose j th component is [c j, d~]. The components of
the two boxes is the same for all i #j .

7. Multiple boxes.
When applying an interval Newton method, we are usually interested in finding

the solution(s) of (1.1) in a given box X t°~. It can happen that little or no progress
is made in reducing the size of the current box during a step of the method. In this
case, it is common practice to divide the box in half (say) and apply the algorithm
to each sub-box separately. Thus, our method introduces no new aspect as far as
the multiplidty of boxes is concerned. A novelty occurs in that if distinct solutions
occur in X ~°~, our method tends to split a box automatically into sub-boxes with
each solution in a separate box. Using extended interval arithmetic, it is much less
frequently necessary to split a box simply because of lack of progress.

8. Experimental results.
We have compared our method to the improved version of the Krawczyk

method described in Section 3. The computational effort to perform a step of each
method is about the same. Hence only the number of steps is reported and no
timing is given. In the experiments, our method has always required fewer
iterations than Krawczyk's to achieve numerical convergence. Our experience is
restricted to problems of low dimension but we believe our method is superior for
higher dimensions also.

210 E L D O N HANSEN AND SAUMYENDRA SENGUPTA

We have also compared these methods with the methods suggested by Hansen
[2] in which equation (2.3) is solved by Gaussian elimination. The latter method
was not competitive in the few comparisons we made. Hence no numerical results
are given for it.

In Table 1, we summarize some representative numerical results. In each case,
the iteration was terminated when the width of each final box bounding a solution
was less than 10 -6. The width, w, of a box with components Xi=[ai, bi]
(i= 1 , . . . , n) is defined to be

w = max (bi-ai).
l < i < = n

When the initial box contained more than one solution, each was found to this
accuracy.

Various functions were used in our experiments. The ones used to obtain the
results in Table 1, were as follows.

The first function, f l (x), was the gradient of the so-called three hump camel
function which is a two-dimensional function that has been frequently used in
testing optimization programs. Its gradient is

f l (x) = [6 x : - 25"2x3 + 24x1-6x21
12x2 - 6x 1

The second and third functions were also two-dimensional. The components are
the real and imaginary parts of the polynomials

(z2-4i)(z-l.7) = 0 and (z2-4i) 2 = 0

so that the functions were

3xlx , - 1.7x + 1.7x +4x2 7
A(x) = [x3_3x~x2+3.4xlx2+4xl_6.8j and

[xl 4 2 2 4 - 6xxx2 + x2 + 16xlx2-16q
3 3 2 2 " fa(x) [_ 4xtx2-4xlx2-8xx +8x2 [

The fourth function was designed to be easily programmable for arbitrary
dimension. It was chosen to be the gradient of the function

(x i - 1) 2+ 1-o~ x 2 .
i=1 i = 1

Different choices of the parameter ~ can make the problem "easy" or "difficult".
We chose ~=0.35 so that the number of iterations to solve the problem was
moderately small. The gradient has components

[f4(x)] i = 0.6x~-2+0.49x~ Z xa 2 (j = l ,n) .
i = 1

Table 1 shows numerical results for n = 2 and 5.

BOUNDING SOLUTIONS OF SYSTEMS... 211

N o t e tha t a large n u m b e r of steps was r e q u i r e d to b o u n d the mul t ip l e ze ro of

the func t i on fa(x). T h e ra te of c o n v e r g e n c e is l inear for b o t h me thods .

T h e e x p e r i m e n t s were d o n e on the H P 9 8 3 0 B c o m p u t e r .

T a b l e 1. A comparison o f methods.

Function

Number of steps
Initial interval Number of
(same for each solutions in

New Krawczyk
component) initial box

method method

f l [- - 2, 3] 5 36 134
"f2 [- 2, 2] 3 81 101
f3 [1, 2] 1 (double) 1025 1310
f4(n=2) [- 1 , 1] 1 4 5
f s (n=5) [- 1 , 1] 1 13 17

R E F E R E N C E S

1. G/Stz Alefeld, Intervallrechnung iiber den komplexen Zahlen und einige Anwendungen, doctoral
dissertation, University of Karlsruhe, 1968.

2. E. R. Hansen, On solving systems of equations using interval arithmetic, Math. Comp. 22 (1968),
374-384.

3. E. R. Hansen, On linear algebraic equations with interval coefficients. Topics in Interval Analysis, E.
R. Hansen, ed., Oxford University Press, London, 1969.

4. E. R. Hansen, Interval forms of Newton's method, Computing 20 (1978), 153-163.
5. E. R. Hansen, A globally convergent interval method for computing and bounding real roots, BIT 18

(1978), 415~$24.
6. E. R. Hansen, and R. R. Smith, Interval arithmetic in matrix computations, part II, SIAM Jour.

Numer. Anal. 4 (1967), 1-9.
7. Richard Hanson, Interval arithmetic as a closed arithmetic system on a computer, Jet Propulsion

Lab Report 197, June, 1968.
8. W. M. Kahan, A more complete interval arithmetic, Lecture notes for a summer course at the

University of Michigan, 1968.
9. R. Krawcz3/k, Newton-Algorithmen zur Bestimmung yon Nullstellen mit Fehlerschranken,

Computing 4 (1969), 187-201.
10. R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.
11. R. E. Moore, Methods and applications of interval analysis, SIAM, Philadelphia, 1979.
12. M. A. Wolfe, A modification of Krawczyk's algorithm, SIAM Jour. Numer. Anal. 17 (1980), 376-

379.

LOCKHEED MISSILES AND SPACE CO.
SUNNYVALE
CALIFORNIA
U.S.A.

DEPT~ OF PURE AND APPLIED MATHEMATICS
WASHINGTON STATE UNIVERSITY
PULLMAN, WASHINGTON
U.S.A.

