
Southern Illinois University Carbondale
OpenSIUC

Conference Proceedings Department of Electrical and Computer
Engineering

3-2005

Bounding Worst-Case Data Cache Behavior by
Analytically Deriving Cache Reference Patterns
Harini Ramaprasad
Southern Illinois University Carbondale, harinir@siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_confs
Published in Ramaprasad, H., & Mueller, F. (2005). Bounding worst-case data cache behavior by
analytically deriving cache reference patterns. 11th IEEE Real Time and Embedded Technology and
Applications Symposium, 2005, RTAS 2005, 148 - 157 doi: 10.1109/RTAS.2005.12 ©2005 IEEE.
Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Conference Proceedings by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Ramaprasad, Harini, "Bounding Worst-Case Data Cache Behavior by Analytically Deriving Cache Reference Patterns" (2005).
Conference Proceedings. Paper 4.
http://opensiuc.lib.siu.edu/ece_confs/4

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs/4?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

Bounding Worst-Case Data Cache Behavior
by Analytically Deriving Cache Reference Patterns ∗

Harini Ramaprasad, Frank Mueller
Dept. of Computer Science, Center for Embedded Systems Research

North Carolina State University
North Carolina State University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu

Abstract

While caches have become invaluable for higher-end ar-
chitectures due to their ability to hide, in part, the gap be-
tween processor speed and memory access times, caches
(and particularly data caches) limit the timing predictabil-
ity for data accesses that may reside in memory or in cache.
This is a significant problem for real-time systems.

The objective our work is to provide accurate predictions
of data cache behavior of scalar and non-scalar references
whose reference patterns are known at compile time. Such
knowledge about cache behavior provides the basis for sig-
nificant improvements in bounding the worst-case execution
time (WCET) of real-time programs, particularly for hard-
to-analyze data caches.

We exploit the power of the Cache Miss Equations
(CME) framework but lift a number of limitations of tra-
ditional CME to generalize the analysis to more arbi-
trary programs. We further devised a transformation,
coined “forced” loop fusion, which facilitates the anal-
ysis across sequential loops. Our contributions result in
exact data cache reference patterns — in contrast to ap-
proximate cache miss behavior of prior work. Experi-
mental results indicate improvements on the accuracy of
worst-case data cache behavior up to two orders of mag-
nitude over the original approach. In fact, our results
closely bound and sometimes even exactly match those ob-
tained by trace-driven simulation for worst-case inputs.
The resulting WCET bounds of timing analysis con-
firm these findings in terms of providing tight bounds.
Overall, our contributions lift analytical approaches to pre-
dict data cache behavior to a level suitable for efficient
static timing analysis and, subsequently, real-time schedu-
lability of tasks with predictable WCET.

1. Introduction
A data cache is an invaluable architectural feature in

today’s higher-end processors. The savings it provides in
terms of memory latency are immense. Hence, data caches
have become indispensable. Nonetheless, caching has one

∗ This work was supported in part by NSF grants CCR-0208581, CCR-
0310860 and CCR-0312695.

inherent complexity, i.e., the latency of data reference be-
comes unpredictable. While instruction caches are more
predictable [13], a memory reference cannot easily be pre-
dicted as a hit or a miss in the data cache [17]. This prob-
lem is compounded by the fact that references within a pro-
gram may contend for the same line. Given these problems,
precise static characterization of data cache behavior, while
being a challenging task, can be extremely useful in mak-
ing program memory behavior more predictable, specifi-
cally for real-time systems.

Several approaches have been and are being proposed
to statically model data cache behavior. These approaches
share the aim of predicting the behavior of a data cache as
accurately as possible given information about memory ac-
cess patterns. One such approach is the well known Cache
Miss Equation (CME) framework proposed by Ghosh et al.
[6]. This work proposes a method to generate a set of lin-
ear Diophantine equations to characterize the behavior of a
data cache in loop-oriented code. Solving these equations
is a computationally very complex problem and, hence, is
generally considered impractical. However, statistics-based
approximations and constrained methods that exploit cer-
tain properties of these equations have been proposed and
are known to reduce the complexity.

These methods produce a slightly pessimistic estimate of
the number of misses in loop nests and work only for per-
fectly nested, rectangular loops. They also impose restric-
tive assumptions on the code. Array subscript expressions
and loop bounds must be affine combinations of the loop in-
duction variables and must be known at compile time. Fur-
thermore, no data-dependent conditionals are allowed in the
code. We have used one such implementation of CMEs and
have built upon it. Recent work [15] relaxes the assump-
tion that loop nests have to be perfectly nested. Instead, en-
tire programs with arbitrarily nested loops are transformed
into sequential loop nests of equal depth. The disadvantage
of this approach is that it introduces changes in the repre-
sentation of data reuse and the analysis of cache behavior.

