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Abstract: The paper deals with an important combinatorial parameter of a function class,
the Fat Shattering dimension. An important known result in statistical learning theory is that a
function class is distribution-free Probably Approximately Correct learnable if it has finite Fat
Shattering dimension on every scale.

As the main new result, we explore the construction of a new function class from a collection
of existing ones, obtained by forming compositions with a continuous logic connective (a uniformly
continuous function from the unit hypercube to the unit interval). Vidyasagar had proved that
such a composition function class has finite Fat Shattering dimension of all scales if the classes in
the original collection do; however, no estimates of the dimension were known. Using results by
Mendelson-Vershynin and Talagrand, we bound the Fat Shattering dimension of scale ε of this
new function class in terms of a sum of the Fat Shattering dimensions of the collection’s classes.

1 Introduction

In the area of statistical learning theory, the Probably Approximately Correct (PAC) learning
model formalizes the notion of learning by using sample data points to produce valid hypotheses
through algorithms.

Our main new result provides an upper bound on the Fat Shattering dimension of a
function class, which consists of functions from a domain X to the unit interval [0, 1], built
using a continuous logic connective. An introduction to PAC learning is included in the paper
to provide all the necessary prerequisites for stating our result. Hence, we first introduce the
PAC learning model applied to learning a concept class C, a collection of subsets of X, and
more generally, a function class F . We also explain the Vapnik-Chervonenkis and the Fat
Shattering dimensions and cover some known results relating learning under this model to
these dimensions.
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This paper involves mostly concepts from analysis and some concepts from probability
theory; the reader is recommended to have a good understanding of basic notions in measure
theory.

Outline of Paper

Section 2 provides a brief overview of measure theory and analysis. In Section 3, we give two
definitions of PAC learning, one for a concept class C and the other for a function class F .
Then, in Sections 4 and 5, we explore two combinatorial parameters, the Vapnik-Chervonenkis
(VC) dimension and the Fat Shattering dimension of scale ε, for C and F , respectively. We also
discuss how these dimensions relate to the PAC learnability of concept and function classes.

In Section 6, as the main original result of our research, given function classes F1, . . . ,Fk
and a “continuous logic connective” (that is, a continuous function u : [0, 1]k → [0, 1]), we
consider the construction of a new composition function class u(F1, . . . ,Fk), consisting of
functions u(f1, . . . , fk) defined by

u(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x))

for fi ∈ Fi. We then bound the Fat Shattering dimension of scale ε of this class in terms of a
sum of the Fat Shattering dimensions of scale δ(ε, k) of F1, . . . ,Fk, where δ(ε, k) only depends
on ε and k. There is a previously known analogous estimate for a composition of concept
classes built using a usual connective of classical logic [Vid97]. We deduce our new bound
using results from Mendelson-Vershynin and Talagrand.

In this paper, any propositions or examples given with proofs, unless mentioned otherwise,
are done by us and are independent of any sources.

2 Brief Overview of Measure Theory and Analysis

This section lists some definitions and results in measure theory and analysis, found in standard
textbooks, such as [Doo94], [Vid97], and [AC05], which are used in this paper.

Probability Spaces

A measurable space (X,S) is a set X equipped with a σ-algebra S, a non-empty collection of
subsets of X closed under complements and countable unions. If (X,S) and (Y, T ) are two
measurable spaces, a function f : X → Y is called measurable if f−1(T ) ∈ S for all T ∈ T .

Suppose (X,S) is a measurable space; a measure is a function µ : S → R+ = {r ∈ R :
r ≥ 0} satisfying µ(∅) = 0 and

µ

(⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai),

for every collection {Ai ∈ S : i ∈ N} of pairwise disjoint sets. The triple (X,S, µ) is called
a measure space. If in addition, µ satisfies µ(X) = 1, then µ is a probability measure and
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(X,S, µ) is called a probability space.
Given a probability space (X,S, µ), one can measure the difference between two subsets

A,B ∈ S of X by looking at their symmetric difference A4 B = (A ∪ B) \ (A ∩ B). More
generally, given two measurable functions f, g : X → [0, 1], one can look at the expected value
of their absolute difference by integrating with respect to µ:∫

X

|f(x)− g(x)| dµ(x).

This paper does not go into any details involving the Lebesgue integral nor does it discuss any
integrability or measurability issues; we assume that integration of measurable functions to
the real numbers, which is a measure space, makes sense and is linear and order-preserving.

Validating hypotheses in the PAC learning model uses the idea of measuring the symmetric
difference of two subsets of a probability space (X,S, µ) and calculating the expected value of
the difference of f, g : X → [0, 1]. The structure of metric spaces arises naturally from these
two notions.

Metric Spaces

A metric space (M,d) is a set M equipped with a metric d : M ×M → R+, which is symmetric
and satisfies the triangle inequality and the condition that d(m1,m2) = 0 if and only if
m1 = m2. Given a metric space (M,d), a metric sub-space of M (which is a metric space in
its own right) is a nonempty subset M ′ ⊆M equipped with the distance d|M′ , the restriction
of d to M ′.

A normed vector space (V, ρ) is a vector space V over R equipped with a norm ρ : V → R+

satisfying

1. ρ(v1) = 0 if and only if v1 = 0

2. ρ(rv1) = |r|ρ(v1)

3. ρ(v1 + v2) ≤ ρ(v1) + ρ(v2)

for all v1, v2 ∈ V and r ∈ R. The structure of a metric space exists in every normed vector
space since the function d : V × V → R+ defined by d(u, v) = ρ(u− v) is always a metric on
V . In this case, d is called the metric induced by the norm ρ on V .

The following subsection provides a few examples of metric spaces which will be encoun-
tered in this paper.

