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ABSTRACT

The stochastic dynamics of biochemical networks are usually modeled with the chemical master equation (CME). The stationary distributions
of CMEs are seldom solvable analytically, and numerical methods typically produce estimates with uncontrolled errors. Here, we introduce
mathematical programming approaches that yield approximations of these distributions with computable error bounds which enable the ver-
ification of their accuracy. First, we use semidefinite programming to compute increasingly tighter upper and lower bounds on the moments
of the stationary distributions for networks with rational propensities. Second, we use these moment bounds to formulate linear programs that
yield convergent upper and lower bounds on the stationary distributions themselves, their marginals, and stationary averages. The bounds
obtained also provide a computational test for the uniqueness of the distribution. In the unique case, the bounds form an approximation of the
stationary distribution with a computable bound on its error. In the nonunique case, our approach yields converging approximations of the
ergodic distributions. We illustrate our methodology through several biochemical examples taken from the literature: Schlögl’s model for a
chemical bifurcation, a two-dimensional toggle switch, a model for bursty gene expression, and a dimerization model with multiple stationary
distributions.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5100670., s

I. INTRODUCTION

Cell-to-cell variability is pervasive in cell biology. A fundamen-
tal source of this variability is the fact that biochemical reactions
inside cells often involve only a few molecules per cell.1–3 Such reac-
tions are key components in gene regulatory and signaling networks
involved in cellular adaptation and cell fate decisions.4–6 Mathemat-
ically, stochastic reaction networks are modeled using continuous-
time Markov chains whose distributions satisfy the chemical master
equation (CME). As the availability of accurate single cell mea-
surements widens, it is crucial to develop reliable methods for the
analysis of the CME that facilitate parameter inference,7,8 both for
the identification of molecular mechanisms9 and for the design of
synthetic cellular circuits.10–14

Significant effort has been devoted to investigating the station-
ary solutions of CMEs, which determine the long time behavior
of the stochastic process.15 While exact16,17 Monte Carlo methods
have been developed to sample from stationary solutions of some
CMEs, analytical solutions are known only in a few special cases. In
general, the CME is considered intractable18 because, aside of sys-
tems with finite state space, it consists of an infinite set of coupled
equations.

An approach to circumvent the intractability of the full CME is
to compute moments of its stationary solutions. However, moment
computations are only exact for networks of unimolecular reac-
tions; in all other cases, the equations of lower moments involve
higher moments, leading to an infinite system of coupled equa-
tions that cannot be solved analytically. Moment closure schemes,
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usually requiring assumptions about the unknown solution, are thus
employed to approximate the moments.19–23 Yet few of these meth-
ods provide quantified approximation errors.20 Another approach
is provided by mathematical programming techniques, which have
been employed to compute bounds on the moments of Markov pro-
cesses in various contexts. In such schemes, the finite set of moment
equations is supplemented bymoment inequalities and themoments
are bounded by solving linear programs (LPs)24,25 or semidefinite
programs (SDPs).26,27 Alternatively, when the CME has a unique
stationary solution, several truncation-based schemes28–32 have been
proposed to approximate the solution, although in most cases they
do not provide estimates of the error they introduce.

Here, we present two different mathematical programming
approaches that yield bounds on, and approximations of, the sta-
tionary solutions of the CME. Our first approach builds on our
previous work27,33,34 and uses semidefinite programming to obtain
upper and lower bounds on the moments of stationary solutions
of networks with polynomial and rational propensities. The scheme
constrains the possible solutions of a truncated, underdetermined set
of moment equations by appending semidefinite inequalities that are
satisfied by all probability distributions on the state space. Indepen-
dently of this work, similar approaches have been recently proposed
for networks with polynomial propensities.33,35–37 Here, we extend
the mathematical framework to rational networks of interest in bio-
chemistry, andwe state rigorous, checkablemathematical conditions
for the validity of the approach.

The second approach uses linear programming and a moment
bound obtained with our first (SDP) approach to compute lower
and upper bounds on stationary averages. In the case of a unique
stationary solution, we prove that the LP bounds converge to the
true average as the truncation approaches the entire state space.
Because stationary averages can be tailored to bound distributions,
the LP bounds provide approximations with computable errors
that converge in total variation to the stationary distribution and
its marginals (see also Ref. 38). Additionally, the LP bounds pro-
vide a computational test for the uniqueness of the stationary solu-
tion, a prerequisite for most other approximation schemes. In the
nonunique case, the scheme provides converging approximations of
the ergodic distributions.

The paper is organized as follows. In Sec. II, we introduce
definitions regarding stationary solutions of the CME. Section III
presents the SDP method to bound moments: first, the concep-
tual framework is introduced analytically for a simple birth-death
process that displays a chemical bifurcation, followed by the gen-
eral computational approach formultispecies networks with rational
propensities using semidefinite programming. Section IV presents
the LP approach to bound and approximate entire stationary solu-
tions, their averages, and marginals: first, the mathematical frame-
work is introduced through semi-analytical expressions for birth-
death processes, followed by the general computational approach
for rational networks using linear programming. In Sec. V, we
apply the methods to three additional examples: a toggle switch,
a model of bursty gene expression with negative feedback, and a
model with multiple stationary solutions. We conclude with a dis-
cussion in Sec. VI. For completeness, Appendix A presents theoreti-
cal results linking stationary distributions of continuous-time chains
and the stationary solutions of CMEs, and Appendix B presents a
Foster-Lyapunov criterion that guarantees existence and finiteness

of moments of the stationary distribution for the examples in the
paper.

II. NOTATION AND DEFINITIONS

Stochastic biochemical kinetics under well-mixed conditions
are usually described by a set of m reactions Rj involving n species
S1, S2, . . ., Sn,

Rj : v
−

1jS1 + ⋅ ⋅ ⋅ + v
−

njSn
aj
Ð→ v

+
1jS1 + ⋅ ⋅ ⋅ + v

+
njSn j ≙ 1, . . . ,m, (1)

where v
±

ij ∈ N denote the stoichiometric coefficients and aj : Nn

→ ∥0,∞) is the propensity of reaction Rj.
Formally, the state of the system is described by the random

variable X(t) ≙ (X1(t), . . . ,Xn(t)) ∈ N
n, a vector with compo-

nents representing the number of molecules of each species at time t.
The dynamical process is modeled with a minimal continuous-time
Markov chain39 with rate matrix Q = (q(x, y)) defined by

q(x, y) ∶≙ m

∑
j=1

aj(x)(1x+vj(y) − 1x(y)), (2)

where vj ∶≙ (v+1j − v−1j, . . . , v+nj − v−nj) denotes the stoichiometric vec-
tor containing the net changes in molecule numbers produced by
reaction Rj and 1y denotes the indicator function of state y,

1y(x) ∶≙ {1, if x ≙ y

0, otherwise.
(3)

The state of the system takes values in a subset S ⊆ Nn, known
as the state space, with (possibly infinite) cardinality ∣S∣. The set S
must be chosen such that

q(x, y) ≥ 0, ∀x ≠ y, (4)

−q(x, x) ≙ ∑
y∈S, y≠x

q(x, y) <∞, ∀x ∈ S, (5)

in which case Q is said to be totally stable and conservative.
If the Markov chain cannot leave the state space in finite time,

matrix Q is said to be regular (see Appendix A). In this case, the
collection of probabilities pt(x) of observing the chain in state x
at time t ≥ 0 is the only solution of the chemical master equation
(CME),

dpt(x)
dt

≙ ptQ(x), p0(x) ≙ λ(x), ∀x ∈ S, (6)

where we define the vector pt ∶≙ (pt(x))x∈S and
ptQ(x) ∶≙∑

y∈S

pt(y)q(y, x). (7)

Throughout, probability distributions and measures are defined as
row vectors.

Any probability distribution π ∶≙ (π(x))x∈S that solves the
equation

πQ(x) ≙ 0, ∀x ∈ S, (8)

is called a stationary solution of the CME. By definition, each
stationary solution belongs to the space
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ℓ
1
∶≙ {(ρ(x))x∈S :∑

x∈S

∣ρ(x)∣ <∞}
of absolutely summable real sequences indexed by states in S. The
set of all stationary solutions forms a convex polytope in ℓ

1,

P ∶≙

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π ∈ ℓ

1 :

πQ(x) ≙ 0, ∀x ∈ S,
π(S) ∶≙ ∑x∈S π(x) ≙ 1,
π ≥ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (9)

where π ≥ 0 is shorthand for π(x) ≥ 0,∀x ∈ S. For most networks of
interest, the stationary solutions determine the long-term behavior
of the chain (see Appendix A). In many cases, we will be interested
in obtaining the π-average of a real-valued function f on S,

⟨ f ⟩π ∶≙∑
x∈S

f (x)π(x).
For example, the kth stationary moment of the ith species is ⟨xki ⟩π .
III. BOUNDING THE STATIONARY MOMENTS
OF THE CME

As a first use of optimization techniques, we present a sys-
tematic approach that yields bounds of increasing tightness on the
stationary moments of reaction networks with polynomial or ratio-
nal propensities, and we give rigorous sufficient conditions for its
validity. The moment bounds obtained in this section will be used in
conjunction with linear programming to bound the full stationary
solutions of the CME in Sec. IV.

To motivate our optimization approach, we first present the
mathematical formulation through a simple example, for which
explicit analytical expressions can be obtained (Sec. III A). For more
complex systems, the approach can be implemented computation-
ally in a systematic manner through a general semidefinite program-
ming method (Sec. III B). Readers interested in the computational
approach (and not the theory behind it) should skip Sec. III A and
go directly to Sec. III B.

A. A simple analytical example: Moment bounds
for Schlögl’s model

To illustrate the mathematical framework, consider the classic
autocatalytic network with a single species S proposed by Schlögl40

as a model for a chemical bifurcation,

2S
a1
⇄
a2

3S, ∅
a3
⇄
a4

S, (10)

with mass-action propensities,

a1(x) ∶≙ k1x(x − 1), a2(x) ∶≙ k2x(x − 1)(x − 2), (11)

a3(x) ∶≙ k3, a4(x) ∶≙ k4x, (12)

where k1, k2, k3, k4 > 0 are rate constants. Here, n = 1 and the state
space is S ≙ N.

The CME of this network has a unique stationary solution π
and all of its moments are finite (see Appendix B). The reaction
network, as encoded in the rate matrix Q, imposes certain relation-

ships between the stationary moments ⟨xk⟩
π
. Such relations form an

infinite system of coupled stationary moment equations,

⟨Qxk⟩
π
∶≙ ∑

x′∈S

∑
x∈S

q(x′, x) xk π(x′) ≙ 0, k ∈ N. (13)

Except in particular instances, it is not possible to solve this coupled
system exactly, and closure approximations are usually adopted by
neglecting higher order moments.

An alternative approach is that of mathematical programming,
which includes additional constraints in the form of inequalities that
must be fulfilled by the moments of distributions. Including such
inequalities allows us to obtain feasible regions for the solutions of
the system and hence rigorous bounds for the moments. Increasing
the number of inequalities considered restricts the feasible region
further and makes the bounds tighter.

Let us consider the first moment equation for (10),

⟨Qx⟩π ≙ b1⟨1⟩π − b2⟨x⟩π + b3⟨x2⟩π − b4⟨x3⟩π ≙ 0, (14)

where b1 ∶≙ k3, b2 ∶≙ k1 + 2k2 + k4, b3 ∶≙ k1 + 3k2, and b4 ∶≙ k2 are
positive numbers. Even after noting that

⟨1⟩π ≙ 1, (15)

as π is a probability distribution, Eq. (14) is underdetermined. How-
ever, further relationships between moments can be added to con-
strain the system. For example, the non-negativity of the variance
implies the inequality,

⟨x2⟩
π
− ⟨x⟩2π ≥ 0. (16)

Further inequalities involving higher moments can be built system-
atically from polynomial functions as follows.

Consider the polynomial f (x) ∶≙ f 0 + f 1x, where f ∶≙ ( f0, f1)T
∈ R

2 is a (column) vector of polynomial coefficients. Clearly, f 2(x)
and xf 2(x) are non-negative on x ∈ [0,∞). Hence, it follows that

⟨ f 2⟩
π
≙ f 20 ⟨1⟩π + 2f0f1⟨x⟩π + f 21 ⟨x2⟩π ≥ 0, (17)

⟨xf 2⟩
π
≙ f 20 ⟨x⟩π + 2f0f1⟨x2⟩π + f 21 ⟨x3⟩π ≥ 0. (18)

Let us define the vector of moments,

z ∶≙ (⟨1⟩π , ⟨x⟩π , ⟨x2⟩π , ⟨x3⟩π)T ∈ R4.

Then, the inequalities (17) and (18) are written compactly as

⟨ f 2⟩
π
≙ f

TM0
3(z)f ≥ 0, (19)

⟨xf 2⟩
π
≙ f

TM1
3(z) f ≥ 0, (20)

where the matricesM3
0(y) andM3

1(y) are defined by

M0
3(y) ∶≙ [ y0 y1

y1 y2
], M1

3(y) ∶≙ [ y1 y2

y2 y3
],

for any four-dimensional vector y ≙ (y0, y1, y2, y3)T ∈ R4. Since (19)
and (20) hold for all f ∈ R

2, we have that M3
0(z) and M3

1(z) are
positive semidefinite (p.s.d.),
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M0
3(z) ⪰ 0, M1

3(z) ⪰ 0. (21)

From Sylvester’s criterion, (21) is equivalent to

z0 ≥ 0, z1 ≥ 0, z2 ≥ 0, z3 ≥ 0, (22)

z0z2 − z
2
1 ≥ 0, (23)

z1z3 − z
2
2 ≥ 0. (24)

Hence, (23) recovers (16), whereas (24) gives an additional condition
involving the first three moments.