In our current work, we retain the assumptions about ar-
ray subscripts and loop bounds. For loop nests, however,
we go one step beyond previous work. We transform arbi-
trarily nested loops via “forced” fusion into a single loop
nest (as opposed to a sequence of loop nests as described

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

above) with conditionals that only depend on the loop in-
duction variables.

Using this approach, while still covering entire pro-
grams, we use the original representation for reuse to sub-
sequently analyze CMEs. At this stage, we perform more
detailed analysis than previous work. This allows us to de-
rive exact hit/miss patterns for every reference in the loop
nest. This means that, in addition to giving the exact num-
ber of misses, we can indicate where and when exactly each
one of those misses occurs. We further propose a technique
to handle non-rectangular loop nests and provide an upper
bound on the misses for programs with data-dependent con-
ditionals, thereby increasing the spectrum of programs that
can be analyzed.

Our work enhances the performance of static timing
analysis frameworks, i.e, the process of deriving safe upper
bounds on the worst-case execution time (WCET) of tasks.
Such an estimation of the WCET is a prerequisite for per-
forming schedulability analysis of real-time applications.
The presence of data caches causes unpredictability and,
thus, pessimism during these estimations. Our work is di-
rectly applicable in this scenario. We feed the exact number
of misses as generated by our framework to the timing ana-
lyzer and, hence, ensure significantly tighter estimates. Fur-
thermore, our work may be applied in any place where pre-
diction of data cache behavior is required, e.g., in compiler-
generated memory layout optimizations, such as tiling and
padding, which are beyond the scope of this work.

Experimental results with our framework indicate im-
provements in the tightness of worst-case cache behavior
of one, sometimes even two orders of magnitude over the
original CME approach. These results tightly and safely ap-
proximate results from trace-driven cache simulation under
worst-case input. Subsequent bounds on the WCET by the
timing analyzer underline the applicability of these results
for end-to-end timing analysis.

The remainder of this document is organized as follows.
Section 2 discusses related work. Section 3 gives a brief
introduction to static timing analysis, which is an impor-
tant application for our work. Section 4 gives the neces-
sary background information for the content in this docu-
ment. Section 5 explains our contributions in the realm of
programs that can be analyzed in more detail. Section 6 ex-
plains our approach to generating exact data cache refer-
ence patterns. In Section 8, we illustrate our method with
an example. We discuss the implications that our work has
on static timing analysis in Section 9 and show experimen-
tal results in Section 10. We then provide a conclusion in
Section 11.

2. Related Work

A number of research groups have proposed several
methods for making data caches more predictable. While

some approaches trade off accuracy for speed, others trade
off speed for flexibility and the detail of the output informa-
tion provided.

Trace based simulators may be used to describe data
cache behavior accurately for a given input, but they are
very slow and do not provide any information about the
cause for the misses for arbitrary inputs.

Several methods that bound data cache behavior have
been proposed. Lim et al. [10] propose a method that takes
data caching into account while computing the WCET for
tasks for static memory references. Kim et al. [8] propose a
method that classifies data references as static or dynamic.
However, they do not deal with arrays or pointers.

Data flow analysis is used by Li et al. [9] to analyze
data cache behavior. White et al. [18] propose a method for
direct-mapped caches. This work is based on static cache
simulation. These methods have high computational com-
plexity due to the explosion of the data-flow state in the
presence of arrays. Lundqvist et al. [12] present a study
which shows to what extent data cache accesses are pre-
dictable and conclude that a majority of data cache accesses
can be predicted.

Cache locking [11, 4] techniques have been used to make
data cache behavior more predictable in real programs. In
cache locking [11, 4], selected data is loaded into cache
and locked in place so that it may not be replaced until
the cache is explicitly unlocked. During the locked inter-
val, since the cache contents are known, cache behavior is
predictable. This approach has the disadvantage that lock-
ing and unlocking introduce some overheads. Furthermore,
if the data is too large to fit into cache, it has to be com-
pletely unloaded from cache to make sure cache behavior is
still predictable. This leads to performance loss.

Recently, some analytical methods for predicting data
cache behavior have been proposed. They include the Cache
Miss Equations by Ghosh et al. [6], which we have built
upon, a probabilistic method of analysis as proposed by
Fraguella et al. [5] and another analytical method by Chat-
terjee et al. [3]. The basic idea behind all these methods is
the same – to characterize data cache behavior by means
of a set of mathematical equations. On solving these equa-
tions, information about data cache behavior may be ob-
tained. Vera et al. have proposed analytical methods based
on the Cache Miss Equations to predict data cache behav-
ior [14, 15].

The CME framework [6], in its original form, and the
probabilistic methods [5] can be used only for perfect loop-
nests with no data dependent conditionals.