Examples of Metric Spaces

The real numbers (R, ρ), with the absolute value norm ρ(r) = |r| for r ∈ R, is a normed vector
space so R can be equipped with the metric d(r, r′) = ρ(r − r′) = |r − r′|. The unit interval
[0, 1] is a subset of R, so it is a metric sub-space of (R, d).

In addition, given a probability space (X,S, µ), the set V of all bounded measurable
functions from X to R is a vector space, with point-wise addition and scalar multiplication.
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The function ρ : V → R+ defined by

ρ(f) =

√(∫
X

(f(x))2dµ(x)

)
is a norm on V if any two functions f, g : X → R which agree on a subset of X with full
measure, µ({x ∈ X : f(x) = g(x)}) = 1, are identified via an equivalence relation. The norm
ρ is called the L2(µ) norm on V and we normally write ||f ||2 = ρ(f) for f ∈ V . As a result,
V can be turned into a metric space.

Example 2.1. Following the notations in the paragraph above, V is a metric space with distance
d defined by

d(f, g) = ||f − g||2 =

√(∫
X

(f(x)− g(x))2dµ(x)

)
.

Write [0, 1]X for the set of all measurable functions from a probability space (X,S, µ) to
[0, 1]. Then, it is a metric sub-space of V with distance induced by the L2(µ) norm on V ,
restricted of course to [0, 1]X .

Given metric spaces (M1, d1), . . . , (Mk, dk), their product M1 × . . . ×Mk always has a
natural metric structure, defined as follows.

Example 2.2. If (M1, d1), . . . , (Mk, dk) are metric spaces, then their product M1 × . . .×Mk is
a metric space with distance d2 defined by

d2((m1, . . . ,mk), (m
′
1, . . . ,m

′
k)) =

√
((d1(m1,m′1))

2 + . . .+ (dk(mk,m′k))
2).

The distance d2 is normally referred to as the L2 product distance on M1 × . . .×Mk.

Consequently, the set [0, 1]k, which denotes the set-theoretic product [0, 1]× . . .× [0, 1],
is then a metric space with the L2 product distance. Also, following Examples 2.1 and 2.2,
if F1, . . . ,Fk are sets of measurable functions from a probability space (X,S, µ) to the unit
interval, then Fi ⊆ [0, 1]X for each i = 1, . . . , k. Therefore, the product F1 × . . . × Fk is a
metric space with the L2 distance as well.

3 The Probably Approximately Correct Model

Let (X,S) be a measurable space. A concept class C on X is a subset of S, and an element
A ∈ C, which is a measurable subset of X, is called a concept. A function class F is a collection
of measurable functions from X to the unit interval [0, 1]. Unless stated otherwise, from this
section onwards, the following notations will be used:

1. X = (X,S): a measurable space

2. µ: a probability measure S → R+
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3. C: a concept class and F : a function class

This section provides the definitions of learning C and F in the Probably Approximately
Correct (PAC) learning model, introduced in 1984 by Valiant.

Concept class PAC learning involves producing a valid hypothesis for every concept A ∈ C
by first drawing random points, forming a training sample, from X labeled with whether these
points are contained in A. In other words, a labeled sample of m points x1, . . . , xm ∈ X for
A consists of these points and the evaluations χA(x1), . . . , χA(xm) of the indicator function
χA : X → {0, 1}, where

χA(x) = 1 if and only if x ∈ A.

The set of all labeled samples of m points can then be identified with (X × {0, 1})m, and
producing a hypothesis for A with a labeled sample is exactly the process of associating the
sample to a concept H ∈ C (i.e. this process is a function from the set of all labeled samples
to the concept class).

Here is the precise definition of a concept class being learnable.

Definition 3.1 ( [Val84]). A concept class C is distribution-free Probably Approximately Correct
learnable if there exists a function (a learning algorithm) L : ∪m∈N(X × {0, 1})m → C
with the following property: for every ε > 0, for every δ > 0, there exists a M ∈ N
such that for every A ∈ C, for every probability measure µ, for every m ≥ M , for
any x1, . . . , xm ∈ X, we have µ(Hm 4 A) < ε with confidence at least 1 − δ, where
Hm = L((x1, χA(x1)), . . . , (xm, χA(xm))).

Confidence of at least 1 − δ in the definition above, keeping to the same notations,
simply means that the (product) measure of the set of all m-tuples (x1, . . . , xm) ∈ Xm, where
µ(Hm4 A) < ε for Hm = L((x1, χA(x1)), . . . , (xm, χA(xm))), is at least 1− δ. An equivalent
statement to C being distribution-free PAC learnable is that for every ε, δ > 0, there exists
M ∈ N such that for every A ∈ C, probability measure µ, and m ≥M ,

µm({(x1, . . . , xm) ∈ Xm : µ(Hm4 A) ≥ ε}) ≤ δ,

for Hm = L((x1, χA(x1)), . . . , (xm, χA(xm))). (The symbol µm denotes the product measure
on Xm; the reader can refer to [Doo94] for the details.)

A concept class C is distribution-free learnable in the PAC learning model if a hypothesis
H can always be constructed from an algorithm L for every concept A ∈ C, using any labeled
sample for A, such that the measure of their symmetric difference H 4 A is arbitrarily small
with respect to every probability measure and with arbitrarily high confidence, as long as the
sample size is large enough.

Every concept A ∈ C is a subset of X and can be associated to its indicator function
χA : X → {0, 1}. Even more generally, χA is a function from X to [0, 1]; in other words, every
concept class C can be identified as a function class FC = {χA : X → [0, 1] : A ∈ C}, so it is
natural to generalize Definition 3.1 for any function class F .

Definition 3.1 involves the symmetric difference of two concepts and its generalization
to measurable functions f, g : X → [0, 1] is the expected value of their absolute difference
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Eµ(f, g), as seen in the previous section:

Eµ(f, g) =

∫
X

|f(x)− g(x)| dµ(x).