Putting (14)–(21) together, we conclude that the singleton set
{z} of vectors whose entries are composed of the first four moments
of the stationary solutions of Schlögl’s model belongs to the set

E
3
≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
y ∈ R4 :

y0 ≙ 1

b1y0 − b2y1 + b3y2 − b4y3 ≙ 0

M0
3(y) ⪰ 0

M1
3(y) ⪰ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (25)

We say that E3 is an outer approximation of the set of stationary
moment vectors. Hence, the stationary moments have the following
lower and upper bounds:

L3α ∶≙ inf{yα : y ∈ E3} ≤ ⟨xα⟩π ≤ sup{yα : y ∈ E3} ≙: U3
α

α ≙ 0, 1, 2, 3. (26)

Such bounds are usually handled computationally, but it is
illustrative to obtain explicit expressions in this simple case. Com-
bine (24) with the equalities in (25) to get

b1y1 + b3y1y2 − b4y
2
2 − b2y

2
1 ≥ 0.

Assuming b3 ≥ 2
√
b2b4 (the other case is analogous), we use the

quadratic formula to obtain the bound

r−2 (y1) ≤ y2 ≤ r+2 (y1), (27)

r±2 (x) ∶≙b3x ±
√
4b1b4x + (b23 − 4b2b4)x2

2b4
. (28)

Hence, E3 can be rewritten equivalently as

E
3
≙

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
y ∈ R4 :

y0 ≙ 1

y1 ≥ 0

max{y21, r−2 (y1)} ≤ y2 ≤ r+2 (y1)
y3 ≙ (b1 − b2y1 + b3y2)/b4

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (29)

Figure 1(a) shows the projection of E3 onto the y1–y2 plane. From
(29), it is clear that (1, 0, 0, b1/b4) ∈ E3, and the lower bounds in (26)
for the first two moments are trivial: (L31,L32) ≙ (0, 0). The upper
bounds, however, are not. Since r+2 (x) > r−2 (x) for all x > 0, the upper
bounds in (26) are obtained by the northeasternmost intersection of
y21 and r

+
2 (y1): (U3

1 ,U
3
2) ≙ (r4, r+2 (r4)), where r4 is the rightmost root

of x(b1 − b2x + b3x
2
− b4x

3) = 0. In summary, we get

0 ≤ ⟨x⟩π ≤ r4, 0 ≤ ⟨x2⟩
π
≤ r+2 (r4). (30)

FIG. 1. Outer approximations and bounds for the moments of the stationary solu-
tion of Schlögl’s model (10). (a) Gray area: projection on the y1–y2 plane of E3

(29), an outer approximation of the set of stationary moment vectors. Black dots
mark the upper and lower bounds on the first and second moments (30). (b) By
appending further moment equations and inequalities, the outer approximations
Ed (45) can be tightened systematically as we increase the order d. The bound-
aries of the sets Ed (lines in different colors) were computed explicitly by applying
Mathematica’s Reduce function to (45). The singleton set of stationary moment
vectors (black dot) is always contained in Ed . The increasingly tighter lower and
upper bounds on the moments (49) (colored dots) are computed by solving the
SDPs (47) and (48). Parameter values: k1 = 1, k2 = 1, k3 = 0.8, and k4 = 1.

As seen in Fig. 1(a), the analytical bounds based on E3 are rough.
However, we show in Sec. III B how to obtain tighter bounds sys-
tematically by appending further moment equations and inequal-
ities and solving the associated optimizations over higher order

sets Ed.

B. The general approach: Bounding the moments
of rational CMEs by solving semidefinite programs

The approach in Sec. III A can be applied to any reaction net-
work (1) with n species and state space S, as long as the propensities
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of its m reactions are rational (or polynomial) functions, i.e., they
can be rewritten as

aj(x) ∶≙ bj(x)
s(x) j ≙ 1, . . . ,m, (31)

where b1, . . ., bm and s are polynomials on R
n and the common

denominator s satisfies s(x) > 0,∀x ∈ S.
To deal with multiple species, we use standard multi-

index notation: xα ∶≙ xα11 xα2⋯xαnn , where α is the multi-index(α1,α2, . . . ,αn) ∈ N
n and ∣α∣ ∶≙ α1 + α2 + ⋯ + αn is the degree of

the monomial. Polynomial functions are expressed in terms of such
monomials. For instance, the denominator of (31) is

s(x) ≙ ∑
∣β∣≤ds

sβ x
β, (32)

where ds is the degree of s and we define the (column) vector of
coefficients

s ∶≙ (sβ)∣β∣≤ds . (33)

We also define the stationary rational moments,

zβ ∶≙ ⟨xβ
s
⟩
π

, (34)

which are directly related to the raw moments,

⟨xα⟩
π
≙ ∑
∣β∣≤ds

sβ zα+β. (35)

The following checkable assumption is a sufficient condition for our
general SDP approach to apply to generic reaction networks with
rational propensities.

Assumption 1 (Order of the approximation and finiteness of
moments). Recall that ds is the degree of the denominator s in (31).
Let us denote the order of the approximation by an integer d ≥ ds, and
let us compile the stationary rational moments (34) up to order d into
the (column) vector,

z ∶≙ (zβ)∣β∣≤d, (36)

of dimension #d ∶≙ (n+dn ).
We assume that all stationary solutions of the CME have finite

rational moments up to order d + 1, i.e.,

zβ ≙ ⟨xβ
s
⟩
π

<∞ ∀β : ∣β∣ ≤ d + 1, ∀π ∈ P.

This requirement can be verified using a Foster-Lyapunov criterion as
detailed in Appendix B.

Remark 2. From (35) and Assumption 1, it follows that raw
moments ⟨xα⟩π with ∣α∣ ≤ d + 1 − ds are also finite.

In order to write down each α-moment, it is helpful to define
the associated polynomial function gα(x),

s(x)Qxα ≙ m

∑
j=1

bj(x) ((x + vj)α − xα)
≙ ∑
∣β∣≤dgα

(gα)β xβ ≙: gα(x), (37)

with degree dgα ≙ ∣α∣+ db − 1, where db ∶≙ max{dbi} is the maximum
degree of the numerators in (31).We also define the (column) vector
of polynomial coefficients,

gα ∶≙ ((gα)β)∣β∣≤d, (38)

where (gα)β ≙ 0 if ∣β∣ > dgα .
The finiteness of moments guarantees that a subset of moment

equations will hold, as stated in the following lemma.

Lemma 3 (The moment equations). If Assumption 1 is satisfied
and π ∈ P, then the α-moment equation

⟨Qxα⟩
π
≙ zTgα ≙ 0 (39)

holds for every α ∈ Nn such that ∣α∣ ≤ d − db + 1.

Proof. Consider the adjoint of (8),

⟨Qf ⟩π ≙∑
x∈S

∑
y∈S

q(x, y)f (y)π(x) ≙ 0, (40)

which, by Fubini’s theorem, is valid for any f as long as
∑x∈S∣q(x, x)f (x)∣π(x) is finite.41 Because

s(x)∣q(x, x)xα∣ ≙ m

∑
j=1

bj(x)xα ≙ m

∑
j=1
∑
∣β∣≤db

(bj)β xα+β,
Assumption 1 implies

∑
x∈S

∣q(x, x)xα∣π(x) ≤ ∑
∣β∣≤db

⎛⎝
m

∑
j=1

∣(bj)β∣⎞⎠zβ+α <∞,

for all ∣α∣ ≤ d − db + 1. Setting f (x) ∶≙ xα in (40), we get

0 ≙ ⟨Qxα⟩
π
≙ ⟨ gα

s
⟩
π

≙ ∑
∣β∣≤d

(gα)β⟨xβs ⟩
π

≙ zTgα.

In addition to the moment equations (39), the moments z sat-
isfy additional constraints. First, since π is a probability distribution,
we have

zTs ≙ ∑
∣β∣≤d

sβ⟨xβ
s
⟩
π

≙ ⟨ s
s
⟩
π

≙ ⟨1⟩π ≙ 1. (41)

Furthermore, the rational moments satisfy well-known semidefinite
inequalities.34,42,43 Specifically, the localizing matrices are positive
semidefinite,

Mi
d(z) ⪰ 0 ∀i ≙ 0, . . . ,n, (42)

where theMi
d(y) are defined by

∥M0
d(y)∥αβ ∶≙ yα+β, ∀α,β : ∣α∣, ∣β∣ ≤ ⌊d/2⌋,

∥Mi
d(y)∥αβ ∶≙ yα+β+ei , ∀α,β : ∣α∣, ∣β∣ ≤ ⌊(d − 1)/2⌋,

with ei denoting the ith unit vector and y ∈ R#d .
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The inequalities (42) follow from the fact that for any polyno-
mial function f (x) of degree ⌊d/2⌋ with (column) vector of coeffi-
cients f ≙ (fβ)∣β∣≤⌊d/2⌋, we have

f
TM0

d(z)f ≙ ∑
∣α∣≤⌊d/2⌋

∑
∣β∣≤⌊d/2⌋

fαfβzα+β

≙ ⟨(∑∣α∣≤⌊d/2⌋ fαxα)(∑∣β∣≤⌊d/2⌋ fβxβ)
s

⟩
π

≙ ⟨ f 2
s
⟩
π

≥ 0. (43)

Similarly, it can be shown42,43 that

f
TMi

d(z)f ≙ ⟨xi f 2s ⟩
π

≥ 0 ∀i ≙ 1, . . . ,n. (44)

Since (43) and (44) hold for any vector f, the matrices Mi
d(z) are

positive semidefinite.

Remark 4. In the case of Schlögl’s model (10), we had s(x) = 1,
db = 3, and #d = d + 1. Equation (14) is the moment equation (39)
with α = 1, and the matrices in (21) with d = 3 are M0

3(y) and
M1

3(y).
1. Bounding the moments

We can then establish the following lemma regarding outer
approximations of the set of rational moments.

Lemma 5 (Outer approximations of the set of rational
moments). If Assumption 1 is satisfied and π ∈ P, the vector of
rational moments z belongs to the spectrahedron,

E
d
∶≙

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y ∈ R#d :

yTgα ≙ 0 ∀∣α∣ ≤ d − db + 1,

yTs ≙ 1,

Mi
d(y) ⪰ 0 ∀i ≙ 0, 1, . . . ,n.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (45)

where db is the maximum degree of the numerators in (31) and s, gα,
and Mi

d(y) are defined in (32), (38), and (42), respectively.

Proof. The proof follows from Lemma 3, (41) and (42).

In summary, the vectors of stationary moments of order d

are contained in a feasible set Ed, defined by linear equalities and
inequalities, which constitutes an outer approximation to the set of
moment vectors. There are several implications of this lemma.

First, the outer approximation property implies that extremal

points of Ed provide bounds on the stationary moments. Specifi-

cally, the vector in Ed with largest (respectively, smallest) α-entry
provides an upper (respectively, lower) bound on the α-moment.

For example, Fig. 1(b) shows the projection of Ed with increasing
d onto the y1–y2 plane for Schlögl’s model. The northeasternmost
(respectively, southwesternmost) vector of these outer approxima-
tions yields upper (respectively, lower) bounds on the first two
moments of Schlögl’s model.

Second, note that the moment matrixMi
d(y) is a principal sub-

matrix ofMi
d+1(y). Since a matrix is p.s.d. if and only if all of its prin-

cipal submatrices are p.s.d. and Ed+1 includes all moment equations

in Ed, then it follows that every vector in Ed+1 (appropriately trun-

cated) belongs to Ed. As a result, the outer approximations tighten
around the set of stationary moment vectors with bounds of increas-
ing quality as the order of the approximation d is increased, as seen
in Fig. 1(b). These two observations are summarized in the following
corollary.

Corollary 6 (Monotonic moment bounds). Suppose that
Assumption 1 is satisfied and π ∈ P. If f is a polynomial of degree
df ≤ d, then

L
df
f
≤ L

df +1

f
≤ ⋅ ⋅ ⋅ ≤ Ldf ≤ ⟨ fs ⟩π ≤ Ud

f ≤ ⋅ ⋅ ⋅ ≤ U
df +1

f
≤ U

df
f
, (46)

where

Ldf :≙ inf{fTy : y ∈ Ed}, (47)

Ud
f :≙ sup{fTy : y ∈ Ed}. (48)

Proof. Because

⟨ f
s
⟩
π

≙ ⟨∑∣β∣≤d fβxβ
s

⟩
π

≙ ∑
∣β∣≤d

fβ⟨xβ
s
⟩
π

≙ zTf,

Lemma 5 implies that L
df
f
, . . . ,Ldf and U

df
f
, . . . ,Ud

f bound ⟨f /s⟩π . As
explained in the main text, the monotonicity of the bounds follows

from the definition of Ed and the fact that a matrix is p.s.d. if and

only if all of its principal submatrices are p.s.d and Ed+1 includes all

moment equations in Ed.

Applying these results to ⟨xα⟩π , the α-moment of the CME, is
straightforward. Let f (x) ∶≙ s(x)xα and choose d ≥ |α| + ds to obtain
the bounds

Ldα ∶≙ L
d
f , Ud

α ∶≙ U
d
f . (49)

Corollary 6 establishes that outer approximations Ed of increasing
order can be used to compute a monotonically increasing (respec-
tively, decreasing) sequence of lower (respectively, upper) bounds
for ⟨xα⟩π ,

L∣α∣+dsα ≤ . . . ≤ Ldα ≤ ⟨xα⟩π ≤ Ud
α ≤ . . . ≤ U

∣α∣+ds
α .