The formula-based method [3] is a method that models
cache behavior exactly using Presburger formulae to spec-
ify cache misses. This method can also deal with multiple
loop nests and conditionals. However, it has been applied
only for small programs. The applicability in real programs

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

has not been tested.
Vera et al [14, 15] have built upon the cache miss equa-

tions to efficiently produce cache misses in loop-nest-
oriented code. Their focus is on analysis speed and, for
this, accuracy is traded off to a certain extent. In our work,
the main focus is accuracy in order to be able to sup-
ply the static timing analysis framework an accurate count
of the data cache misses in a program.

3. Static Timing Analysis
Schedulability tests in real-time systems are generally

based on the assumption that the WCET of every task in
the task set being scheduled is known a priori. These es-
timates need to be a safe upper bound on the execution
times of tasks. As previous work has demonstrated, dy-
namic analysis by actual execution of the task does not guar-
antee worst-case performance [16]. Nor is exhaustive test-
ing of the entire input space practical, as shown in the same
study. Hence, static timing analysis is a viable approach to
obtain WCET of tasks. Static timing analysis traverses all
execution paths in a program and, during this process, cal-
culates a conservative (i.e., safe) upper bound on the time
for the longest path in the program.

The structure of a program may cause a hurdle in the
path of the analyzer due to factors like data dependent con-
trol flow, pointer accesses, etc. Furthermore, architectural
features also cause unpredictability for a timing analyzer.
One such architectural feature, invaluable but, at the same
time, particularly hard to model, is the data cache. If data
cache behavior cannot be predicted sufficiently accurately,
WCET estimates may become highly pessimistic. Such pre-
dictions may be counter-productive since it may deem task
sets infeasible that would otherwise be schedulable.

In this work, we promote an analytical approach to ob-
tain WCET bounds. Figure 1 depicts our framework for
static timing analysis to derive WCET bounds. Currently,

Source
Files

Gcc Compiler
Control flow

& I/D
References

Timing
Analyzer

WCET
Prediction

Cache

CatergorizationsSimulator

Cache

Configuration
Static Cache

Figure 1. Static Timing Analysis Framework

the framework uses a static cache simulator that simulates
the instruction cache. While the data-flow methodology uti-
lized by this simulator is adequate for instruction caches,
there is no equally effective framework that characterizes
data caches. Even though initial work on data cache anal-
ysis followed a data-flow methodology as well, constraints
on array references and on loop nests were rather restric-
tive, and analysis overhead was prohibitive for moderately

sized caches [17]. The objective of predicting data cache be-
havior statically remains an area of research with much po-
tential for applications. This motivates the work presented
below.

4. CME: Background and Overview
The Cache Miss Equation (CME) framework proposed

by Ghosh et al. [6] is a method to generate a set of lin-
ear Diophantine equations to characterize the behavior of a
data cache in loop-oriented code. In the following, a brief
overview of CME is given to clearly distinguish prior work
from our contribution.

4.1. Terminology

Before describing the details of CME, let us establish
a common terminology to reason about data references of
non-scalars in loops.

4.1.1. Iteration Space Every iteration of a loop nest is
represented as an entity known as an iteration point. For ex-
ample, in a loop nest of depth 3, the iteration where the val-
ues of the induction variables are 1, 2 and 3, respectively, for
each loop starting from the outermost one, would be repre-
sented as the iteration point �i = (1, 2, 3). The set of all it-
eration points for a given loop nest is known as its iteration
space.

4.1.2. Reuse Vectors In order to summarize data reuse
among references in loop-nest oriented code, the framework
uses the concept of reuse vectors as defined by Wolf and
Lam [19]. If a reference accesses the same memory line in
two iterations �i1 and �i2, where �i2 > �i1, �r = �i2 − �i1 is
called a reuse vector. For example, consider the matrix mul-
tiplication code shown in Figure 2(a). Here, the reference

C[j][i] += A[k][i] * B[j][k] ;
for(j = 0; j < N; j++)

for(k = 0; k < N; k++)
for(i = 0; i < N; i++)

(a) Matrix Multiplication code

k
i

j

r

(b) Iteration space for matrix
multiplication code

Figure 2. Loop Nest and Iteration Space with
one Reuse Vector �r = (0, 0, 1) for A[k][i]

b(j, k) has a reuse, which is represented by the reuse vec-
tor (0, 1, 0). Reuse vectors are classified into four types —
self-temporal reuse, self-spatial reuse, group-spatial reuse
and group-temporal reuse. Temporal reuse is a special case
of spatial reuse where the two references under considera-
tion access the same element in a cache line. Group reuse

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

occurs when two different references access the same mem-
ory line.

Consider the matrix multiplication code in Figure 2(a)
again. The iteration space for this piece of code is shown in
Figure 2(b). An example reuse vector �r = (0, 1, 0) is shown
in the iteration space.