A simple exercise can show that if f, g ∈ [0, 1]X are indicator functions of two concepts A,B ⊆
X, then Eµ(f, g) coincides with the measure of their symmetric difference: Eµ(f, g) = µ(A4B),
where f = χA and g = χB.

With this generalization of the symmetric difference, distribution-free PAC learning for
any function class can be defined. In the context of function class learning, a labeled sample
of m points x1, . . . , xm ∈ X for a function f ∈ F consists of these points and the evaluations
f(x1), . . . , f(xm). Then, the set of all labeled samples of m points can be identified with
(X × [0, 1])m, and producing a hypothesis is the process of associating a labeled sample to a
function H ∈ F (just as in concept class learning).

Definition 3.2 ( [Vid97]). A function class F is distribution-free Probably Approximately Correct
learnable if there exists a function (a learning algorithm) L : ∪m∈N(X × [0, 1])m → F
with the following property: for every ε > 0, for every δ > 0, there exists a M ∈ N
such that for every f ∈ F , for every probability measure µ, for every m ≥ M , for
any x1, . . . , xm ∈ X, we have Eµ(Hm, f) < ε with confidence at least 1 − δ, where
Hm = L((x1, f(x1)), . . . , (xm, f(xm))).

Both definitions of PAC learning contain the ε and δ parameters. The accuracy error ε
is used because the hypothesis cannot be, in general, expected to have zero error - only an
arbitrarily small error. The risk parameter δ exists because there is no guarantee that any
collection of sufficiently large training points leads to a valid hypothesis; the learning algorithm
is only expected to produce a valid hypothesis with the sample points with confidence at least
1− δ. Hence, the name “Probably (δ) Approximately (ε) Correct” is used [KV94].

The following example illustrates that the set of all axis-aligned rectangles in R2 is
distribution-free PAC learnable. Both the statement and its proof can be found in Chapter 3
of [Vid97] and Chapter 1 of [KV94].

Example 3.1. In X = R2, the concept class C = {[a, b]× [c, d] : a, b, c, d ∈ R} is distribution-free
PAC learnable.

Proof. Let ε, δ > 0. Given a concept A and any sample of m training points x1, . . . , xm ∈ X,
define the hypothesis concept Hm to be the intersection of all rectangles containing only
training points xi such that χA(xi) = 1. In other words, Hm is the smallest rectangle that
contains only the sample points in A.

Let µ be any probability measure, and in fact, Hm4 A = A \Hm, which can be broken
down into four sections T1, . . . , T4. If we can conclude that

µ

(
4⋃
i=1

Ti

)
< ε,

with confidence at least 1− δ, then the proof is complete.
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Figure 3.1: Learning an axis-aligned rectangle.

Consider the top section T1 and define T̃1 to be the rectangle along the top parts of A whose
measure is exactly ε/4. The event T̃1 ⊆ T1, which is equivalent to µ(T1) ≥ ε/4, holds exactly
when no points in the sample x1, . . . , xm fall in T̃1, and the probability of this event (which is
the measure of all such m-tuples of (x1, . . . , xm) ∈ Xm where xi /∈ T̃1 for all i = 1, . . . ,m) is
(1− ε/4)m. Similarly, the same holds for the other three sections T2, . . . , T4. Therefore, the
probability that there exists at least one Ti such that µ(Ti) ≥ ε/4, where i ∈ {1, . . . , 4}, is
at most 4(1− ε/4)m. Hence, as long as we pick m large enough that 4(1− ε/4)m ≤ δ, with
confidence (probability) at least 1− δ, µ(Ti) < ε/4 for every i = 1, . . . , 4 and thus,

µ(Hm4 A) = µ

(
4⋃
i=1

Ti

)
≤ µ(T1) + . . .+ µ(T4) < 4

( ε
4

)
= ε.

Please note that this argument, though very intuitive, actually requires the classical Glivenko-
Cantelli theorem, see e.g. [Bil95]. Figure 3.1 provides a visual illustration of the rectangles.

In summary, as long as m ≥ (4/ε) ln(4/δ), with confidence at least 1− δ, µ(Hm4A) < ε.
We note that this estimate of the sample size only depends on ε and δ, so C is indeed
distribution-free PAC learnable.

In the next section, a fundamental theorem which characterizes concept class distribution-
free PAC learning will be stated. However, in order to state this theorem, the notion of
shattering, which is essential in learning theory, must be introduced.

4 The Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis dimension is a combinatorial parameter which is defined using the
notion of shattering, developed first in 1971 by Vapnik and Chervonenkis.

Definition 4.1 ( [VC71]). Given any set X and a collection A of subsets of X, the collection A
shatters a finite subset S ⊆ X if for every B ⊆ S, there exists A ∈ A such that A∩S = B.

There is an equivalent condition, which is sometimes easier to work with, to shattering,
expressed in terms of characteristic functions of subsets of X.

Proposition 4.1. The collection A shatters a subset S = {x1, . . . , xn} ⊆ X if and only if
for every e = (e1, . . . , en) ∈ {0, 1}n, there exists A ∈ A such that χA(xi) = ei, for all
i = 1, . . . , n.
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Definition 4.2 ( [VC71]). The Vapnik-Chervonenkis (VC) dimension of the collection A,
denoted by VC(A), is defined to be the cardinality of the largest finite subset S ⊆ X
shattered by A. If A shatters arbitrarily large finite subsets of X, then the VC dimension
of A is defined to be ∞.

The VC dimension is defined for every collection A of subsets of any set X, so in particular,
X = (X,S) can be a measurable space and A = C can be a concept class.

The following is an example, which we believe to be original, illustrating the calculation
of the VC dimension for a concept class in the context of X = Rn. In order to prove the VC
dimension of a concept class C is d, we must provide a subset S ⊆ X with cardinality d which
is shattered by C and prove that no subset with cardinality d+ 1 can be shattered by C. The
reader can refer to [KV94] and [Pes10b] for more examples on calculating VC dimensions.