Remark 7 (The sequence of moment bounds is monotonic but
may not converge). The monotonicity of the bounds does not imply

that the gap between the bounds (Ud
α − L

d
α) will converge to zero as d

→∞. Although in our experience, the bounds often converge numer-
ically, there is no general guarantee for several reasons. First, the sta-
tionary solutionmay not be unique, and in that case, the lower bounds
are limited by the stationary solution with the smallest moment, while
the upper bounds are limited by that with the largest moment. Even
if the solution is unique, the bounds may not converge because the
semidefinite conditions are tailored to distributions with support on
the non-negative real orthant but not to distributions with support
on discrete state spaces,44 for which more stringent conditions can be
produced at a higher computational cost.42,44,45
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2. Computing moment bounds via semidefinite
programming

Given a reaction network with rational propensities and a poly-
nomial f of degree df , the moment bounds (47) and (48) are the

extreme points of the linear functional y↦ fTy over the set Ed, which
is defined by linear equalities and semidefinite inequalities. Hence,
computing the bounds amounts to solving a semidefinite program
(SDP), a convex optimization problem for which there exist effi-
cient computational tools. Therefore, instead of ad hoc analytical
manipulations, such as those leading to (30), a general procedure
by constructing and solving the SDPs systematically is implemented
as follows:

1. Rewrite the reaction propensities in the form (31) removing
all common factors and setting s to be the lowest common
denominator.

2. Verify the existence of stationary solutions π and choose the
order of the approximation d, an integer d ≥ df for which the
d + 1 stationary moments are finite (Assumption 1) using a
Foster-Lyapunov criterion (Theorem 31 in Appendix B).

3. Compute the bounds Ldf and Ud
f by solving the two SDPs

(47) and (48). We set up the SDPs using the modeling pack-
age YALMIP46 and solve them using the multiprecision solver
SDPA-GMP47 with the interface mpYALMIP.48 Examples of
computation times are given in the figure captions.

SDPs involving high order moments can be numeri-
cally ill-conditioned.27,44,49 Although the origin of this numer-
ical instability remains an open problem, our computations
suggest that it could be the result of the rapid growth of
moments, which leads to ill-conditioned moment matrices.
Such disparity is problematic for standard double-precision
SDP solvers, but we have mitigated it with the multiprecision
solver SDPA-GMP47 as in Ref. 49. Alternatively, one can scale
the moments27,44,49 or adapt recently developed specialized
solvers.50,51

4. Evaluate the error of the bounds by computing the gap Ud
f

−Ldf . If the gap is unsatisfactorily large, increase the order of the
approximation and return to step 2 to compute new bounds.

Corollary 6 guarantees that the bounds will not loosen as
we increase d, yet the bounds may stagnate (Remark 7). In this

FIG. 2. Moment bounds for Schlögl’s model (10) using SDPs. (a) Upper bounds (Ud
α , red circles) and lower bounds (Ldα, blue circles) for the first three moments (⟨xα⟩π ,

α = 1, 2, 3) computed for increasing order of the approximation, d (no. of moment equations = d − 2). The bounds for the first two moments computed by solving the SDPs
with d = 3 coincide with the analytical expressions (30). The bounds approach the true moments (dashed lines). Inset: the gap between upper and lower bounds decreases
to zero as d increases. (b) The moment bounds in (a) are used to obtain bounds of three typical statistics: coefficient of variation, variance, and skewness. Insets: the gap
between lower and upper bounds also decreases to zero. For each moment, we computed 30 bounds (upper and lower, d = 3, . . ., 17) for a solver time of 29 s (1 s per
bound). Parameters: k1 = 6, k2 = 1/3, k3 = 50, and k4 = 3, which correspond to a unimodal stationary solution.
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case, we recommend breaking the impasse by employing the
LP approach of Sec. IV [see Fig. 7(b)].

As an example of this procedure, Fig. 2(a) shows how the com-

puted upper and lower bounds (Ldα,Ud
α) for the first three station-

ary moments of Schlögl’s model become tighter as we increase d,
the order of the approximation. Figure 2(b) combines the moment
bounds to obtain bounds on commonly used statistics, e.g., variance,
coefficient of variation, and skewness.

IV. BOUNDING AND APPROXIMATING
THE STATIONARY SOLUTIONS OF THE CME

The semidefinite programming scheme in Sec. III B 2 allows
us to compute bounds of the stationary moments of the CME by
constructing and optimizing over outer approximations of the set
of stationary moments. In this section, we go further and intro-
duce a linear programming scheme that yields bounds on the full
stationary solutions of the CME, their marginals, and their aver-
ages by constructing and optimizing over outer approximations of
the set of stationary solutions. To do so, we use a moment bound
obtained using the approach in Sec. III B 2. Note that the approx-
imations in this section only involve linear inequalities (instead
of semidefinite ones). Hence, the optimizations to be solved are
linear programs (instead of SDPs), a simpler subclass of convex
optimization problems for which mature, industrial solvers52 are
available.

As for the SDP scheme above, we introduce the mathematical
approach through a simple semi-analytic example (i.e., birth-death
processes) in Sec. IV A and then present the computational frame-
work for general CMEs in Sec. IV B. Readers interested in the com-
putational implementation (and not the mathematical background)
should skip Sec. IV A and go directly to Sec. IV B.

A. A simple example: Bounding the stationary
solution of birth-death processes

Birth-death processes are one-species reaction networks (n = 1)
with state space S ≙ N whose value x ∈ N changes by ±1 in each
reaction,

∅
a+
Ð→ S

a−
Ð→ ∅. (50)

The specific birth-death process is defined by the functional form of
the given propensities a+(x) and a−(x).

The stationary equations πQ = 0 then read

a−(1)π(1) − a+(0)π(0) ≙ 0, (51)

a−(x + 1)π(x + 1) − (a+(x) + a−(x))π(x)
+ a+(x − 1)π(x − 1) ≙ 0, x ≥ 1. (52)

Assuming nonvanishing death rates

a−(x) > 0, ∀x ≥ 1, (53)

it is well known that the unique stationary solution is53

π(x) ≙ [ x

∏
z=1

a+(z − 1)
a−(z) ]π(0) ≙: γ(x)π(0), ∀x ≥ 0, (54)

with π(0) given by the normalization condition,

π(0) ≙ 1

∑∞x=0 γ(x) ≙:
1

γ(S) , (55)

where we have introduced the notation for sums over sets,

∑
x∈S

γ(x) ≙: γ(S). (56)

Hence, birth-death processes have at most one stationary solution,
which exists if and only if γ(S) is finite.
1. Semi-analytical approach for bounds
and approximation

For most birth-death processes, no closed-form expression for
γ(S) is known and, consequently, the stationary solution cannot be
computed exactly. However, we can obtain upper and lower bounds
for the distribution, as follows.

Let us consider a state space truncation

Sr ∶≙ {x ∈ N : xα < r} ≙ {0, 1, . . . , ⌈r1/α⌉ − 1}, (57)

with size ∣Sr ∣ ≙ ⌈r1/α⌉ controlled by the parameters α ∈ Z+ and r > 0.
Let Sc

r denote its complement, i.e., the set of states outside of the
truncation Sr .

Let us assume that we have available an upper bound on the
stationary α-moment,

⟨xα⟩
π
≤ c. (58)

Note that for rational propensities, such a bound can be computed
with the SDP scheme in Sec. III.

Upper bound: An easy upper bound on π(0) is obtained by
truncating the sum in (55) to get

1

∑x∈Sr
γ(x) ≥ 1

∑∞x=0 γ(x) ≙ π(0),
whence it follows that

π(x) ≤ γ(x)
γ(Sr) ≙: urx ∀x ∈ Sr . (59)

Lower bound: Using (58), we obtain a bound on the probability
massmr outside of the truncation,

mr :≙ ∑
x∉Sr

π(x) ≤ 1

r
∑
x∉Sr

xαπ(x) ≤ ⟨xα⟩π
r
≤
c

r
≙: εr . (60)

We say that εr is a tail bound.
A lower bound on π(0) then follows from (54)–(60),

π(0) ≙ 1 −mr

∑x∈Sr
γ(x) ≥ 1 − εr

γ(Sr) , (61)

whence we obtain a lower bound for π(x),

π(x) ≥ urx(1 − εr) ≙: lrx, ∀x ∈ Sr . (62)

Convergent bounds: We have thus shown that

lrx ≤ π(x) ≤ urx, ∀x ∈ Sr , (63)
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and it is easy to see that both bounds converge to the stationary solu-
tion as the size of the truncation grows: as r →∞, both urx → π(x)
and lrx → π(x). This follows from (54) and (55) and εr → 0.

a. Approximating the distribution and the approximation error.
Motivated by these facts, we define the two following measures
(lower and upper bounds padded with zeros):

lr ∶≙ (lr(x))x∈S, lr(x) ∶≙ {lrx if x ∈ Sr

0 if x ∉ Sr

, (64)

ur ∶≙ (ur(x))x∈S, ur(x) ∶≙ {urx if x ∈ Sr

0 if x ∉ Sr

, (65)

and introduce them as approximations for π,

π̃ ≃ π, where π̃ ≙ lr or π̃ ≙ ur .

We quantify the approximation error of π̃ with the total varia-
tion norm,

∣∣π − π̃∣∣ ≙ sup
A⊆S
∣π(A) − π̃(A)∣, (66)

where π(A) and π̃(A) are sums over sets, defined in (56).
For ur and lr , the approximation error can be characterized

further. Using (59)–(65), we have

∣∣π − lr∣∣ ≙ π(S) − lr(S) ≙ 1 − ∑
x∈Sr

lrx

≙ 1 − (1 − εr)∑
x∈Sr

urx ≙ εr , (67)

∣∣π − ur∣∣ ≙ max{ur(Sr) − π(Sr),π(Sc
r)}

≙ max{1 − (1 −mr),mr} ≙ mr ≤ εr . (68)

Since εr = c/r → 0 as r → ∞, it thus follows that both lr and ur

converge in total variation to π.
We summarize these findings in the following theorem:

Theorem 8 (Bounds and approximations of the stationary
solution of birth-death processes). Consider any birth-death process
(50)with nonvanishing decay rates (53) and finite sum γ(S) (55) such
that it has a unique stationary solution π (54). Suppose that π satis-
fies the moment bound (58) and let Sr ⊆ S be the truncation (57) of
the state space controlled by the parameters r,α ∈ Z+, with tail bound
mr ≙ π(Sc

r) ≤ c/r ≙ εr . Then, the following hold:
(i) The values of the distribution over the truncation are bounded

above and below,

lrx ≤ π(x) ≤ urx, ∀x ∈ Sr ,

where urx ≙ γ(x)/γ(Sr) and lrx ≙ u
r
x(1 − εr).

(ii) The measures lr ≙ (lr(x))x∈S and ur ≙ (ur(x))x∈S defined in
(64) and (65) approximate the solution with approximation
errors,

∣∣π − lr∣∣ ≙ εr and ∣∣π − ur∣∣ ≙ mr .

(iii) The bounds vary monotonically with r,

lrx ≤ l
r+1
x ≤ ⋯ ≤ π(x) ≤ ⋯ ≤ ur+1x ≤ u

r
x, ∀x ∈ Sr ,

and the sequences of approximations converge in total varia-
tion to π,

lim
r→∞
∣∣π − lr∣∣ ≙ lim

r→∞
∣∣π − ur∣∣ ≙ 0.

Proof. This follows from (59)–(68) and Corollary 6.

Remark 9. If Assumption 1 holds, then π satisfies the moment

bound (58) with c ≙ Ud
α , where α ∈ {1, . . ., d − ds} and Ud

α is defined
in (48).

b. An application of theorem 8: Schlögl’s model. To illustrate
our results, we apply Theorem 8 to compute bounds on the unique
stationary solution of Schlögl’s model (10)–(12). This model is a
birth-death process for which an explicit analytical stationary solu-
tion can be obtained, thus allowing us to test the results directly
without any simulations.

Through some analytical manipulations, the solution of
Schlögl’s model can be obtained explicitly in terms of

1

π(0) ≙ 2F2(− c1 + 1

2
,
c1 − 1

2
;−

c2 + 1

2
,
c2 − 1

2
;
k1
k2
), (69)

where 2F2 denotes the generalized hypergeometric function;

c1 ∶≙
√
1 − 4k3/k1; and c2 ∶≙

√
1 − 4k4/k2. The stationary solution

goes from being unimodal [black line, Fig. 3(a)] to bimodal [black
line, Fig. 3(b)] depending on the parameter values, analogously to a
bifurcation.

In Figs. 3(a) and 3(b), we compare the approximations lr and ur

given in Theorem 8 (color shades) to the analytical solution (black
lines) of the unimodal and bimodal cases. As the size of the trunca-
tion (controlled by the parameter r) is increased, the bounds tighten
around the analytical solution. In Figs. 3(c) and 3(d), we show that
the approximation error tends to zero as the size of the trunca-

tion ∣Sr ∣ ≙ ⌈r1/α⌉ is increased. In the unimodal case [Fig. 3(c)],
the approximation error decreases rapidly when ∣Sr ∣ is larger than
the mode. Furthermore, when the truncation is sufficiently large,
employing bounds on higher order moments (larger α) provides
tighter tail bounds and smaller approximation errors. On the other
hand, if the size of the truncation is smaller than the mode, using
higher order moments does not necessarily improve the approxi-
mation error. A similar dependence of the approximation error is
observed in the bimodal case [Fig. 3(d)], but the approximation
error only decreases when the truncation size is larger than the
second (larger) mode. This example shows how the ability to com-
pute error bounds can reveal the presence of modes outside of the
truncation.