4.2. Cache Miss Equations Overview

CMEs are a set of equations that represent all the poten-
tial cache misses for references in a loop nest. They relate
the iteration space, base addresses of arrays, array sizes and
the cache parameters in a precise fashion. They are, in their
current form, able to analyze loop nests with no data depen-
dent conditionals. Furthermore, the array subscript expres-
sions and loop bounds are assumed to be affine combina-
tions of the loop induction variables. They also need to be
known at compile-time. For every reference and along every
reuse vector for that reference, two kinds of CMEs are gen-
erated — cold miss equations and replacement miss equa-
tions.

4.2.1. Cold Miss Equations Solutions to cold miss equa-
tions represent potential cold or compulsory misses. These
are misses that occur on the first access to a memory line.
Cold misses may occur in two cases: when the reference un-
der consideration reuses from an iteration point that is out-
side the iteration space and when a reference reuses from
data that is mapped to a different cache line.

4.2.2. Replacement Miss Equations Solutions to re-
placement equations account for the remaining misses,
namely capacity and conflict misses. For a given refer-
ence, replacement equations along a particular reuse vector
represent interference with any other reference, includ-
ing itself (self-conflict). Such misses occur when two refer-
ences RA and RB map to the same cache set, which is also
the intuition behind generation of replacement miss equa-
tions.

Solving CMEs directly is computationally com-
plex. However, mathematical techniques for manipulat-
ing these equations are employed to make the process
tractable [1, 14]. Solutions to each CME only represent po-
tential cache misses. The effects of multiple CMEs are
composed to find the actual miss points. A detailed de-
scription of the generation of CMEs and the algorithm to
compute the actual misses may be found in [6].

4.3. CME Implementation Overview

In our work, we build upon an existing implementation
framework for CMEs. This framework, named Coyote, is
derived from work by Bermudo et al. [1]. This framework
utilizes the basic reuse vectors as suggested in [19]. In con-
trast to prior work, our framework extends these reuse vec-
tors to take into account the precise shape of the iteration

space. We then consider the impact of statically generat-
ing miss patterns for references in the context of bounding
the WCET for our static timing analysis framework.

5. Conceptual Enhancements

Our framework provides three fundamental enhance-
ments to the CME framework in the form of relaxing some
of its assumptions. This widens the range of programs that
we are able to analyze. A detailed block diagram of the en-
hanced Coyote framework highlighting our contributions
is shown in Figure 3. The original CME framework im-
poses several restrictions on programs that it can analyze.
Fundamental among these are as follows. First, the loop
bounds must be known at compile-time. Second, array sub-
script expressions must be affine functions of the loop in-
duction variables. Third, the program can contain only per-
fectly nested, rectangular loops. Fourth, the program cannot
contain data-dependent conditionals.

Recent work [15] relaxes the assumption about perfectly
nested loops and allows sequential loop nests of equal depth
by transforming arbitrary loop nests. This part of the loop
transformation is done in the blocks (d) and (e) of Figure 3.
A disadvantage of this scheme is that it leads to changes in
representation of reuse and iteration spaces. However, our
work goes one step further and uses “forced” loop fusion,
represented by block (f) in Figure 3, to get a single loop nest
with conditionals, based on loop induction variables, intro-
duced to maintain correctness of the program. In contrast to
traditional loop fusion where loop bodies of a common it-
eration space are combined in one loop of the same itera-
tion space, such as in [20], forced fusion concatenates loop
bodies by extending the first iteration space with the sec-
ond one. Loop bodies are conditionally executed depend-
ing on the iteration point in the fused space. The condition-
als thus introduced are used to specify whether or nor a cer-
tain reference is executed at a certain iteration point. Sec-
tion 7 generalizes forced loop fusion.

Our work presents a technique to deal with non-
rectangular loops in programs. Conceptually, a non-
rectangular loop is simply a condition on the upper bound
of an inner loop that is based on the current value of
an outer loop. We represent a non-rectangular loop ac-
cordingly by introducing conditionals dependent solely
on loop induction variables. These are then treated ex-
actly in the same way as the conditionals introduced due to
forced loop fusion.

Furthermore, we allow programs with data-dependent
conditionals where, if the condition is not satisfied, one part
of the code is simply skipped (i.e., there is no explicit
“else” part to the condition). For such programs, we give
an upper bound on the number of misses that the program
will incur in the data cache. Most sorting and counting al-
gorithms have such conditionals and, therefore, supporting

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

them greatly increases the applicability of our analysis!
Since we reuse the original CME framework, shown in

block (g) of Figure 3, up to the CME generation stage, the
equations are generated assuming that all references in the
loop nest are executed at every point in the iteration space.
However, we introduce several conditionals during forced
loop fusion and in dealing with non-rectangular loop nests.
The implications of this are that the reuse vectors generated
may be overly optimistic, i.e., could result in unsafe tim-
ing predictions that are lower than actual worst-case times.
To prevent timing violations and ensure timing safety, an
extra analysis step is added to the actual miss calculation
stage, which is feasible since conditionals are dependent
solely on the loop induction variables. This step is repre-
sented by block (h) of Figure 3.