Example 4.1. Consider the space X = Rn. A hyperplane H~a,b is defined by a nonzero vector
~a = (a1, . . . , an) ∈ Rn and a scalar b ∈ R:

H~a,b = {~x = (x1, . . . , xn) ∈ Rn : ~x · ~a = b}
= {~x = (x1, . . . , xn) ∈ Rn : x1a1 + . . .+ xnan = b}.

Write C as the set of all hyperplanes: C = {H~a,b : ~a ∈ Rn \ {~0}, b ∈ R}. Then VC(C) = n.

Proof. Consider the subset S = {~e1, . . . , ~en} ⊆ Rn, where ~ei is the vector with 1 on the i-th
component and 0 everywhere else. Suppose B ⊆ S and there are two cases to consider:

1. If B = ∅, then let ~a = (1, 1, . . . , 1) ∈ Rn and the hyperplane H~a,−1 = {~x = (x1, . . . , xn) ∈
Rn : x1 + . . .+ xn = −1} is disjoint from S.

2. If B 6= ∅, then set ~a = (a1, . . . , an) ∈ Rn \ {~0}, where ai = χB(~ei). Then the hyperplane
H~a,1 = {~x = (x1, . . . , xn) ∈ Rn : x1a1 + . . .+ xnan = 1} satisfies

H~a,1 ∩ S = B.

Moreover, no subset S = {~x1, . . . , ~xn, ~xn+1} ⊆ Rn with cardinality n+ 1 can be shattered
by C. At best, there exists a unique hyperplane H~a,b containing n of these points, say
{~x1, . . . , ~xn}, so if ~xn+1 ∈ H~a,b, then there are no hyperplanes that include ~x1, . . . , ~xn, but not
~xn+1. Otherwise, if ~xn+1 /∈ H~a,b, then there are no hyperplanes that include ~x1, . . . , ~xn, ~xn+1.

The VC dimension is central to the PAC learning model for concept classes. In fact, the
PAC learnability of a concept class is completely determined by its VC dimension.

4.1 Characterization of Concept Class PAC Learning

The following is one of the main theorems concerning PAC learning, whose proof results from
Vapnik and Chervonenkis’ paper [VC71] in 1971 and the 1989 paper [BEHW89] by Blumer et
al.
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Theorem 4.2 ( [VC71] and [BEHW89]). Let C be a concept class of a measurable space (X,S).
The following are equivalent:

1. C is distribution-free Probably Approximately Correct learnable.

2. VC(C) <∞.

Both directions of the proof for this result require expressing the number of sample training
points required for learning in terms of the VC dimension of C; a crucial lemma used in the
proof is Sauer’s Lemma, seen in [Sau72]. Given a concept class C with finite VC dimension,
the lemma states that the growth of |{A ∩ C : C ∈ C}| for any finite set A, with |A| = n, is
bounded above by a polynomial function in n as n grows to infinity.

Using Theorem 4.2, one can more easily determine whether a given concept class is
distribution-free PAC learnable.

Example 4.2. The set of all hyperplanes C = {H~a,b : ~a ∈ Rn\{~0}, b ∈ R}, as defined in Example
4.1, is distribution-free PAC learnable.

Every concept class C can be viewed as a function class FC = {χA : X → [0, 1] : A ∈ C}, as
seen in Section 3, so a natural question is whether the notion of shattering can be generalized.
Indeed, the next section introduces the Fat Shattering dimension of scale ε, which is a
generalization of the VC dimension.

5 The Fat Shattering Dimension

Let ε > 0 from this section onwards. A combinatorial parameter which generalizes the Vapnik-
Chervonenkis dimension is the Fat Shattering dimension of scale ε, defined first by Kearns
and Schapire in 1994.

This dimension, assigned to function classes, involves the notion of ε-shattering, but
similar to the notion of (regular) shattering, it can be defined for any collection of functions
f : X → [0, 1], where X is any set. For the sake of this paper, the following sections (still)
assume X = (X,S) is a measurable space and the collection of functions is a function class F .

Definition 5.1 ( [KS94]). Let F be a function class. Given a subset S = {x1, . . . , xn} ⊆ X,
the class F ε-shatters S, with witness c = (c1, . . . , cn) ∈ [0, 1]n, if for every e ∈ {0, 1}n,
there exists f ∈ F such that

f(xi) ≥ ci + ε for ei = 1, and f(xi) ≤ ci − ε for ei = 0.

Figure 5.1 illustrates the notion of ε-shattering for the subset S = {x1, . . . , x6}, with
witness c = (c1, . . . , c6). Given the binary vector e = (101011), there is a function f ∈ F that
passes above c1 + ε, c3 + ε, c5 + ε, c6 + ε at the points x1, x3, x5, x6, respectively, but passes
below c2 − ε, c4 − ε at x2, x4.

Definition 5.2 ( [KS94]). The Fat Shattering dimension of scale ε > 0 of F , denoted by fatε(F),
is defined to be the cardinality of the largest finite subset of X that can be ε-shattered by
F . If F can ε-shatter arbitrarily large finite subsets, then the Fat Shattering dimension
of scale ε of F is defined to be ∞.
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x1 x2 x3 x4 x5 x6

c1

c2

c3

c4

c5

c6

e = (101011)

f1

>_ ε 

Figure 5.1: Diagram of ε-shattering.

When the function class F consists of only functions taking values in {0, 1}, then the
Fat Shattering dimension of any scale ε ≤ 1/2 of F agrees with the VC dimension of the
corresponding collection of subsets of X, induced by the (indicator) functions in F .

With the generalization from a concept class to a function class, a natural question is
whether the finiteness of the Fat Shattering dimension of all scales ε for a function class F
is equivalent to F being distribution-free PAC learnable. This question is addressed in the
following subsection.