2. Reformulation of the bounds as optimizations

The truncation method leading to Theorem 8 relies on
the detailed balanced structure of birth-death processes. How-
ever, this semi-analytic method is not generalizable to arbi-
trary reaction networks. Instead, the bounds can be reformu-
lated as an equivalent (and generalizable) optimization problem, as
follows.

Consider a truncation Sr (57) controlled by the parameters
α, r ∈ Z+ with tail boundmr ≙ π(Sc

r) ≤ c/r ≙ εr .
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FIG. 3. Bounding the stationary solution of Schlögl’s model (10). The stationary solution of (10) can be unimodal (a) or bimodal (b) depending on the parameters. (a) Shadings
show the tightening gap (lrx ,u

r
x) between upper and lower bounds on the stationary solution for truncations Sr of increasing size (∣Sr ∣ = ⌈r1/α⌉). We use mr ≤ U25

α /r with
U25

1 = 17.5 computed as in Sec. III (solver time = 7 s). The exact solution, given by (54) and (69), is shown for comparison (black line). (b) Same as (a) but for the bimodal
case, with tail bounds computed using U25

1 = 98.0,U
25
25 = 6.37× 10

51 (solver time = 8 and 7 s, respectively). (c) The approximation error of the lower bound approximation,
εr , for the unimodal case decreases as ∣Sr ∣ increases, shown here for various values of α. (d) Same as (c) but for the bimodal case. Note that only when the truncation
includes enough states [different values of ∣Sr ∣ for (c) and (d)], does the error fall below the dashed line εr < 1 so that the bounds provide information about the stationary
solution. For the bimodal case, the error indicates the presence of a second mode outside of the truncation when ∣Sr ∣ is too small. Parameters: (a): k1 = 6, k2 = 1/3, k3 = 50,
and k4 = 3; (b): k1 = 1/9, k2 = 1/1215, k3 = 27/2, and k4 = 59/20.

Definition 10 (Restriction of π to Sr). The restriction of π to Sr

is

π∣r(x) ∶≙ {π(x) if x ∈ Sr

0 if x ∉ Sr

, ∀x ∈ S. (70)

The restriction π|r belongs to the convex polytope,

P
r
≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
π
r
∈ ℓ

1 :

πr Q(x) ≙ 0, ∀x ∈ Nr

πr(Sc
r) ≙ 0

πr ≥ 0

1 − εr ≤ π
r(S) ≤ 1⟨xα⟩πr ≤ c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (71)

where Nr ∶≙ {0, 1, . . . , ⌈r1/α⌉ − 1}, which follows directly from the
definition of the restriction (70), the tail bound (60), and the fact
that the stationary equations (51) and (52) with x < ⌈r1/α⌉ − 1 only
involve states inside of the truncation.

From the definition of the polytope (71), we can show that the
bounds of the stationary solution in Theorem 8 (i) are recovered by
optimizing over Pr , as stated in the following theorem.

Theorem 11 (Bounds and LP formulation). The bounds lr and
ur in (64) and (65) are obtained by optimizing over the polytope Pr ,

lr(x) ≙ inf{πr(x) : πr ∈ Pr},
ur(x) ≙ sup{πr(x) : πr ∈ Pr}, ∀x ∈ S.

Proof. We only present the argument for the upper bounds—
the proof for the lower bounds is analogous. If x ∉ Sr , the
result is trivial. A distribution πr satisfies (71) if and only if πr(x)
≙ γ(x)πr(0),∀x ∈ Sr , where γ(x) is given in (54). Therefore, we
have

sup{πr(x) : πr ∈ Pr} ≙ γ(x)(sup{πr(0) : πr ∈ Pr})
≤

γ(x)
γ(Sr) ≙ ur(x), ∀x ∈ Sr , (72)

which follows from πr(0) ≙ πr(Sr)/γ(Sr) ≤ 1/γ(Sr). However,
ur clearly satisfies all constraints in (71), including the moment
constraint,

c ≥ ⟨xα⟩π ≙ γ(Sr)
γ(S) ∑x∈Sr

γ(x)
γ(Sr)xα + γ(Sc

r)
γ(S) ∑x∈Sc

r

γ(x)
γ(Sc

r)xα
>
γ(Sr)
γ(S) ⟨xα⟩ur + γ(Sc

r)
γ(S) ⟨xα⟩ur ≙ ⟨xα⟩ur ,

which follows from π(x) ≙ γ(x)/γ(S) and the inequality

∑
x∈Sc

r

γ(x)
γ(Sc

r)xα ≥ ∑x∈Sc
r

γ(x)
γ(Sc

r) r ≙ ∑x∈Sr

γ(x)
γ(Sr) r

> ∑
x∈Sr

γ(x)
γ(Sr)xα ≙ ⟨xα⟩ur .

Hence, ur ∈ Pr and together with (72), this completes the proof.
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Importantly, the definition (71) only involves linear equations
and inequalities. Therefore, optimizing over the polytope consists of
solving a linear program, a class of optimizations for which there
exist powerful computational platforms and algorithms. Further-
more, this optimization reformulation can be extended seamlessly
to arbitrary networks, as expanded in Sec. IV B.

B. Generalization to arbitrary networks via linear
programming

Wenow generalize the optimization approach to obtain bounds
and approximations with controlled errors of the stationary solu-
tions of arbitrary reaction networks.

Let us consider a reaction network (1) with state space S, rate
matrix Q satisfying (4) and (5), and stationary solutions π ∈ ℓ1 that
form the polytope P (9).

To characterize the solutions of the CME, we choose a normlike
function w, which plays the same role as the moment function (xα)
in Sec. IV A 2.

Definition 12 (Normlike function). A function w : S → R is
normlike if it is non-negative,

w(x) ≥ 0, ∀x ∈ S, (73)

and has finite sublevel sets

Sr ∶≙ {x ∈ S : w(x) < r}. (74)

Furthermore, we require that the growth of w be dominated by
the stationary solution π so that its expectation with respect to π is
finite. We summarize these requirements in the following checkable
assumption.

Assumption 13 (Existence of CME solutions and moment
bound). We assume that the CME has at least one stationary solu-
tion π and that we have available a normlike functionw with sublevel
sets Sr such that every stationary solution π satisfies

⟨w⟩π ≙∑
x∈S

w(x)π(x) ≤ c, (75)

where c is a known constant. This inequality can be thought of as a
generalization of (58); hence, we refer to it as a moment bound.

The existence of the stationary solutions can be verified on a case
by case basis using a Foster-Lyapunov criterion (e.g., Theorem 31 in
Appendix B).

Regarding the moment bound, in the case of networks with ratio-
nal propensities satisfying Assumption 1, w can be chosen to be any
normlike rational function with numerator of degree d and the bound-
ing constant c can then be computed using the SDP approach of
Sec. III. For general reaction networks, the moment bound can be
obtained using Foster-Lyapunov criteria41 (see Appendix B).

In analogy with Lyapunov theory, the sublevel sets (74) of w
play an important role in characterizing the stationary solutions of
the CME. Specifically, we use the sublevel sets Sr as our state space
truncations, noting that (75) allows us to establish a bound on the
mass of the tail of the distribution outside of Sr ,

mr ∶≙ π(Sc
r) ≤ 1

r
∑
x∉Sr

w(x)π(x) ≤ ⟨w⟩π
r
≤
c

r
∶≙ εr . (76)

Just as in Sec. IV A, this choice yields a sequence of increasing
truncations that approach the entire state space,

S1 ⊆ S2 ⊆ ⋯,
∞

⋃
r=1

Sr ≙ S.

For each truncation, let Nr denote the set of states x ∈ Sr that
cannot be reached in a single jump from outside of the truncation,

Nr ∶≙ {x ∈ Sr : q(z, x) ≙ 0, ∀z ∉ Sr}, (77)

and the associated convex polytope,

P
r
∶≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
π
r
∈ ℓ

1 :

πr Q(x) ≙ 0, ∀x ∈ Nr

πr(Sc
r) ≙ 0

πr ≥ 0

1 − εr ≤ π
r(S) ≤ 1⟨w⟩πr ≤ c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (78)

which, analogously to (71), includes all the stationary equations that
only involve states in Sr .

We then have the following lemma:

Lemma 14 (Outer approximations ofP). Suppose that Assump-
tion 13 holds and let π|r be the restriction of π to Sr , as defined in (70).
If π ∈ P, then π∣r ∈ P

r .

Proof. This follows directly from (76) and the fact that πQ(x)
≙ π∣r Q(x), ∀x ∈ Nr .

The outer approximation property means that optimizing over
Pr provides convergent bounds on the averages of functions f on the
state space, as summarized in the following theorem.

Theorem 15 (Convergent bounds of stationary averages).
Consider a reaction network (1) with state space S, rate matrix Q sat-
isfying (2)–(5), and stationary solutions π forming the set P (9) and
suppose that Assumption 13 holds.

If π ∈ P and f : S ↦ R is any real-valued function, then we can
bound its averages over the restrictions,

lrf ≤ ⟨ f ⟩π∣r ≤ urf , ∀r ∈ Z+, (79)

where π|r is the restriction of π to Sr defined in (70) and the bounds
are given by

lrf ∶≙ inf{⟨ f ⟩πr : πr ∈ Pr},
urf ∶≙ sup{⟨ f ⟩πr : πr ∈ Pr}. (80)

If we have additional information on f , we have the following
bounds on the full π-averages:

(i) If f (x) ≥ 0, ∀x /∈ Sr , then lrf ≤ ⟨ f ⟩π , ∀r ∈ Z+.

(ii) If f (x) ≤ 0, ∀x /∈ Sr , then ⟨ f ⟩π ≤ urf , ∀r ∈ Z+.

(iii) If ⟨∣ f ∣⟩π <∞ (i.e., f is π-integrable), then

lrf − c(sup
x∉Sr

∣ f (x)∣
w(x) ) ≤ ⟨ f ⟩π ≤ urf + c(sup

x∉Sr

∣ f (x)∣
w(x) ). (81)

(iv) If the growth of f is strictly dominated by that of w, i.e.,
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lim
r→∞

sup
x∉Sr

∣ f (x)∣
w(x) ≙ 0, (82)

then f is π-integrable for all π ∈ P and the sequences of bounds
from below (lrf )r∈Z+ and above (urf )r∈Z+ converge,

lim
r→∞

lrf ≙ lf ∶≙ inf{⟨ f ⟩π : π ∈ P},
lim
r→∞

urf ≙ uf ∶≙ sup{⟨ f ⟩π : π ∈ P}. (83)

Proof. Equation (79) follows directly from Lemma 14.
(i) and (ii) follow from (79) and ⟨ f ⟩π ≙ ⟨ f ⟩π∣r +∑x∉Sr

f (x)π(x).
(iii) is a consequence of (79), the moment bound (75), and the

following inequality:

∑
x∉Sr

∣ f (x)∣π(x) ≤ (sup
x∉Sr

∣ f (x)∣
w(x) )∑x∉Sr

w(x)π(x)
≤ (sup

x∉Sr

f (x)
w(x))⟨w⟩π . (84)

(iv) has two parts. First, the π-integrability of f follows from

⟨∣ f ∣⟩π ≙ ⟨∣ f ∣⟩π∣r + ∑
x∉Sr

∣ f (x)∣π(x)
≤ ⟨∣ f ∣⟩π∣r + (sup

x∉Sr

f (x)
w(x))⟨w⟩π <∞.

Second, the convergence of the bounds follows from the fact that
every subsequence of (lrf )r∈Z+ has a converging subsequence (lrkf )k∈Z+

with limit π(f ), where π ∈ P (see Remark 16 and Theorem 3.5 in
Ref. 38). By definition, lf ≤ π(f ); hence, taking limits in (81) shows
that lf ≥ π(f ) and the result follows. The case of the upper bounds is
identical. For details, see Corollary 3.6(i) in Ref. 38.

Remark 16 (LP computation). The bounds lrf and u
r
f in (80) are

obtained by solving two linear programs (LPs) with ∣Sr ∣ variables, ∣Nr ∣
equality constraints, and ∣Sr ∣ + 3 inequality constraints. LP solvers
return the optimal value lrf (or u

r
f ) and an optimal point π∗ ,r such that⟨f ⟩π∗,r ≙ lrf (or ⟨ f ⟩πr ≙ urf ). The optimal points exist because the LPs

are optimizations of a continuous function over a compact nonempty

subset of R∣Sr ∣.

Theorem 15 provides a general framework to obtain bounds
(80) that can be used as approximations of stationary averages⟨ f ⟩π with a quantifiable error given by (i)–(iii); furthermore, under
the conditions in (iv), the approximations converge to ⟨ f ⟩π as
the truncations approach the entire state space S of the reaction
network.

1. The case of a unique distribution: Bounds
and approximations

Throughout this section, we assume that the CME has a unique
stationary solution π, i.e.,

P ≙ {π}.
In this case, the results of Theorem 15 can be strengthened. And in
particular, the feasible points πr ∈ Pr are good approximations of the

stationary solution in the sense that they converge to π in weak∗, as
detailed in the following corollary.