Original
Coyote

Framework

Analyzer
Input

Generator

Scalar
Merging

Loop
Transform

Code
Motion

Depth
Equalize

Forced
Loop

Fusion

Our
Analysis

Miss/Hit
Patterns

Re-analyze
Compulsory

misses

Verify
Hits

(a)

(b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

(k)

Figure 3. Data Cache Analyzer: Enhanced
Coyote Framework

6. Deriving Exact Cache Reference Patterns

The original CME work occasionally provides imprecise
results for certain programs (see below). In this section, we
develop a novel approach to overcome this limitation.

6.1. Cause for Pessimism in CME Framework

Each individual CME only represents potential miss
points. These iteration points are then analyzed considering
the combined effect of all reuse vectors for the reference.
This analysis categorizes the iteration points into misses or
hits. The CME framework produces slightly pessimistic es-
timates for the number of misses for each reference in a loop
nest. There are two reasons for this. First, the implementa-
tion of CMEs (e.g., as provided by Coyote) does not analyze
all iteration points due to the complexity involved. Instead,
a representative sample of the iteration space is considered
for analysis and a confidence value is given as a feedback.

The second problem stems from the layout of array el-
ements in cache lines. In the original CME framework by
Ghosh et al. [6], all arrays are assumed to be aligned in
memory lines and, hence, cache lines. This assumption
might not always be true — the first element of an array may
have a non-zero offset from the start of the cache line. The
Coyote framework, a CME implementation, relaxes this as-
sumption and takes exact base addresses into consideration
during its analysis [1, 14]. However, even Coyote does not
take arbitrary reuses into account.

The pitfalls of the CME framework include the follow-
ing problems: If arrays are not cache-aligned and elements
are accessed in non-sequential order, they may have reuses
that the original CME framework does not detect. As an
example, consider a two-dimensional array a[1..10][1..10]
that has a column-major layout. Consider a data cache that
is large enough to hold this array, for the sake of simplic-
ity. Let the cache line size be 32 bytes and the array element
size be 4 bytes. Let us assume that the base address of the ar-
ray causes it to have the mapping shown in Figure 4 when
it is brought into cache. Now, consider an iteration space

1,1 2,1 3,1 4,1 5,1 6,1

7,1 8,1 9,1 10,1 1,2 2,2 3,2 4,2

5,2 6,2 7,2 8,2 9,2 10,2 1,3 2,3

 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3

Figure 4. Sample Mapping of 2-D Column-
Major Array in Cache

of depth two that traverses the array in row-major order.
The elements a[1][1], a[1][2] and a[1][3] are correctly cate-
gorized by the CME framework as cold misses since it is the
first time those memory lines are accessed. Next, elements
like a[3][3] are also classified as cold misses since they are
on a different memory line than previously accessed data.
On similar assumptions, the CME framework also classi-
fies access a[5][2] as a cold miss. However, in reality, since
a[5][2] is on the same memory line as a[1][2], it has already
been brought into the cache and should actually be classi-
fied as a hit. Ignoring such reuse leads to pessimism in the
miss count.

A third reason for pessimism in the CME framework is
that it only captures reuse between uniformly generated ref-
erences. In contrast, reuse across variables is not captured.
While this impacts array references only for layouts where
one array ends and another starts in the same cache line,
it severely impacts programs frequent references to scalar

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

����������	���
��	����

����������	���
���	����

����������

����������	���
���	����

��������	��
��	����

����������

(a) Original Loop Nests

�����������	����
�����	������

����������	���
���	�����

�����
�����
����

����������	
��

������

����������	���
���	�����

�����
����
�������

����������	
��

�������� ��

(b) After Fusing Outermost Levels

�����������	����
�����	������

������� ���	���
�������	������

�����
�����
��������

���
����
����

����������	
�

������

�����
����
�����������

���
���
��������

����������	
��

������ � ��

(c) Final Fused Loop Nest

Figure 5. Example Illustrating Forced Loop Fusion

variables that share cache lines due to their layout.

6.2. Our Generalization

In our work, we stress on deriving exact data cache ref-
erence patterns. This makes it mandatory for us to consider
all iteration points while computing actual miss points. This
increases the complexity of computation. However, since
ours is a static approach that pre-computes all data cache
reference patterns by code analysis, this one-time overhead
is acceptable. Moreover, the improvement an exact pattern
promises in accuracy of static timing analysis is a signifi-
cant motivation for this approach in spite of the overhead.