5.1 Sufficient Condition for Function Class PAC Learning

One direction of Theorem 4.2 can be generalized and stated in terms of the Fat Shattering
dimension of scale ε of a function class.

Theorem 5.1 ( [ABDCBH97] and [Vid97]). Let F be a function class. If fatε(F) <∞ for all
ε > 0, then F is distribution-free PAC learnable.

However, the converse to Theorem 5.1 is false. There exists a distribution-free PAC
learnable function class with infinite Fat Shattering dimension of some scale ε.

In fact, for every concept class C with cardinality ℵ0 or 2ℵ0 , there is an associated function
class FC defined as follows. Set up a bijection b : C → [0, 1/3] or to [0, 1/3] ∩Q, depending on
the cardinality of C, and for every A ∈ C, define a function fA : X → [0, 1] by

fA(x) = χA(x) + (−1)χA(x)b(A).

Now, write FC = {fA : A ∈ C}. Note that FC can be thought of the collection of all indicator
functions of A ∈ C, except that each “indicator” function fA has two unique identifying
points b(A) and 1− b(A), instead of simply 0 and 1. The following proposition provides many
counterexamples to the converse of Theorem 5.1, which are much simpler than the one found
in [Vid97].

The construction of the function class FC and the proposition below are developed from
an idea of Example 2.10 in [Pes10a].
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Proposition 5.2. Let C be a concept class. The associated function class FC = {fA : A ∈ C},
defined in the previous paragraph, is always distribution-free PAC learnable; this class
has infinite Fat Shattering dimension of all scales ε < 1/6 if C has infinite VC dimension.

Proof. The function class FC is distribution-free PAC learnable because every function fA ∈ FC
can be uniquely identified with just one point x0 ∈ X in any labeled sample: fA(x0) ∈
{b(A), 1− b(A)} uniquely determines A and thus, fA.

Furthermore, suppose C has infinite VC dimension. Let n ∈ N be arbitrary and because
VC(C) =∞, there exists S = {x1, . . . , xn} such that C shatters S. Suppose ε < 1/6 and we
claim that FC ε-shatters S with witness c = (0.5, . . . , 0.5) ∈ [0, 1]n. Indeed, let e ∈ {0, 1}n and
there exists A ∈ C such that

χA(xi) = ei,

for all i = 1, . . . , n, by Proposition 4.1. As a result,

fA(xi) = 1− b(A) ≥ 0.5 + ε for ei = 1

and
fA(xi) = b(A) ≤ 0.5− ε for ei = 0.

Consequently, FC has infinite Fat Shattering dimension of all scales ε < 1/6.

One research topic we would like to consider in the future is to come up with a new
combinatorial parameter for a function class, related to the notion of shattering, which would
characterize PAC distribution-free learning. This new parameter would have to solve the
problem of unique identifications of functions, a problem that does not occur with concept
classes.

The next section explains the main result of our research: bounding the Fat Shattering
dimension of scale ε of a composition function class which is built with a continuous logic
connective.

6 The Fat Shattering Dimension of a Composition

Function Class

The goals of this section are to construct a new function class from old ones by means of a
continuous logic connective and to bound the Fat Shattering dimension of scale ε of the new
function class in terms of the dimensions of the old ones. The following subsection provides
this construction, which can be found in Chapter 4 of [Vid97], in the context of concept classes
using a connective of classical logic.

6.1 A Review of the Construction in the Context of Concept
Classes

Let C1, C2, . . . , Ck be concept classes, where k ≥ 2, and let u : {0, 1}k → {0, 1} be any function,
commonly known as a connective of classical logic. A new collection of subsets of X arises
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from C1, . . . , Ck as follows.
As mentioned earlier in this paper, every element A ∈ Ci can be identified as a binary

function f : X → {0, 1}, namely its characteristic function f = χA, and vice versa. Now,
for any k functions f1, . . . , fk : X → {0, 1}, where fi ∈ Ci with i = 1, . . . , k, consider a new
function u(f1, . . . , fk) : X → {0, 1} defined by

u(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x)).

The set of all possible u(f1, . . . , fk), denoted by u(C1, . . . , Ck), is given by

u(C1, . . . , Ck) = {u(f1, . . . , fk) : fi ∈ Ci}.

For instance, when k = 2, we can consider the “Exclusive Or” connective ⊕ : {0, 1}2 →
{0, 1} defined by

p⊕ q = (p ∧ ¬q) ∨ (¬p ∧ q),

which corresponds to the symmetric difference operation. Then, our new concept class
constructed from C1 and C2 is

{A14 A2 : A1 ∈ C1, A2 ∈ C2}.

The next known theorem states that if C1, C2, . . . , Ck all have finite VC dimension to start
with, then regardless of u, the new collection u(C1, . . . , Ck) always has finite VC dimension.

Theorem 6.1 ( [Vid97]). Let k ≥ 2. Suppose C1, . . . , Ck are concept classes, each viewed as
a collection of binary functions, and u : {0, 1}k → {0, 1} is any function. If the VC
dimension of Ci is finite for all i = 1, . . . , k. Then there exists a constant α = αk, which
depends only on k, such that

VC(u(C1, . . . , Ck)) < dαk,

where d =
k

max
i=1

VC(Ci).

The proof of this theorem can be found in [Vid97] and uses Sauer’s Lemma to bound the
VC dimension of u(C1, . . . , Ck). The main objective of our research is to generalize this theorem
for function classes, in terms of the Fat Shattering dimension of scale ε, but the connective of
classical logic u would have to be replaced by a continuous logic connective, which is simply a
continuous function u : [0, 1]k → [0, 1].