Corollary 17 (Convergence of bounds and feasible points for a
unique solution). Let us assume that the conditions of Theorem 15(iv)
hold and, in addition, that P ≙ {π} consists of a single stationary
solution π. Then, the upper and lower bounds (80) converge to the
average,

lim
r→∞

lrf ≙ lim
r→∞

urf ≙ ⟨ f ⟩π , (85)

and any sequence of feasible points (πr)r∈Z+ belonging to the outer
approximations (Pr)r∈Z+ (i.e., πr ∈ Pr , ∀r ∈ Z+) converges to π in
weak∗,

lim
r→∞
⟨g⟩πr ≙ ⟨g⟩π , (86)

for any function g that satisfies (82).

Proof. This proof is similar to that of Theorem 15(iv). For full
details, see Corollary 3.6(iii) in Ref. 38.

Remark 18. When w is normlike, convergence in weak∗ implies
convergence in total variation—see Appendix B of Ref. 38 for a proof.

Remark 19. Corollary 17 shows that, given a sufficiently large
truncation, the feasible points πr provide arbitrarily accurate approx-
imations to π, yet with no quantifiable bound on the approximation
error ||π − πr||.

a. Bounding the stationary solution. To obtain approxima-
tions with quantifiable errors, here we compute bounds on π(x) for
every state in the truncation by solving LPs (80) for various functions
f. In particular, setting f to be the indicator function 1x of a state x in
Sr [cf. (3)] and noting that ⟨1x⟩π∣r ≙ π(x), we obtain the bounds

lrx ≤ π(x) ≤ urx, ∀x ∈ Sr , (87)

where

lrx :≙ l
r
1x ≙ inf{πr(x) : πr ∈ Pr}, (88)

urx :≙ u
r
1x ≙ sup{πr(x) : πr ∈ Pr}. (89)

As in (64) and (65), we then collect these bounds, pad them with
zeros, and define two approximations for π,

lr ∶≙ (lr(x))x∈S, lr(x) ∶≙ {lrx if x ∈ Sr

0 if x ∉ Sr

, (90)

ur ∶≙ (ur(x))x∈S, ur(x) ∶≙ {urx if x ∈ Sr

0 if x ∉ Sr

. (91)

These approximations of π have controlled errors, as summarized in
the following corollary.

Corollary 20 (Upper and lower bounding approximations of
the unique solution). If Assumption 13 holds and P ≙ {π}, then the
approximations lr (90) and ur (91) fulfill the following:
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(i) The approximations lr and ur bound π from below and above,
respectively,

lr(x) ≤ π(x), ∀x ∈ S, (92)

π(x) ≤ ur(x), ∀x ∈ Sr , (93)

with quantified approximation errors εlr and ε
u
r ,

∣∣lr − π∣∣ ≙ 1 − lr(Sr) ≙: εlr , (94)

∣∣ur − π∣∣ ≙ max{ur(Sr) − 1 +mr ,mr}
≤ max{ur(Sr) − 1 + c/r, c/r} ≙: εur , (95)

where ∣∣⋅∣∣ denotes the total variation norm (66).

(ii) As the truncation size r approaches infinity (and Sr approaches
S), the approximation ur converges pointwise to the unique π,

lim
r→∞

ur(x) ≙ π(x), ∀x ∈ S, (96)

and the approximation lr converges to π in weak∗ (86).

Proof. The bounds (92) and (93) follow directly from Theorem
15. The error (94) follows from (92) and the fact that the total varia-
tion norm of an unsigned measure is its mass. Similarly, (95) follows
from (76), (93), and

∣ur(A) − π(A)∣ ≤ max{ur(A) − π∣r(A),π(A ∩ Sc
r)}

≤ max{ur(Sr) − 1 +mr ,mr}
≙ max{∣ur(Sr) − π(Sr)∣, ∣ur(Sc

r) − π(Sc
r)∣}, ∀A ⊆ S.

Theorem 15(iv) shows that lr and ur converge pointwise to π. For
any f satisfying (82) and r, r′ ∈ Z+, we have that

∣π( f ) − lr( f )∣ ≤ ∑
x∈Sr′

∣ f (x)∣ (π(x) − lr(x)) + 2 ∑
x∉Sr′

∣ f (x)∣π(x).
Using the pointwise convergence of lr and (84), we can pick r′ such
that the second sum is arbitrarily small and, subsequently, an r such
that the first sum is arbitrarily small. Hence, the weak∗ convergence
of lr follows. See Theorem 4.1 in Ref. 38 for details.

Corollary 20 states that, for sufficiently large r, lr and ur are
close to π. In contrast with the feasible points πr , we can answer the

question “is r sufficiently large?” by evaluating the errors εlr (94) and
εur (95). Since

lim
r→∞

ε
l
r ≙ 0,

we will always find an approximation lr that verifiably meets any
given error tolerance by increasing r.

Remark 21. Although we have no proof that εur converges to zero
(nor that ur itself converges to π in total variation), all the examples
we have encountered in practice exhibit convergence of ur and εur .

To instead answer the question “when is r too small?” (i.e., to
establish how large the partition Sr must be to guarantee a given
approximation error), the following proposition is of use.

Proposition 22 (Achievable approximation errors). Under the
same conditions as in Corollary 20, the errors of the approximations
lr (90) and ur (91) cannot be made smaller than the tail bound or the
mass of the tail, respectively, i.e.,

∣∣lr − π∣∣ ≥ εr , ∀r ∈ Z+, (97)

∣∣ur − π∣∣ ≥ mr , ∀r ∈ Z+, (98)

where mr ≙ π(Sc
r) ≤ εr ≙ c/r.

Proof. The inequality (98) follows directly from (95). For (97),
recall that there exists at least one optimal point π∗ ,r such that
π∗ ,r(x) = lr(x) for any given x ∈ Sr (Remark 16). It is straightforward
to verify that

1 − εr
π∗,r(Sr)π∗,r ∈ Pr ,

which implies π∗,r(Sr) ≙ 1 − εr [due to the minimality of π∗ ,r(x)].
Since lr bounds from below all feasible points of Pr , it follows that
lr(Sr) ≤ π∗,r(Sr) ≙ 1 − εr . Combined with (94), this gives (97).

In other words, the approximation error of the lower bounds is
no smaller than the tail bound, whereas that of the upper bounds is
no smaller than the tail mass.

Remark 23. The inequalities (97) and (98) are sharp for birth-
death processes with w(x) = xα [see (67) and (68)].

b. Approximating marginal distributions. For high-dimen-
sional state spaces, we are often interested in marginal distribu-
tions rather than the full multivariate solution π defined on S. A
marginalization is associated with a partition of the state space into
a collection of disjoint subsets,

{Ai}i∈I, ∪i∈IAi ≙ S, Ai ∩ Aj ≙ ∅, ∀i ≠ j ∈ I,

and themarginal distribution is defined with respect to each subset,

π̂(i) ≙ π(Ai) ≙ ∑
x∈Ai

π(x), ∀i ∈ I. (99)

Because {Ai}i∈I is a partition of S, π̂ is a probability distribution
on I.

Typically, we are interested in marginalizing the distribution
of a reaction network with n species (and state space S ≙ N

n) over
a subset of species. For instance, if we are interested in the molecule
counts of species k, we consider the following (infinite) set of subsets:

{Ai}i∈N, where Ai ∶≙ N
k−1
× {i} ×Nn−k, (100)

whose union trivially recovers the entire state space. Associated with
this set {Ai}i∈N, we then have the marginal distribution π̂

π̂(i) ≙ π({x ∈ Nn : xk ≙ i}), ∀i ∈ N,

which, in this case, corresponds to the (univariate) distribution
describing the molecule counts of the kth species.

The marginal distribution π̂ can also be bounded and approx-
imated following a similar procedure to the one described above
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for the full distribution. Using the indicator functions 1Ai as the
functions f, we solve the analogous LPs,

l̂ri ≙ inf{πr(Ai) : πr ∈ Pr}, ∀i ∈ Ir , (101)

ûri ≙ sup{πr(Ai) : πr ∈ Pr}, ∀i ∈ Ir , (102)

for all the subsets Ai that intersect with the truncation, i.e., Ir
≙ {i ∈ I : Ai ∩ Sr ≠ ∅}.

As before, we construct two approximations by padding (101)
and (102) with zeros,

l̂r ∶≙ (̂lr(i))i∈I, l̂r(i) ∶≙ ⎧⎪⎪⎨⎪⎪⎩
l̂ri if i ∈ Ir

0 if i ∉ Ir
, (103)

ûr ∶≙ (ûr(i))i∈I, ûr(i) ∶≙ {ûri if i ∈ Ir

0 if i ∉ Ir
, (104)

which are the analogs for the marginal distribution of the approx-
imations to the entire distribution (90) and (91) and have similar
(but not identical) properties, as summarized in the following two
corollaries.

Corollary 24 (Lower bounding approximation of the marginal
distribution). Let us assume that the conditions of Corollary 20 hold.
If {Ai}i∈I is a partition of S, then the associated marginal distri-

bution π̂ (99) is lower bounded by the approximation l̂r defined
in (103),

l̂r(i) ≤ π̂(i), ∀i ∈ I,

with approximation error

∣∣̂lr − π̂∣∣ ≙ 1 − l̂r(Ir) ≙: ε̂lr . (105)

Furthermore, as the truncation size is increased (r → ∞ and Sr

approaches S), l̂r converges to π̂ in total variation.

Proof. This proof is analogous to that of Corollary 20 except
that one needs to use Corollary 4.3 in Ref. 38 [with g(x, y) ≙ 1Ay(x)
instead of Theorem 4.1 in Ref. 38].

Corollary 25 (Convergent approximation of the marginal dis-
tribution). Under the same conditions as in Corollary 24, ûr defined
in (104) approximates the marginal distribution π̂ with error bounded
by

∣∣ûr − π̂∣∣ ≤ max{ûr(Ir) − 1 +mr ,mr}
≤ max{ûr(Ir) − 1 + c/r, c/r} ≙: ε̂ur . (106)

Furthermore, as the truncation Sr approaches S, û
r converges

pointwise to π̂,

lim
r→∞

ûr(i) ≙ π̂(i), ∀i ∈ I.

Proof. The proof is analogous to that of Corollary 20.

Note that ûr does provide a controlled approximation of the
marginal distribution as it is a pointwise convergent approximation
to π̂ with a guaranteed, computable error bound ε̂ur (106).

Remark 26 (Upper bounds for the marginal distribution). The
approximation ûr(i) bounds the marginal π̂(i) if and only if Ai ∩

Sc
r ≙ ∅, i.e., when the set Ai is fully contained inside the trunca-

tion Sr . Hence, û
r(i) does not provide an upper bound if the trun-

cation does not include all marginalized variables. However, using
the fact that the probability mass of Ai ∩ S

c
r is bounded by the mass

of the tail mr (76), we have the following easy (but loose) upper
bounds,

π̂(i) ≤ ûr(i) + c/r, ∀i ∈ Ir . (107)

2. Nonuniqueness, ergodic distributions,
and a uniqueness test

Theorem 15 shows that our LP optimization over the polytopes
Pr yields bounds on the stationary averages, even if there are mul-
tiple stationary solutions. In the nonunique case, however, the gap
between the lower bounds and the upper bounds will reflect the
fact that the extreme points of π ↦ ⟨ f ⟩π over P can be achieved
by different solutions in the polytope. Yet it is possible to charac-
terize further the set of solutions and the extreme points in terms
of the ergodic distributions of the CME and use this description
to turn our LP approach into a test of uniqueness, as we show
below.

To see how multiple stationary solutions of the CME can arise,
consider the simple reaction network

∅Ð→ 2S1 Ð→ ∅, S2 Ð→ ∅,

with mass action kinetics. It is clear that its state space S ≙ N
2

decomposes into three disjoint sets,

S ≙{(x1, 0) : x1 ∈ N is odd} ∪ {(x1, 0) : x1 ∈ N is even}
∪ {(x1, x2) : x1 ∈ N, x2 ∈ Z+} ≙: C1 ∪ C2 ∪ T,

where C1 and C2 are closed communicating classes and T contains
the remaining states. A set C ⊆ S is a closed communicating class39

if the chain can transit between any pair of states in C but cannot
leave C. Another common source of multiple closed communicating
classes is conservation laws in reaction networks.54 For instance, the
reactions

2S1 ⇌ S2,

conserve the quantity n = x1 + 2x2. Hence, there exists a different
closed communicating class for every n ∈ N.

The closed communicating classes are intimately related to the
stationary solutions, as summarized in the following theorem that
compiles some facts that are broadly known in the literature.

Theorem 27 (Ergodic distributions and communicating
classes15). Consider a reaction network (1) with rate matrix Q sat-
isfying (2)–(5), assume Q is regular, and decompose the state space
as

S ≙ (∪jCj) ∪ T, (108)

where Cj are closed communicating classes and T contains the remain-
ing states.
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(i) For each Cj, there is at most one stationary solution πj; hence,
πj(Cj) ≙ 1. Whenever it exists, πj is known as the ergodic
distribution associated with Cj.

(ii) Let J be the set of indexes j of the ergodic distributions πj.
The set of stationary solutions P (9) is the set of convex
combinations of the ergodic distributions,

P ≙

⎧⎪⎪⎨⎪⎪⎩∑j∈J θjπj : θj ≥ 0 ∀j ∈ J, ∑j∈J θj ≙ 1
⎫⎪⎪⎬⎪⎪⎭. (109)

Proof. If Q is regular, the stationary solutions of the CME
are the stationary distributions of the chain (Theorem 30 in
Appendix A). Using this fact, (i) can be found in most books on
continuous-time chains [e.g., Ref. 39 (Theorem 3.5.2)], and (ii) is
given in Ref. 15 (Theorem 3.4).