The reuse with offsets described in the second problem
is not easily captured in terms of reuse vectors. Hence, we
take a different approach and perform further analysis on
the iteration points that are classified as compulsory misses
by the CME framework. This is represented by the block (i)
in Figure 3. The analysis is as follows. We check if there
exists any prior iteration that references an element in the
same cache line as that of the reference under considera-
tion and if this reference has not been replaced since. In or-
der to avoid traversing the iteration space to find such iter-
ations, we use a back-tracking approach. We consider each
element that would map to the same cache line and simply
map them back to the iteration space. This gives us an it-
eration point that refers to these elements. Afterwards, the
check to ensure that this iteration point is earlier in the it-
eration space is a simple process. Since the number of ele-
ments that map to any cache line is a constant, the complex-
ity involved in this process is generally affordable.

If a program has many scalars, the first access to each of
them is treated as a miss by the original framework. Here,
each variable would be considered separately and, hence,
reuse vectors do not capture reuse between them. In order to
overcome this limitation, we “merge” scalars of equal size
that are adjacent in memory and treat them as an array for
the purpose of analysis. This is done as a pre-analysis phase
as shown in block (b) of Figure 3. Hence, we can capture
reuse between different scalars that map to the same cache
line by treating them as elements of a single array.

7. Forced Loop Fusion

Forced loop fusion is a technique that we have intro-
duced to concatenate iteration spaces of several loop nests
into one loop nest. The algorithm for performing forced
loop fusion is described in Figure 6. Consider input loop
nests of the form shown in Figure 5(a). We start fusing from
the outermost loop and proceed to the inner levels.At every
level, we add the number of iterations in every loop at that
level and make it one fused loop level. In order to main-
tain the correct order of memory accesses in the original
loops, we introduce one conditional for each reference in
the innermost loop which specifies when that reference is
to be executed with respect to the recently fused loop level.
Further, the subscript of the references corresponding to the
loop being altered are modified accordingly. The result af-
ter one level of this addition is shown in Figure 5(b). Now,
the same process is repeated for the subsequent levels in
the loop nests being transformed until we finally have one
single loop nest with conditions for execution of the refer-
ences within the loop nest. The final transformed loop nest
in shown in Figure 5(c).

������ ����	�����
 ������� ����

��� ����

�� �������������������������������������� ����

�����������������������������
�

������ ���

��������������������� ����

������ �����	�����
 ������� ����

����������

�� ����� ������

�����������	�
����� ������������������	�	

������������
����� ����������������	�	���������������

��
���	�	�����	����
������������	�����������	�	�
	�������	�

������������������

���������
��
����������������������� ���������

��

��	�����
���������������������
�������������������

Figure 6. Forced Loop Fusion Pseudocode

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

for(i = 1; i <=10; i++)

for(l = 1; l <= 10; l++)

for(j = 1; j <= 5; j++)
A[i][j] = 19 ;

for(k = 1; k <= 10; k++)
D[i][k] = A[i][k] + 7 ;

for(m = 1; m <= 5; m++)
D[l][m] = 13 ;

(a) Original Loop Nests

for(i = 1; i <=20; i++)
for(j = 1; j <= 20; j++)

if((i >=1) && (i <= 10)
&& (j >=0) && (j <= 5))
A[i][j] = 19 ;

if((i >=1) && (i <= 10)
&& (j >=6) && (j <= 15))
D[i][j−5] = A[i][j−5] + 7 ;

if((i >=11) && (i <= 20)
&& (j >=16) && (j <= 20))
D[i−10][j−15] = 13 ;

(b) Transformed Loop Nest

Ref. Dim Lb and Ub Base Addr. Elem. Size
A 1..10, 1..10 151944 4
B 1..10, 1..10 153000 4

(c) Details of Each Variable

Figure 7. Analyzing the Cache Behavior of References in a Loop Nest

Reference Coyote Output Output by Our Framework
1 50 misses MMMMM.......M..................................... = 6 misses
2 100 missesMMMMM................M......................M.. = 7 misses
3 100 misses MMMMMMMMMM............M...M......................M.. = 13 misses
4 50 misses .. = 0 misses

Table 1. Original framework vs. pattern by our framework (hits: dots, misses: M)

8. Example of Data Cache Analysis

In this section, we provide a simple example showing the
generation of miss/hit patterns. Consider a direct-mapped, 1
KB data cache with a line size of 32 bytes. Since cache pat-
terns are as large as the iteration space, we consider a small
example here, which illustrates our approach.