6.2 Construction of New Function Class with Continuous
Logic Connective

In first-order logic, there are only two truth-values 0 or 1, so a connective is a function
{0, 1}k → {0, 1} in the classical sense. However, in continuous logic, truth-values can be found
anywhere in the unit interval [0, 1]. Therefore, we should consider a function u : [0, 1]k → [0, 1],
which will transform function classes, and require that u be a continuous logic connective.
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In other words, u should be continuous from the (product) metric space [0, 1]k to the unit
interval [YBHU08]; in fact, because u is continuous from a compact metric space to a metric
space, it is automatically uniformly continuous.

The following provides the definition of a uniformly continuous function u from any metric
space to another, but we must first qualify u with a modulus of uniform continuity.

Definition 6.1 (See e.g. [YBHU08]). A modulus of uniform continuity is any function δ :
(0, 1]→ (0, 1].

Definition 6.2 (See e.g. [YBHU08]). Let (M1, d1) and (M2, d2) be two metric spaces. A function
u : M1 → M2 is uniformly continuous if there exists (a modulus of uniform continuity)
δ : (0, 1]→ (0, 1] such that for all ε ∈ (0, 1] and m1,m2 ∈M1, if d1(m1,m2) < δ(ε), then
d2(u(m1), u(m2)) < ε.

Such a δ is called a modulus of uniform continuity for u.

Given function classes F1, . . . ,Fk and a uniformly continuous function u : [0, 1]k → [0, 1],
consider the new function class u(F1, . . . ,Fk) defined by

u(F1, . . . ,Fk) = {u(f1, . . . , fk) : fi ∈ Fi},

where u(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x)) for all x ∈ X, just as in Section 6.1 for concept
classes, with fi ∈ Fi and i = 1, . . . , k. Our main result states that the Fat Shattering dimension
of scale ε of u(F1, . . . ,Fk) is bounded by a sum of the Fat Shattering dimensions of scale
δ(ε, k) of F1, . . . ,Fk, where δ(ε, k) is a function of the modulus of uniform continuity δ(ε) for
u and k. It is a known result, seen in Chapter 5 of [Vid97], that this new class u(F1, . . . ,Fk)
has finite Fat Shattering dimension of all scales ε > 0 (and thus, it is distribution-free PAC
learnable) if each of F1, . . . ,Fk has finite Fat Shattering dimension of all scales, but no bounds
were previously known.

6.3 Main Result

Fix k ≥ 2 and the following theorem is our main new result.

Theorem 6.2. Let ε > 0, F1, . . . ,Fk be function classes of X, and u : [0, 1]k → [0, 1] be a
uniformly continuous function with modulus of continuity δ(ε). Then

fatε(u(F1, . . . ,Fk)) ≤

(
K log(4c′k

√
k/(δ(ε/(2c′))ε))

K ′ log(2)

)
n∑
i=1

fat
c
δ(ε/(2c′))ε

k
√
k

(Fi),

where c, c′, K,K ′ are some absolute constants.

Extracting the actual values of these absolute constants is not easy, and we hope to
find them in future research. For this reason, comparing the bound in Theorem 6.2 with the
existing estimate for the VC dimension of a composition concept class is difficult; however, in
statistical learning theory, estimates for function class learning are generally much worse than
estimates for concept class learning.
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In order to prove Theorem 6.2, for clarity, we will introduce an auxiliary function
φ : F1 × . . .×Fk → [0, 1]X and prove the following.

Lemma 6.1. Let ε > 0. If u : [0, 1]k → [0, 1] is uniformly continuous with modulus of continuity
δ(ε), then the function φ : F1 × . . .×Fk → [0, 1]X defined by

φ(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x))

is also uniformly continuous with modulus of continuity δ(ε/2)ε
2k

, from the metric space

F1 × . . .×Fk with distance d̃2 to [0, 1]X . Also, φ(F1 × . . .×Fk) = u(F1, . . . ,Fk), where
the symbol φ(F1 × . . .×Fk) simply represents the image of φ.

Then, we will prove the next lemma, and our main result will follow directly.

Lemma 6.2. Let ε > 0, F1, . . . ,Fk be function classes of X, and φ : F1 × . . .×Fk → [0, 1]X be
uniformly continuous with some modulus of continuity δ(ε, k), a function of ε and k. Then

fatc′ε(φ(F1 × . . .×Fk)) ≤

(
K log(2

√
k/δ(ε, k))

K ′ log(2)

)
k∑
i=1

fat
c
δ(ε,k)√

k

(Fi),

where c, c′, K,K ′ are some absolute constants.

6.4 Proofs

This subsection provides all the proofs for our main theorem.

Proof of Lemma 6.1. Suppose u : [0, 1]k → [0, 1] is uniformly continuous with a modulus of
continuity δ(ε), where [0, 1]k is a metric space with the L2 product distance d2. We claim that
the function φ : F1 × . . .×Fk → [0, 1]X defined by

φ(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x))

is uniformly continuous with modulus of continuity δ(ε/2)ε
2k

. Let ε > 0 and

(f1, . . . , fk), (f
′
1, . . . , f

′
k) ∈ F1 × . . .×Fk.

Suppose

d̃2((f1, . . . , fk), (f
′
1, . . . , f

′
k)) =

√
((||f1 − f ′1||2)2 + . . .+ (||fk − f ′k||2)2)

<
δ(ε/2)ε

2k
=

√
δ(ε/2)2(ε/2)2

k2
.