Theorem 27 states that the ergodic distributions πj are orthog-
onal to each other and that they are the extreme points of the convex
polytope P (9) of stationary solutions of the CME. Because P is con-
tained in the non-negative orthant of ℓ1, it follows that each face of
the non-negative orthant contains at most one of the ergodic dis-
tributions. Using this fact, we obtain a computational test of the
uniqueness of stationary solutions, as summarized in the following
corollary.

Corollary 28 (A uniqueness test). If Assumption 13 holds and Q
is regular, then

P ≙ {π} ⇐⇒ ∃x ∈ S, r ≥ 1 : lr(x) > 0.
Proof. The proof is by contradiction. Suppose that P is not

a singleton. Theorem 27(ii) implies that P contains two or more
ergodic distributions, πj, each associated with a different closed com-
municating class, Cj. Let us consider a state x ∈ C1. Since the classes
Cj are disjoint, then πj(x) = 0, ∀j ≠ 1, which contradicts the lower
bound property of lr [Theorem 15(i)]. Hence, P must be a single-
ton. The converse follows from the convergence of the bounds in
Corollary 20 (ii).

In other words, if π is unique, then the lower bound of any (and
all) states in the support of π is nonzero for sufficiently large r. Con-
versely, finding a single nonzero lower bound for any x ∈ S provides
a proof of uniqueness of the distribution. Hence, if there is more
than one ergodic distribution, all the lower bounds are zero for all
states in the state space S.

When π is unique, lr or ur are good approximations of the
stationary solution. However, this is not so in the nonunique case.
Indeed, it is easy to show that, in the nonunique case, the lower and
upper bounds are always loose: Corollary 28 shows that the lower
bounds are trivially zero everywhere (lr = 0), whereas Theorems
15(ii) and 27 imply that for large r, the mass of ur will be no smaller
than the number of ergodic distributions,

lim inf
r→∞

ur(S) ≥ ∣J∣; (110)

hence, the upper bound is not tight.
However, our LP framework can still be used to obtain approx-

imations of the ergodic distributions by using sequences of feasible

points πr . To this end, we require the following generalization of
Corollary 17.

Corollary 29 (Convergent approximations of ergodic distribu-
tions). Let f be any function that satisfies (82) (i.e., the growth of
f is strictly dominated by that of the normlike function w), and let(π∗,r)r∈Z+ be a sequence of optimal points such that

π
∗,r
∈ P

r and ⟨ f ⟩π∗,r ≙ urf ≙ sup{⟨ f ⟩πr : πr ∈ Pr},
for all r ∈ Z+.

(i) If there exists a unique point π∗ ∈ P such that

⟨ f ⟩π∗ ≙ sup{⟨ f ⟩π : π ∈ P}, (111)

then the sequence of optimal points π∗ ,r converges to π∗ in
weak∗ as r→∞.

(ii) If f is the indicator function of a state (or of a subset) that
is contained in a closed communicating class Cj with associ-
ated ergodic distribution πj, then the sequence of optimal points(π∗,r)r∈Z+ converges to πj in weak∗ as r→∞.

Proof. The proof of (i) is similar to that of Theorem 15(iv).
See Corollary 3.6(ii) and Remark 3.7 in Ref. 38 for details. (ii) fol-
lows from (i), Theorem 27(ii), and the fact that indicator functions
satisfy (82).

Corollary 29 provides a rationale for how to use our compu-
tational framework to obtain approximations of the ergodic distri-
butions πj in the nonunique case. Importantly, we do not need to
know a priori what the closed communicating classes are. Using the
indicator function for a chosen state x, we obtain the sequence of
optimal points π∗,r satisfying π∗,r(x) = ur(x). Should x belong to a
closed communicating class Cj with ergodic distribution πj, Corol-
lary 29(ii) shows that π∗,r will converge to πj as r tends to infinity.
Indeed, by looking at the states for which π∗,r(x) > 0, we can in prin-
ciple deduce which communicating class Cj (if any) the state belongs.
Once the class is known, we replace S with Cj and proceed as for the
unique case to obtain bounds on πj. See Sec. V C for an example of
the application of this procedure.

3. Computational implementation
and numerical considerations

Let us consider a given reaction network with rational propen-
sities. In order to obtain approximations of its stationary solutions
with controlled error smaller than a tolerance �, we proceed as
follows:

1. Verify the existence of stationary solutions π and the finiteness
of their moments (Assumption 1) using a Foster-Lyapunov
criterion (Theorem 31 in Appendix B).

2. Choose a normlike rational function w and define the trunca-
tions Sr as the sublevel sets (74) controlled by r.

We have found it best to choose functions w that define
truncations that cover most of the probability mass and that
tend quickly to infinity so that the size of the truncation grows
slowly with r. For example, if we take w(x) = xα, then higher
values of α induce smaller truncation sizes ∣Sr ∣ ≈ α

√
r. To guide

the selection of w, one can run the scheme with various w to
gain information about the shape of the distribution.
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3. Use the SDP approach of Sec. III B to find a moment bound
(75) with bounding constant c satisfied by all stationary solu-
tions (Assumption 13). In particular, we employ YALMIP,46

SDPA-GMP,47 and mpYALMIP48 to formulate and solve the
SDP (48) with f ∶≙ w. See details in Sec. III B 2.

4. Choose an initial r based on the achievable errors established
in Proposition 22. To guarantee an error smaller than our
tolerance �, we must choose an initial r > c/�.

5. Solve the LPs (88) to obtain the upper and lower approxima-
tions lr (90) and ur (91). Here, we use the dual simplex algo-
rithm of CPLEXV12.6.352 to solve the LPs. The tool YALMIP46

is convenient to formulate the LPs, but if speed is a priority, the
model can be fed straight to the solver to avoid computational
overheads.

For large truncations, the coefficients in the constraints of
the LPs span many orders of magnitude, leading to round-off
errors in double-precision arithmetic and poor solver perfor-
mance. One way to ameliorate this issue is to scale the decision
variables; in particular, scaling πr(x) by −q(x, x) or w(x) often
significantly improves solver performance.

6. Evaluate the error of the approximations lr and ur using (94)
and (95), respectively. If the error is larger than our tolerance
�, we increase the truncation size r and return to the previous
step.

7. In addition to approximating the full distribution, we can
apply the above steps to compute other measures of interest
by changing the LPs and associated errors in steps 5 and 6:

● If we want to approximate a marginal distribution, we
solve the LPs (101) and (102) and quantify the error
using (105) and (106).

● If we are interested in a particular stationary average⟨ f ⟩π , we instead solve the LPs (80) and control the
error using the bounds in Theorem 15(i)–(iii).

8. As the particular reaction network could have several station-
ary solutions, we check in step 5 for nontrivial lower bounds,
lr(x) > 0. If we find one such bound, the solution is unique
(Corollary 28). Otherwise, we investigate further the unique-
ness question by increasing r and recomputing the lower
bounds to examine the presence of communicating classes as
discussed in Corollary 29.

Our computations were carried out on a desktop computer
with a 3.5 GHz processor and 16 GB of RAM.

V. APPLICATION TO BIOLOGICAL EXAMPLES

We now present the application of the methodology to three
examples. First, we showcase how to obtain tight bounds on the
stationary solution (and marginals) of a two-dimensional toggle
switch. Second, we consider a model of bursty gene expression
with negative feedback, through which we explore the capabili-
ties of our method to deal with promoter switching noise. Third,
we demonstrate the application of our methods to the nonunique
case with a dimerization network. The code used to compute the
approximations and bounds for this last example is available at
Ref. 55.

A. A toggle switch

Toggle switches are common motifs in many cell-fate deci-
sion genetic circuits.16,56,57 A simple such circuit consists of two
mutually repressing genes.56 In particular, we consider the asym-
metric case with mutual repression modeled via Hill functions and
dilution/degradation modeled via linear decay,

∅
a1
Ð→ P1

a2
Ð→ ∅,

∅
a3
Ð→ P2

a4
Ð→ ∅.

(112)

The state space of the CME is x ∈ S ≙ N2 with x = (x1, x2), where x1
and x2 denote the number of protein P1 and P2, respectively, and the
propensities of the reactions are

a1(x) ≙ k1
1 + (x2/θ)3 , a2(x) ≙ k2x1,

a3(x) ≙ k3
1 + x1

, a4(x) ≙ k4x2,
(113)

where ki > 0 are kinetic constants and θ > 0 is the dissociation
constant of P2.

We follow the steps detailed in Sec. IV B 3 to obtain bounds
and approximations for this reaction network. First, we show
that a stationary solution π exists and that all of the moments
of every solution are finite using a Foster-Lyapunov criterion
(Appendix B).

We pick the normlike function

w(x) ∶≙ (x1 + x2)6, ∀x ∈ N2,

and compute the moment bound

⟨w⟩π ≤ c ∶≙ 4.48 × 108
by solving the SDP (48) with d ∶≙ 10 and f ∶≙ w (solver time =
3.6 min).

We then solve the LPs (88) and (89) and compute the bound-
ing approximations ur and lr of the stationary solutions. The fact
that the lower bounds lr are nonzero provides us with a proof of
uniqueness of the stationary solution. Figure 4 shows the bounds
for small (r = 45) and large (r = 75) state space truncations.
The maximum absolute discrepancies are found near the modes,
and by increasing the size of the truncation, the upper and lower
bounds become nearly indistinguishable—the maximum discrep-
ancy drops under 10−4 [Fig. 4(d)]. Overall, the total approximation
error including the tail is less than 2.6 × 10−3, as given by (94)
and (95).

We have also used our method to obtain approximations
on the marginal distributions of the number of proteins P1 (x1)
and P2 (x2) (Sec. IV B 1). The results in Fig. 5(a) show that
the bounds get tighter for truncations of increasing r [although,
as discussed in Remark 26, the upper bound (107) remains
loose]. Note, however, that the approximation ûr in Fig. 5(b)
rapidly approaches the Gillespie numerical simulations. Figure 5(c)

shows that the errors of both l̂r and ûr can be made arbi-
trarily small by increasing the truncation size (Corollaries 24
and 25).
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FIG. 4. Bounds on the stationary solution of the toggle switch (112) as the state space truncation is increased. (a) Lower and upper bounds lr and ur for the truncation
S466 = {(x1 +x2)

6
< r = 466} (990 equations involving 1035 states). The white areas indicate states outside of the truncation. Approximation errors of the lower and upper

bounding approximations: εlr = 0.31 and εur = 0.41, respectively. In total, 2070 bounds were computed (solver time = 5 min, average of 0.15 s per bound). (b) Gap between

upper and lower bounds: the largest uncertainties occur near the modes. (c) Same as (a) but with truncation parameter increased to r = 756 (2775 equations involving 2850
states). The upper and lower bounds are visually indistinguishable, with approximation errors εlr = 2.5 × 10−3 and εur = 2.6 × 10−3. In total, 5700 bounds were computed

(solver time = 64 min, average of 0.7 s per bound). (d) The maximum absolute gap between bounds is less than 10−4. Parameters: θ = 1, k1 = 30, k2 = k4 = 1, and k3 = 10.

Finally, we apply the method to chart the change in the
stationary solution as a function of a parameter. In particular,
the dissociation constant of protein P2 (θ) can be thought of as
a bifurcation parameter: increasing θ allows for higher expres-

sion of protein P1. Figure 6 presents the lower bounds l̂r on
the marginals of both proteins. At small values of θ, we observe
a single population with high numbers of P2 repressing P1. At
large values of θ, the opposite happens: the population we observe
has high numbers of P1 repressing P2. For intermediate θ, we
observe coexistence of both populations. Indeed, we find that the
modes of the marginal distributions are in good correspondence
with the stable solutions of the deterministic steady-state rate
equations.

B. Bursty gene expression with negative feedback

As a second example, consider a model of bursty production of
a protein that regulates (negatively) its own expression. The model58

involves a promoter that switches between active (Gon) and inactive
(Goff) states, and the protein P it encodes. When the promoter is
on, the protein is expressed in bursts of size b, a geometrically dis-
tributed random variable59 with mean ⟨b⟩. The protein represses its

own production by switching off the promoter,

Goff

a1
Ð⇀↽Ð
a2

Gon,

Gon + P
a3
Ð→ Goff + P,

Gon
a4
Ð→ Gon + b P,

P
a5
Ð→ ∅.

(114)

The state space of the CME is x ≙ (x1, x2) ∈ S ≙ {0, 1} × N, where
x1 = {0, 1} is a binary variable describing the off/on state of the pro-
moter and x2 ∈ N represents the protein count. The propensities
are

a1(x) ≙ k1(1 − x1), a2(x) ≙ k2x1,
a3(x) ≙ k3x2x1, a4(x) ≙ k4x1, a5(x) ≙ k5x2,

where the ki > 0 are reaction rate constants. In Appendix B, we show
that the network has a unique stationary solution π and that all of its
moments are finite.