Let us take as an input the loop nests in Figure 7(a).
The details for each variable in the code are shown in Ta-
ble 7(c). First, we pre-process the given loop nests to trans-
form them into a single loop nest through forced loop fu-
sion. Recall that forced fusion concatenates loop bodies by
extending the first iteration space with the second one. Loop
bodies are conditionally executed depending on the iteration
point in the fused space. The resulting loop nest is shown in
Figure 7(b). Using this transformed loop nest as input, we
generate cache miss equations for this input using the Coy-
ote framework [1]. The miss/hit patterns that we produce as
a result are shown in Table 1. We are able to specify how
many misses occur for each reference accurately and, in ad-
dition, we are able to say exactly where each miss occurs in
the iteration space. We also show the results that the origi-
nal Coyote framework produces in this case, but, since Coy-
ote cannot deal with a loop nest such as the one used in the
example, it only knows about the transformed, fused itera-
tion space and has no knowledge of the conditionals we in-
troduce. Hence, its estimates are way off since it assumes
all the references are executed at every point in the fused it-
eration space.

9. Implications to the Static Timing Analyzer

In this section, we briefly discuss the changes imposed
on static timing analysis by our novel data cache analyzer.
The extended framework is shown in Figure 9. The shaded
blocks represent novel as well as enhanced modules in the
framework to incorporate the data cache analyzer.

Our data cache analysis framework readily produces the
actual miss/hit patterns, which indicate the position of each
miss in a sequence of references. Instead of exploiting ac-
tual miss/hit patterns with complex interleavings, we deter-
mined it to be sufficient for the static timing analyzer to ob-
tain an exact count of the number of misses. We then clus-
ter all misses at the beginning of a reference pattern (fol-
lowed by all hits for the remaining references). This pattern

Cache

Catergorizations

Static Cache
Simulator

Cache

Configuration

Source
Files

Gcc Compiler Timing
Analyzer

WCET
Prediction

Control flow
& Memory
Refs. Info.

Analyzer I/P

Generator

Data Cache
Analyzer

Cache

Configuration
Miss/Hit
Patterns

Figure 9. Static Timing Analysis Framework
enhanced with Data Cache Analyzer

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

for(i = 1; i <= 10; ++i)
for(j = 1; j <= 10; ++j)

A[i][j] = 19 ;

(a) Sample Loop Nests

Iterations with Iterations with
i “Miss time” for j loop “Hit time” for j loop
1 10 0
2 3 7

3..10 0 10

(b) After Fusing Outermost Levels

Figure 8. Miss Pattern Crossing Loop Nests

is fed to the static timing analyzer, which considers the im-
pact of cache hits and misses in the context of pipeline anal-
ysis and path traversal to obtain bounds on the worst-case
execution time of programs.

To efficiently obtain WCET bounds by static analysis,
the analysis approach considers one loop nest at a time
starting with the inner-most nest. The times of the longest
paths are then repeatedly determined while any cache or
processor states are changing till a steady state (fixpoint)
is reached, i.e., two consecutive loop iterations result in the
same WCET bound. The remaining loop iterations are then
guaranteed to be bound by this fixpoint as well [7]. The
overall bound for an inner loop can then be used directly
in the context of the outer loop in conjunction with adjust-
ments due to changing caching effects between loop nests.
This method assumes a consistent pattern for the worst-case
cache categorization, even across loops. However, this as-
sumption may not hold for data cache.

Consider n data cache misses for a reference, where n

may exceed the upper bound on the number of iterations
for an inner loop. Hence, misses extend beyond the itera-
tions of the inner loop. Furthermore, these misses may be
scattered over a subset of iterations of the outer loop, not
necessarily following any regular pattern, as was observed
in the experiments. To handle such misses, the next itera-
tion of the outer loop needs to be considered when finding
a fixpoint for the inner loop. This increases the number of
iterations of the inner loop that need to be considered be-
fore reaching a steady state. We have developed a method
that solves this problem with a space and time complex-
ity O(r + 1), where r is the number of references in a loop
nest.

To illustrate our solution to the above problem, consider
the code shown in Figure 8(a). Let us assume that the num-
ber of misses predicted by the data cache analyzer, for the
sake of demonstration, is 13. We now time the inner “j” loop
once considering the reference A[i][j] to be a miss. This is
termed the “Miss time” for the loop. Next, we time the in-
ner loop considering the same reference to be a hit. This
time is the “Hit time” for the loop. During timing analy-
sis, we propagate information about the inner loop’s tim-
ing for a certain instance to the outer loop by retaining the
“Miss time” and “Hit time” for later accumulation. Table
8(b) shows these values for the example being considered.

This concept, when extended to a loop nest with several
references, leads to an algorithm with complexity O(r + 1)
since we need to consider several permutations of miss/hit
status for the references as opposed to just two timings in
the above example.