Hence, for each i = 1, . . . , k,

||fi − f ′i ||2 =

√(∫
X

(fi(x)− f ′i(x))2 dµ(x)

)
<

√
δ(ε/2)2(ε/2)2

k2
.
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Write Ai = {x ∈ X : |fi(x)− f ′i(x)| ≥
√

δ(ε/2)2

k
} and we must have that µ(Ai) <

(ε/2)2

k
, for

each i = 1, . . . , k. Otherwise,

∫
X

(fi(x)− f ′i(x))2 dµ(x) =

∫
Ai

(fi(x)− f ′i(x))2 dµ(x) +

∫
X\Ai

(fi(x)− f ′i(x))2 dµ(x)

≥
∫
Ai

(√
δ(ε/2)2

k

)2

dµ(x) +

∫
X\Ai

(fi(x)− f ′i(x))2 dµ(x)

= µ(Ai)

(√
δ(ε/2)2

k

)2

+

∫
X\Ai

(fi(x)− f ′i(x))2 dµ(x)

≥ (ε/2)2

k

δ(ε/2)2

k
+

∫
X\Ai

(fi(x)− f ′i(x))2 dµ(x)

≥ δ(ε/2)2(ε/2)2

k2
,

which is a contradiction. Now, write A = A1 ∪ . . . ∪ Ak and we have that X \ A = {x ∈ X :

|fi(x)− f ′i(x)| <
√

δ(ε/2)2

k
, for all i = 1, . . . , k}. Suppose x ∈ X \ A and then

d2((f1(x), . . . , fk(x)), (f ′1(x), . . . , f ′k(x))) =
√
|f1(x)− f ′1(x)|2 + . . .+ |fk(x)− f ′k(x)|2

<

√(
δ(ε/2)2

k
+ . . .+

δ(ε/2)2

k

)
< δ(ε/2).

Consequently, by the uniform continuity of u, for all x ∈ X \ A,

|u(f1(x), . . . , fk(x))− u(f ′1(x), . . . , f ′k(x))| < ε/2.

Finally,

||φ(f1, . . . , fk)− φ(f ′1, . . . , f
′
k)||2 =

√(∫
X

(u(f1(x), . . . , fk(x))− u(f ′1(x), . . . , f ′k(x)))2 dµ(x)

)

≤

√(∫
X\A

(u(f1(x), . . . , fk(x))− u(f ′1(x), . . . , f ′k(x)))2 dµ(x)

)

+

√(∫
A

(u(f1(x), . . . , fk(x))− u(f ′1(x), . . . , f ′k(x)))2 dµ(x)

)

<

√(∫
X\A

(ε/2)2 dµ(x)

)
+

√(∫
A

1 dµ(x)

)
≤ (ε/2) + (ε/2) = ε,
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as µ(A) ≤
∑k

i=1 µ(Ai) ≤ k
(

(ε/2)2

k

)
= (ε/2)2.

Now, in order to prove Lemma 6.2, we first introduce the concept of an ε-covering number
for any metric space, based on [MV03], and relate this number for a function class to its Fat
Shattering dimension of scale ε by using results from Mendelson and Vershynin [MV03] and
Talagrand [Tal03].

Definition 6.3. Let ε > 0 and suppose (M,d) is a metric space. The ε-covering number,
denoted by N(M, ε, d), of M is the minimal number N such that there exists elements
m1,m2, . . . ,mN ∈M with the property that for all m ∈M , there exists i ∈ {1, 2, . . . , N}
for which

d(m,mi) < ε.

The set {m1,m2, . . . ,mN} is called a (minimal) ε-net of M .

The following proposition relates the ε-covering number of a product of metric spaces,
with the L2 product distance d2, M1 × . . .×Mk to the ε√

k
-covering number of each space Mi.

Proposition 6.3. Let ε > 0 and suppose (M1, d1), . . . , (Mk, dk) are metric spaces, each with
finite ε√

k
-covering numbers, Ni = N(Mi,

ε√
k
, di) for i = 1, . . . , k. Then

N(M1 × . . .×Mk, ε, d
2) ≤

k∏
i=1

Ni.

Proof. Let Ci = {ai1, . . . , aiNi} be a minimal ε√
k
-net for Mi with respect to distance di, where

i = 1, . . . , k and suppose (a1, . . . , ak) ∈ M1 × . . . ×Mk. Then, for each i = 1, . . . , k, there
exists aiji ∈ Ci, where 1 ≤ ji ≤ Ni such that di(a

i, aiji) <
ε√
k
. Hence,

d2((a1, . . . , ak), (a1j1 , . . . , a
k
jk

)) =
√(

(d1(a1, a1j1))
2 + . . .+ (dk(ak, akjk))

2
)

<

√√√√(( ε√
k

)2

+ . . .+

(
ε√
k

)2
)

= ε,

where each (a1j1 , . . . , a
k
jk

) ∈ C1 × . . .× Ck, which has cardinality Πk
i=1Ni. Therefore, N(M1 ×

. . .×Mk, ε, d
2) ≤ Πk

i=1Ni.

Also, if u : M1 → M2 is any uniformly continuous function with a modulus of uniform
continuity δ(ε) from any metric space to another, then the image of a minimal δ(ε)-net of M1

under u becomes an ε-net for u(M1).

Proposition 6.4. Let ε > 0 and suppose (M1, d1) and (M2, d2) are two metric spaces. If a
function u : M1 → M2 is uniformly continuous with a modulus of continuity δ(ε), then
N(u(M1), ε, d2) ≤ N(M1, δ(ε), d1), where u(M1) denotes the image of u.
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Proof. Suppose N = N(M1, δ(ε), d1) is the δ(ε)-covering number for M1 and let {m1, . . . ,mN}
be a δ(ε)-net for M1. Hence for every u(m) ∈ u(M1), where m ∈M1, there exists i ∈ {1, . . . , N}
such that

d1(m,mi) < δ(ε),

which implies d2(u(m), u(mi)) < ε as u is uniformly continuous. As a result, the set

{u(m1), . . . , u(mN)}

is an ε-net for u(M1), so N(u(M1), ε, d2) ≤ N(M1, δ(ε), d1).