This example provides an interesting test case for SDPmethods
since the protein noise is particularly large: CV(x2), the coefficient of
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FIG. 5. Marginal distributions of the tog-
gle switch (112). (a) Tight lower bounds

l̂r and loose upper bounds (107) on the
marginal distributions of both proteins
computed for increasing state space
truncations r = 306 (cyan), 406 (purple),
and 606 (pink). Overall, 520 bounds were
computed (solver time = 86.6 s, average
of 0.17 s per bound). For comparison,
we show simulations performed using
the Gillespie algorithm with 108 samples
(black dots). (b) Controlled approxima-
tions ûr for increasing state space trun-
cations r = 306 (cyan), 406 (purple), and
606 (pink). (c) Approximation error ε̂lr of

the lower bound l̂r (red) and bound ε̂ur on
error of ûr (black). In total, 3900 bounds
were computed (solver time = 48.8 min,
average of 0.75 s per bound). Parame-
ters as in Fig. 4.

variation of x2, grows
58 with the burst size ⟨b⟩. Therefore, we expect

that getting tight bounds for the CV will entail the use of a large
number of moment equations. To investigate the effect of such large
noise on the efficacy of our SDP method, we compute the following
bounds: √

Ld
x22
− (Ud

x2)2
Ud

x2

≤ CV(x2) ≤
√

Ud
x22
− (Ldx2)2
Ldx2

, (115)

where we use (47) and (48) and we append the following equalities
to our SDP (45),

x1 ∈ {0, 1} Ô⇒ ⟨xα11 xα22 ⟩π ≙ ⟨x1xα22 ⟩π α1 > 0,α2 ≥ 0.

Figure 7(a) shows how the bounds (115) get tighter as we increase
the number of moment equations in our SDP calculations. As
expected, for small mean burst sizes (⟨b⟩ = 1), the bounds become
tight with 10 moment equations, but tightening the bounds becomes
difficult when the burst size is larger (⟨b⟩ = 10, 100).

Computing tight bounds for large ⟨b⟩ with the naive SDP
approach would thus require a prohibitive number of moment equa-
tions. However, we can apply the LP method of Sec. IV to overcome
this limitation. To do this, use SDP to compute a (cheaper) loose
upper bound on the sixth moment L13x62

≙ 2.3 × 1013 ≤ ⟨x62⟩π ≤ U13
x62

≙ 4.5 × 1013 (time = 1 min per bound). We then set w(x) ∶≙ x62 and
c ∶≙ U13

x62
in Theorem 15 to obtain
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FIG. 6. Toggling the switch: deterministic vs stochastic. As the promoter dissociation constant θ is increased, the system switches from a state where overexpression of
P2 represses P1 (low θ) to the reverse state where high P1 represses P2 (high θ). In the deterministic case, the two states (stable fixed points, solid red lines) coexist at
intermediate θ and can be reached from different initial conditions separated by a third unstable steady state (dotted red line). For the stochastic model (112), we compute
the marginal stationary probabilities (heatmap) π̂(x1; θ) in (a) and π̂(x2; θ) in (b) for different θ values and observe good correspondence of the modes of the distributions
with the deterministic steady states. Each marginal is approximated by lower bounds computed using r = 836 (3403 equations involving 3486 states). In total, 3486 bounds
were computed to obtain the full bifurcation diagram (θ increased in steps of 0.15): solver time = 62 min, average of 1 s per bound. Approximation error: ε̂lr ≤ 3 × 10

−3,∀θ.
All parameters (other than θ) as in Fig. 4.

lrx2 ≤ ⟨x2⟩π ≤ urx2 + c

r5/6
,

lrx22
≤ ⟨x22⟩π ≤ urx22 + c

r2/3
,

which we combine as in (115) to obtain much tighter bounds on
CV(x2). Figure 7(b) shows the convergence of these tight bounds
for CV(x2) with ⟨b⟩ = 100 as the truncation size is increased. These
results exemplify the fact that it is enough to obtain loose SDP
bounds on a higher order moment in order to obtain arbitrarily tight
LP bounds on lower order moments (Theorem 15).

Finally, we exemplify in Fig. 7(c) another use of our capability
to boundmarginal distributions following the steps in Sec. IV B 3. In
this case, we marginalize over the on/off promoter variable (x1) and

we compute upper bounds ûr and lower bounds l̂r [visually indistin-
guishable in Fig. 7(c)] on π̂(x2), the distribution of protein counts,
for three different burst sizes, ⟨b⟩ = 1, 10, 100. As expected, the pro-
tein distribution widens considerably (yet still with light tails) as the
burst size increases. To compute these bounds, we set

Ai ≙ {0, 1} × {i}, ∀i ∈ {i ∈ N : i6 < r} ≙: Ir ,

FIG. 7. Bounds for a bursty gene expression model with negative feedback (114). (a) Lower bounds (open circles) and upper bounds (filled circles) on the CV computed
via SDP as the order of the approximation d is increased (no. of moment equations = d − 1) for different burst sizes, ⟨b⟩ = 1 (cyan), 10 (crimson), and 100 (gray). Color
shadings indicate the gap between bounds for different ⟨b⟩. In total, 44 bounds were computed for each ⟨b⟩ (solver time = 10 min, average of 13 s per bound). Inset: the gap
decreases with increasing number of moment equations, albeit more slowly for larger ⟨b⟩. (b) For large mean burst size (⟨b⟩ = 100), the upper and lower bounds on the CV
can be tightened using LPs with state-space truncations of increasing size (gap shaded in gray). In total, 140 bounds were computed (solver time = 11 min, average of 5 s per

bound). Inset: the gap can be made arbitrarily small by increasing the truncation size. (c) Lower bounds l̂r and upper bounds ûr (visually indistinguishable) on the marginal
distribution of the protein for different burst sizes (with r = 106, 556, 5006 for ⟨b⟩ = 1, 10, 100, respectively). The total variation error is smaller than 4 × 10−3 in all cases.
Overall, 1130 bounds were computed for all burst sizes (solver time = 7 min, average of 0.4 s per bound). Parameter values as in Ref. 58: k3 = k4 = 10, k1 = k2 = k5 = 1.

J. Chem. Phys. 151, 034109 (2019); doi: 10.1063/1.5100670 151, 034109-19

© Author(s) 2019

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

and solve the LPs (101) and (102) to obtain (103) and (104). Note
that this marginalization is over the complete, untruncated domain
of the marginalized variable x1 = {0, 1}. As a result, ûr do provide
upper bonds in this case (Remark 26).

C. Dimerization network with multiple stationary
distributions

To illustrate the use of our method on CMEs with multiple
stationary solutions (see Sec. IV B 2), we consider the reversible
dimerization network

∅
a1
Ð→ 2S

a2
Ð→ ∅, (116)

with state space S ≙ N andmass action kinetics: a1(x) ∶≙ k1 and a2(x)
∶≙ k2x1(x1 − 1). The reactions preserve the parity of the number of
molecules; hence, the even numbers C0 and the odd numbers C1 are
closed communicating classes. Furthermore, because the network
obeys detailed balance,23 it is straightforward to obtain analytical
expressions for the two ergodic distributions,

πi(x) ≙ 1

Zi

μx

x!
, ∀x ∈ Ci, i ≙ 0, 1, (117)

where μ ∶≙
√
k1/k2 and the normalizing constants are given by Z0

∶≙ cosh(μ) and Z1 ∶≙ sinh(μ).
To illustrate the use of our tools in such a nonunique case,

suppose we were not aware of the above facts and instead apply
our computational procedure. First, we use a Foster-Lyapunov
criterion and find that the rate matrix is regular; at least one
stationary solution exists; all of the moments of each station-
ary solution are finite; and, for each closed communicating class,
there exists an ergodic distribution with support in that class
(Appendix B).

Next, we obtain bounds on the stationary solutions. Using the
normlike function

w(x) ∶≙ x7, ∀x ∈ N,

we solve the SDP (48) with d ∶≙ 7 and f ∶≙ w (solver time = 3 s) to
obtain the moment bound,

⟨w⟩π ≤ c ≙ 4.8814 × 107.
We then solve the LPs (88) and (89) to compute upper and lower
bounds, ur and lr [Fig. 8(a)]. Note that the lower bounds remain
trapped at zero, indicating that the stationary solution is nonunique
(as given by Theorem 28). Furthermore, we observe that the mass
of the upper bounds approaches two as the truncation grows [i.e.,
ur(Sr) → 2 as r → ∞], hinting that there exist two ergodic
distributions corresponding to two closed communicating classes
[c.f. (110)].

To identify the communicating classes, we note that the optimal
points π∗,r0 and π∗,r1 of the linear programs,

sup{πr(0) : πr ∈ Pr}, sup{πr(1) : πr ∈ Pr}, (118)

approach distributions with support on the even and odd numbers,
respectively [Fig. 8(b)]. These observations indicate that the com-
municating classes are the even numbers C0 and the odd numbers C1
(Corollary 29).

To verify this claim, we compute two different sets of upper
and lower bounds over C0 and C1 separately. When computed over
the subsets C0 and C1 separately, the lower bounds are nonzero,
thus attesting to the uniqueness of each stationary distribution over
its communicating class. Using r = 257, the total variation error of
the lower bounds (94) is approximately 8 × 10−3, while that of the
upper bounds (95) is bounded above by 8 × 10−3. In fact, the actual
errors of the upper bounds computed from the analytical expres-
sions (117) are <10−4, i.e., substantially smaller than the guaranteed
bound.

FIG. 8. A dimerization network (116) with multiple stationary distributions. (a) Lower (lr , open circles) and upper (ur , filled circles) bounds on the set of stationary distributions
for the truncation S257 = {x

7
< r = 257} = {0, 1, . . . , 24} (23 equations involving 25 states; solver time = 0.5 s averaging 0.01 s per bound). The gray shading indicates

the gap between upper and lower bounds. Note that the lower bounds are zero indicating the presence of multiple stationary distributions. (b) The optimal points π∗,r0 and

π∗,r1 of the LPs (118) (solver time = 0.01 s per optimal point) provide approximations of the ergodic distributions and indicate that there are two closed communicating classes:
the even numbers and the odd numbers. (c) The lower and upper bounds (open and filled circles, visually indistinguishable) computed separately on each of the two ergodic
distributions with support on the odd numbers (in red) and even numbers (in blue) (solver time = 0.5 s, average of 0.01 s per bound). Parameter values: k1 = 50 and k2 = 0.5.
The lower bounds are now nonzero, indicating the uniqueness of each of the ergodic distributions.
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VI. DISCUSSION

We have introduced two mathematical programming
approaches that yield bounds on: (i) the stationary moments and
(ii) the stationary distributions of biochemical reaction networks.
These statistical quantities typically satisfy infinite sets of coupled
equations: (i) the stationary moment equations and (ii) the station-
ary CME. Both our approaches consider a subset of these equations
and employ: (i) semidefinite programming and (ii) linear program-
ming to bound the set of solutions. The bounds we obtain provide
converging estimates of moments and probabilities with quantifiable
errors.

Regarding our first method, which provides bounds for sta-
tionary moments, recently, and independently of our work, SDP-
based procedures have been proposed by several authors.33,35–37

Our work differs from those works in two ways: first, our results
apply to networks with both polynomial and rational propensi-
ties, a wider class of networks of interest in biochemistry, beyond
the mass action models considered in Refs. 35–37; second, we give
mathematically precise conditions for the validity of the method
(Assumption 1) and we explain how these conditions can be veri-
fied in practice. To the best of our knowledge, our second approach,
the LP bounding and approximation procedure for probability dis-
tributions, has not appeared in the CME literature (see Ref. 38 for
a discussion of related methodologies in the optimization litera-
ture). Importantly, both methods are tightly interlinked: our second
method uses SDP moment bounds to formulate the LPs, in order
to obtain controlled approximations of stationary solutions and
marginals.

For some CMEs, the SDP approach might need to include a
large number of moments to obtain accurate estimates of lower
order moments (see Figs. 2 and 7). Such large SDPs pose a com-
putational challenge for larger networks as the number of moments

#d is (n+d
d
), where n denotes the number of species in the network

and d is the maximum moment order and thus explodes combina-
torially with the number of species. Similar costs are encountered
when using moment-closure methods.21,22 In contrast with moment
closure methods,19–22 however, the proposed SDP method to bound
moments yields approximations with quantified errors. Further-
more, we show that repeated applications of our SDP method yield
upper (respectively, lower) bounds that are monotonically decreas-
ing (respectively, increasing) as the number of moment equations
and inequalities is increased (Theorem 5). Although, as mentioned
in Sec. III B, there are reaction networks for which the bounds do
not converge to the exact moments, they often converge in practice
(Fig. 2 and other examples in Refs. 35–37, 44, and 60). In addition,
when tight SDP bounds prove computationally too expensive, our
LP approach can be used to tighten bounds on moments of inter-
est employing a loose SDP bound on a higher moment (Fig. 7).
Finally, it is possible to obtain sharper SDP bounds for restricted
state spaces,42–44,61 but these refinements are beyond the scope of this
paper.

As stated above, the LP approach produces convergent bounds
on the stationary solutions (including their marginals or averages).
To do so, it uses a moment bound obtained with the SDP method.
It is worth remarking that, while we have limited ourselves to ratio-
nal networks where the moment bound can be obtained using SDPs,
the LP approach can be extended beyond rational propensities by

using Foster-Lyapunov criteria.41 If the CME has a unique solu-
tion, our LP method yields converging lower and upper bounds
on this solution and easy-to-evaluate error bounds (Corollaries
20, 24, and 25). If the CME has multiple solutions, our method
provides bounds over the set of possible solutions. Furthermore,
the procedure can be adapted to infer the closed communicat-
ing classes and to compute converging approximations of (and
bounds on) the corresponding ergodic distributions. Additionally,
if we are unsure whether the stationary solution is unique, our
method provides a uniqueness test (Corollary 28) that settles the
question.