In particular, we can view F1, . . . ,Fk as metric spaces, all with distances induced by the
L2(µ) norm and suppose φ : F1 × . . . × Fk → [0, 1]X is uniformly continuous with modulus

of continuity δ(ε, k). Then, by Proposition 6.3, if F1, . . . ,Fk all have finite δ(ε,k)√
k

-covering

numbers, the metric space F1 × . . . × Fk, with the L2 product metric d̃2, also has a finite
δ(ε, k)-covering number: if we write N(Fi, δ(ε,k)√

k
, L2(µ)) as the δ(ε,k)√

k
-covering number for Fi,

then,

N(F1 × . . .×Fk, δ(ε, k), d̃2) ≤
k∏
i=1

N(Fi,
δ(ε, k)√

k
, L2(µ)).

Now, by Proposition 6.4,

N(φ(F1 × . . .×Fk), ε, L2(µ)) ≤ N(F1 × . . .×Fk, δ(ε, k), d̃2)

≤
k∏
i=1

N(Fi,
δ(ε, k)√

k
, L2(µ)).

In other words, the ε-covering number for φ(F1 × . . .×Fk) is bounded by a product of

the δ(ε,k)√
k

-covering numbers of each Fi. To prove Lemma 6.2, we now state the main theorem
of a paper written by Mendelson and Vershynin, which relates the ε-covering number of a
function class to its Fat Shattering dimension of scale ε.

Theorem 6.5 ( [MV03]). Let ε > 0 and let F be a function class. Then for every probability
measure µ,

N(F , ε, L2(µ)) ≤
(

2

ε

)Kfatcε(F)

for absolute constants c,K.

And Talagrand provides the converse.

Theorem 6.6 ( [Tal03]). Following the notations of Theorem 6.5, there exists a probability
measure µ such that

N(F , ε, L2(µ)) ≥ 2K
′fatc′ε(F),

for absolute constants c′, K ′.
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Proof of Lemma 6.2. By Propositions 6.3 and 6.4,

N(φ(F1 × . . .×Fk), ε, L2(µ)) ≤
k∏
i=1

N(Fi,
δ(ε, k)√

k
, L2(µ)),

so

log(N(φ(F1 × . . .×Fk), ε, L2(µ))) ≤
k∑
i=1

log(N(Fi,
δ(ε, k)√

k
, L2(µ))).

By Theorem 6.5,

logN(Fi,
δ(ε, k)√

k
, L2(µ)) ≤ Kfat

c
δ(ε,k)√

k

(Fi) log(2
√
k/δ(ε, k)),

for any probability measure µ where c,K are absolute constants. Moreover, by Theorem 6.6
for some probability measure µ and absolute constants c′, K ′,

log(N(φ(F1 × . . .×Fk), ε, L2(µ))) ≥ K ′fatc′ε(φ(F1 × . . .×Fk)) log(2)

and altogether,

fatc′ε(φ(F1 × . . .×Fk)) ≤

∑k
i=1Kfat

c
δ(ε,k)√

k

(Fi) log(2
√
k/δ(ε, k))

K ′ log(2)

=

(
K log(2

√
k/δ(ε, k))

K ′ log(2)

)
k∑
i=1

fat
c
δ(ε,k)√

k

(Fi).

Finally, we will prove our main theorem.

Proof of Theorem 6.2. By Lemma 6.1, if u : [0, 1]k → [0, 1] is uniformly continuous with
modulus of continuity δ(ε), then φ : F1 × . . .×Fk → [0, 1]X defined by

φ(f1, . . . , fk)(x) = u(f1(x), . . . , fk(x))

is also uniformly continuous with modulus of continuity δ(ε/2)ε
2k

. Then, apply Lemma 6.2 with

δ(ε, k) = δ(ε/2)ε
2k

and with a simple change of variables c′ε′ → ε, Theorem 6.2 follows directly.

Altogether, we can summarize the maps in this section in the following two diagrams
(where i is the diagonal map):

X
i // Xk f1×...×fk // [0, 1]k u // [0, 1] ,

while

F1 × . . .×Fk
φ // [0, 1]X .
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This result is potentially useful because it allows us to construct new function classes
using common continuous logic connectives and bound their Fat Shattering dimensions of scale
ε. For instance, the function u : [0, 1]2 → [0, 1] defined by u(r1, r2) = r1 · r2 (multiplication) is
uniformly continuous with a modulus of continuity δ(ε) = ε

2
. Indeed, let ε > 0 and consider

(r1, r2), (r
′
1, r
′
2) ∈ [0, 1]2. Suppose d2((r1, r2), (r

′
1, r
′
2)) < δ(ε) = ε

2
, so

|r1 − r′1| <
√
|r1 − r′1|2 + |r2 − r′2|2 <

ε

2

and similarly, |r2 − r′2| < ε
2
. Then,

|u(r1, r2)− u(r′1, r
′
2)| = |r1r2 − r′1r′2|

= |r1r2 − r1r′2 + r1r
′
2 − r′1r′2|

≤ |r1(r2 − r′2)|+ |r′2(r1 − r′1)|

≤ |r2 − r′2|+ |r1 − r′1| <
ε

2
+
ε

2
= ε.

As a result, if F1 and F2 are two function classes with finite Fat Shattering dimensions of
some scale ε, then the function class u(F1,F2) = F1F2 = {f1 · f2 : f1 ∈ F1, f2 ∈ F2}, defined
by point-wise multiplication, also has finite Fat Shattering dimension of scale ε, up to some
constant factor, and Theorem 6.2 provides an upper bound.

We have made an interesting connection, which has not been explored much in the past,
between continuous logic and PAC learning, and we plan to investigate this connection even
further. For instance, the relationship of compositions of function classes and continuous logic
may be interesting to study because compositions of uniformly continuous functions are again
uniformly continuous. Furthermore, we can try to add some topological structures to concept
or function classes to see how PAC learning can be affected.
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