Although LP solvers are highly mature and scalable, the appli-
cability of our LP approach can present computational challenges.
First, as discussed in Sec. IV B 3 (step 5), the LPs can become ill-
conditioned if the truncation is large although this issue is miti-
gated by scaling the variables and by ongoing improvements in LP
solvers. Second, although the computational cost of solving an LP
depends on the algorithm, the cost per bound is at least O(∣Sr ∣),
where ∣Sr ∣ is the size of the truncation. For the purpose of com-
puting the entire distribution, we needO(∣Sr ∣) such bounds; hence,

the cost is at least O(∣Sr ∣2). If computing a marginal distribution

where k species remain, we need O(∣Sr ∣k/n) bounds with an cost

of at least O(∣Sr ∣1+k/n). If only a stationary average is of inter-
est, the cost is at least O(∣Sr ∣) since only two bounds per aver-
age need to be computed. Note also that the truncation size typi-
cally grows combinatorially in the number of unbounded species,
e.g., the number of states for a simplex truncation {x ∈ N

n :
x1 + ⋯ + xn ≤ M} is (n+M

n
), where M is an upper cutoff for

the species count. Hence, the cost of LPs suffers a combinato-
rial explosion in the number of species, as for all truncation-based
methods.28–32,62

Several other truncation-based schemes have been proposed
to approximate the stationary solutions of the CME.28–30,32 In con-
trast with ours, those schemes typically assume that the CME has
a unique stationary distribution, which has to be verified sepa-
rately.63,64 Perhaps most extensively studied is the truncation-and-
augmentation (TA) scheme, originally proposed by Seneta65 for
discrete-time chains. Its continuous-time counterpart28,29,62 con-
verges in total variation for exponentially ergodic chains, mono-
tone chains, and certain generalizations.28 However, bounds on
the TA approximation error can be conservative and often involve
constants that are difficult to compute in practice.28,29,66–72 Spieler
et al.30,31 overcame this issue by iterating the TA scheme and
applying a tail bound derived from a Foster-Lyapunov crite-
rion to bound the stationary distribution. Spieler’s truncation-
based scheme is thus closest to ours. However, their scheme
entails solving only systems of linear equations which, although
cheaper to compute and simpler to implement than LPs, offer no
guarantee of convergence and are only applicable in the unique
case.

Another distinct feature of our method is that it enables the
direct computation of bounds on the marginal distributions, with-
out the need to compute bounds for each state of the joint dis-
tribution. Marginal distributions are of particular interest for the
analysis of high-dimensional networks and for inference of model
parameters from single cell data. Since our approach yields upper
and lower bounds on the marginals, it can be used to bound
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the likelihood or likelihood ratios from experimental observa-
tions. This would be useful to extend the work in Ref. 73 avoid-
ing error redistribution using water filling methods and aiding
by selecting the size of truncations that are sufficient for param-
eter identifiability. Similar bounds on acceptance ratios could be
used in Metropolis-Hastings algorithms to extend the applicabil-
ity of our method to Bayesian inference. We therefore expect that
our approach will be valuable not only for estimating distribu-
tions but also for estimating model parameters from noisy single
cell data where accurate approximations with quantified errors are
needed.
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APPENDIX A: MINIMAL CONTINUOUS-TIME MARKOV
CHAINS, THEIR LONG-TERM BEHAVIOR,
AND STATIONARY DISTRIBUTIONS

In practice, the chain X = (X(t))t≥0 in Sec. II is often con-
structed by running the Gillespie algorithm,74–76 i.e., one starts
the chain from a state x sampled from an initial distribution λ
∶≙ (λ(x))x∈S. If q(x) ∶≙ −q(x, x) in (4) and (5) is zero, leave the
chain at x for all time. Otherwise, wait an exponentially distributed
amount of time with mean 1/q(x), sample y ≠ x from the probability
distribution (q(x, y)/q(x))y≠x, and update the chain’s state to y (we
say that the chain jumps from x to y, and we call the time at which
it jumps the jump time). Repeat these steps starting from y instead
of x. All random variables sampled must be independent of each
other.

If Tn denotes the nth jump time, then the limit

T∞ ∶≙ lim
n→∞

Tn

is known as the explosion time of the chain, i.e., the first instant
by which the chain has left every finite subset of the state space77

(Sec. II C). If no such explosion occurs, then T∞ = ∞, and we say
that the chain is nonexplosive,

Pλ({T∞ ≙∞}) ≙ 1, (A1)

where Pλ denotes the probability measure underlying the chain (the
subscript λ emphasizes the fact that the starting state was sampled
from the distribution λ). If (A1) holds for every probability distri-
bution λ [λ(x) ≥ 0,∀x ∈ S, λ(S) ≙ 1], then the rate matrix Q is
regular.

We collectively refer to the probabilities

(pt(x))x∈S,t≥0 ≙ (Pλ({Xt ≙ x, t < T∞}))x∈S,t≥0
of observing the process in the state x ∶≙ (x1, . . . , xn) ∈ S at time
t ≥ 0 as the time-varying law of the chain. The time-varying law

is the minimal non-negative solution of the CME (6) [see Ref. 34
(Corollary 2.21)].

A probability distribution π ∶≙ (π(x))x∈S on S is said to be a
stationary (or steady-state or invariant) distribution of the chain if
sampling the chain’s starting position from π ensures that it will be
distributed according to π for all time,

Pπ({Xt ≙ x, t < T∞}) ≙ π(x), ∀x ∈ S, t ≥ 0. (A2)

Summing both sides of (A2) over x ∈ S and taking the limit t →∞,
we find that the chain is nonexplosive when its starting location is
sampled from a stationary distribution,

Pπ({T∞ ≙∞}) ≙ 1. (A3)

Taking the derivative in time of (A2), we find that stationary distri-
butions are stationary solutions of the CME (6) [that is, it belongs to
(9)]. The reverse direction is slightly more complicated:

Theorem 30 (Theorem 2.4134). Let X be a continuous-time
chain with rate matrix Q satisfying (4) and (5). A probability dis-
tribution π on S is a stationary distribution of X if and only if it is
a stationary solution of the CME and the chain is nonexplosive when
initialized with law π [i.e., (A3) holds].

In particular, assuming that Q is regular, π is a station-
ary solution if and only if it is a stationary distribution of the
chain. In other words, (9) is an analytical (as in nonprobabilis-
tic) linear programming characterization34,78 of the set of station-
ary distributions for regular Q. The nonexplosivity in Theorem
30 is crucial: a counterexample is the birth-death process (50)
with a+(x) ∶≙ 22x and a−(x) ∶≙ 22x/2. In this case, the sum in
(55) is finite showing that the CME has a unique stationary solu-
tion π given by (54) and (55). However,79 (Theorem 11) shows
that the process is explosive for any initial distribution (includ-
ing π) and it follows from (A3) that no stationary distribution
exists.

Stationary distributions are of interest because, if the chain is
stable, then, regardless of the initial distribution λ, they determine15

the chain’s long term behavior, i.e., the time-varying law of the chain
converges in total variation to a stationary distribution π

lim
t→∞
∣∣pt − π∣∣ ≙ 0. (A4)

Furthermore, the empirical distribution ρT , which denotes the frac-
tion of the time interval [0, T] that the chain will spend in a
state x,

ρT(x) ∶≙ ∫ min{T,T∞}

0
1x(Xt)dt, ∀x ∈ S,

also converges to π

lim
T→∞
∣∣ρT − π∣∣ ≙ 0 Pλ-almost surely. (A5)

In general, the stationary distributions featuring in (A4) and (A5)
depend on the initial distribution λ and on the starting location X0,
respectively.

If the chain starts in one of the closed communicating classes
(defined in Sec. IV B 2), then it can never escape the class.
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The convergence of the empirical distribution in (A5) then implies
that, in the stable case, there must exist at least one stationary dis-
tribution per closed communicating class Cj and that the stationary
distribution must have support contained in Cj [πj(Cj) ≙ 1]. This
distribution πj is unique, and if the initial distribution λ has its mass

contained in Cj, then
15 both the time-varying law and the empiri-

cal distribution converge to πj [in the sense that the π featuring in
both (A4) and (A5) is πj]. For this reason, πj is known as an ergodic
distribution of the chain. The definition of the set T ∶≙ S/ ∪j Cj fea-
turing in the decomposition (108) implies that the chain visits any
given state x in T at most finitely many times [in particular, 1x(Xt)
→ 0 as t → ∞ Pλ-almost surely]. It follows that the chain’s paths
must eventually either leave T or diverge to infinity. In the case of
a stable chain, tending to infinity is not an option and so the chain
eventually enters one of the closed communicating classes. It then
follows from (A2) that no stationary distribution π such that π(x) > 0
exists for a state x in T. Bringing this discussion together,15 we have
that stationary distribution π in (A5) is the ergodic distribution πj
of the closed communicating class Cj that the chain’s path eventually
enters, while that in (A4) is a weighted combination of the ergodic
distributions where the weight given to πj is the probability that the
chain ever enters Cj. Theorem 27 in Sec. IV B 2 follows from these
facts.

APPENDIX B: A FOSTER-LYAPUNOV CRITERION

In practice, verifying whether a chain is stable is done by apply-
ing a Foster-Lyapunov criterion. For our examples, we will use the
following well-known criterion:

Theorem 31 (Foster-Lyapunov criterion15,80,81). If there exist
constants K1 ∈ R, K2 > 0, and a normlike function w (Definition 12)
that satisfy

Qw(x) ∶≙∑
y∈S

q(x, y)w(y) ≤ K1 − K2w(x), ∀x ∈ S,

then the following hold:

(i) The rate matrix Q is regular.
(ii) There exists at least one stationary distribution.
(iii) For each closed communicating class, there exists an ergodic

distribution with support in that class.
(iv) Every stationary distribution π satisfies ⟨w⟩π ≤ K1/K−2 <∞.
(v) The stationary distributions determine the long-term behavior

of the chain:
(a) for every deterministic starting distribution, there exists a

stationary distribution π satisfying (A4);
(b) for any starting distribution λ and for Pλ-almost every

path, there exists a stationary distribution π satisfying
(A5).

Proof. Part (i) is Ref. 80 (Theorem 1.11) [see also Ref. 81 (The-
orem 2.1)]. Parts (ii)–(v) follow from Ref. 15 (Theorems 8.1 and 8.2)
and Ref. 81 (Theorem 4.6).

We have used this criterion for our examples in the main text,
as follows.

1. Schlögl’s model

In the case of Schlögl’s model (10), fixing w(x) ∶≙ xd−2 for an
integer d > 2, we have

Qw(x) ≙ gd−1(x) − k2(d − 2)xd,
where gd−1 is a polynomial of degree d − 1. Thus,

Qw(x) ≤ sup
x∈N
{gd−1(x) − k2(d − 2)

2
xd} − k2(d − 2)

2
xd

≤ sup
x∈N
{gd−1(x) − k2(d − 2)

2
xd} − k2(d − 2)

2
xd−2,

and the supremum is finite. Taking d ≥ 3, Theorem 31 tells us that
(10) has a regular rate matrix and at least one stationary distribution;

that the moments ⟨x1⟩
π
, . . . , ⟨xd−2⟩

π
are finite for any stationary dis-

tribution π; and that the limits (A4) and (A5) hold. Since we can
choose ever larger d, we have finiteness of all moments. Uniqueness
of the distribution follows from (54) and (55).

2. Toggle switch

In the case of the toggle switch chain of Sec. V A, setting

w(x) ∶≙ (x1 + x2)d, we have
Qw(x) ≙ (a1(x) + a3(x))((x1 + x2 + 1)d − (x1 + x2)d)

+ (a2(x) + a4(x))((x1 + x2 − 1)d − (x1 + x2)d)
≤ (k1 + k3)((x1 + x2 + 1)d − (x1 + x2)d)
+ (a2(x) + a4(x))((x1 + x2 − 1)d − (x1 + x2)d)
≤ gd−1(x1 + x2) − d(k2x1 + k4x2)(x1 + x2)d−1
≤ gd−1(x1 + x2) − dmin{k2, k4}(x1 + x2)d,

where gd−1 is a polynomial of degree d − 1. For this reason, proceed-
ing as we did above for Schlögl’s model, we have that Q is regular,
that the chain does have a stationary distribution, and that all of
the moments of each of the stationary distributions are finite. The
nontrivial lower bounds in Fig. 4 and Corollary 28 show that it is
unique.

3. Bursty gene model

For the bursty gene expression model of Sec. V B, let

w(x) ∶≙ xd2 , (p(k))k∈N denote the geometric distribution,

p(k) = (1 − p(0))kp(0) with p(0) = 1/(1 + ⟨b⟩), and ⟨bl⟩ denotes its
lth moment. We then have

Qw(x) ≙ k4x1∑∞k=0 p(k)((x2 + k)d − xd2) + k5x2((x2 − 1)d − xd2)
≤ k4∑d−1

l=0
(d
l
)⟨bd−l⟩xl2 + k5x2((x2 − 1)d − xd2)

≙ gd−1(x2) − dk5xd2 ,
where gd−1 is a polynomial of degree d − 1 (note that all moments
of a geometric random variable are finite). Because the state space
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is {0, 1} × N, w is normlike. Thus, proceeding as we did above
for Schlögl’s model, we have that Q is regular, that there exists at
least one stationary distribution, and that each stationary distribu-
tion has all moments finite. For each set of parameter values, we
solved LP (90) with x = (0, 0) and obtained a nontrivial lower on
π((0, 0)). Corollary 28 then showed that the stationary distribution is
unique.

4. Dimerization network with multiple
stationary distributions

For the network (116), choosingw(x) ∶≙ xd−1 with integer d > 1,
we have

Qw(x) ≙ gd−1(x) − 2k2(d − 1)xd,
where gd−1 is a polynomial of degree d − 1. Proceeding as for
Schlögl’s model above, we have that Q is regular, that there exists
at least one stationary distribution, and that each stationary distri-
bution has all moments finite.
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