10. Experimental Results

All but two of the programs tested stem from the DSP-
Stone benchmark suite [21]. These benchmark programs
were modified to replace pointer-based memory accesses
with equivalent array accesses to make them statically ana-
lyzable. We also inlined functions due to current implemen-
tation constraints of our framework that we will lift in the
future. These were the only changes. We further included a
sorting benchmark, simple-srt-test, from the CLAB bench-
mark suite in our test set [2]. Lastly, we also constructed
a synthetic benchmark to better assess the contributions of
our work compared to the original CME/Coyote framework,
as explained below. We were unable to use all the bench-
marks in the DSPStone suite due to the fact that they have
indirect memory accesses, which are currently not analyz-
able by our framework due to restrictions of the basic CME
framework itself.

The first set of experiments compares the result of us-
ing the original CME framework and that of our extended
framework. Table 2 shows the number of misses and hits
produced by the original framework and our framework, re-
spectively. For all except the last benchmark, we assume
that arrays are aligned on cache line boundaries for sim-
plicity. For all these benchmarks, we see that there is a mis-
match in the total number of accesses (hits+misses) between
the original CME framework and our framework. As ex-
plained in Section 8, this is due to the fact that the original
CME framework cannot analyze these benchmarks as they
are. Thus, the benchmarks are transformed as explained
in the earlier sections to a form accepted by the original
CME framework. However, during this process, we intro-
duce several conditionals based on the loop induction vari-
ables, which the CME framework is not aware of and cannot
take into account. Hence, it considers the entire fused iter-
ation space with accesses in a unconditional fashion, i.e.,
disregarding the conditionals. This accounts for the mis-
match in the total number of accesses. In fact, Coyote does
not catch even a single hit in reality in any except the last

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

Benchmark CME framework Our framework Simulator
used Misses Hits Misses Hits Misses Hits

convolution 400 400 26 374 26 374
dotproduct 8 0 3 5 1 7

fi r 599 1192 26 573 26 573
lms 1207 9449 27 1071 27 1071

matrix1 4600 779400 39 4561 38 4562
nrealupdates 1200 2400 52 1148 50 1150

simple-srt-test 14 59986 14 29686 14 29686
looptest 39 161 26 174 26 174

Table 2. Comparison: Orig. CME / Our Frame-
work / Trace-Driven for 4KB Data Cache

two benchmarks shown in Table 2. Hence, for these bench-
marks, the very fact that our framework can consider them
is an advantage that the original framework does not pos-
sess. For the simple-srt-test benchmark, the loop nest is non-
rectangular and Coyote does not recognize that. It assumes
that the entire rectangular space is traversed.

For the sake of comparison on equal ground, we created
a synthetic benchmark with a loop structure that is analyz-
able by Coyote. This is the last row in Table 2. Here, we
see that our framework produces tighter estimates than the
original Coyote framework even for programs analyzable
by Coyote. This is due to 1) arrays not aligned on cache line
boundary and 2) not recognizing adjacent scalars as shar-
ing a cache line (see Section 6).

In order to further verify the safety of our results, we
ran a cache simulation for each of the benchmarks using
worst-case input. We can see these results also in Table 2.
We never under-estimate the worst-case performance of the
program being analyzed. Table 3 shows the per-reference
breakdown of the same results for one of the benchmarks.
The reason for the small disparity between the results of the
data cache simulator and our framework is that the CME
framework only considers reuse within a variable. Reuse
across multiple variables is not considered. As explained
in Section 5, we handle this problem in the case of scalars
since the disparity would be much more significant there.

srt-test is a sorting benchmark taken from the CLAB
suite. This contains data dependent conditionals and also
non-rectangular loops. We see from the results that our
framework produces an exact bound on the number of cache
misses for this case.

The final set of experiments conducted demonstrate the
fact that consideration of a data cache for purposes of tim-
ing analysis makes a significant difference to the WCET
bound produced by the timing analyzer. The results in Ta-
ble 4 show the worst case execution cycles (WCEC) when
data references are considered as 1) always miss, 2) first
N misses and 3) cold misses only. The second category,
namely first N misses, uses the output produced by our data

Reference Our estimate of misses Simulator result
1 13 13
2 13 13
3 13 12

4..10 0 0

Table 3. Per-Reference Misses by Our Frame-
work vs. Trace-Driven for matrix1

cache analyzer framework. The third category uses cold
miss counts from the trace-driven simulator to verify re-
sults.

From the results in Table 4, we can see that consider-
ing every reference as a miss would severely overestimate
the WCET bounds. On the other hand, we see that our es-
timate provides a tight upper bound on the number of data
cache misses, thereby enabling tight WCET bounds. For a
cache size of 4KB, which is large enough to fit the entire
data set for all benchmarks, our estimate comes very close
to the estimate considering only cold misses as provided by
the trace-driven simulator. For a smaller cache size which
results in additional misses, our estimate is tight.

Benchmark Always First N Misses Cold
Miss 1K Cache 4K Cache Misses

convolution 8791 5051 5051 5051
dotproduct 530 480 480 460

fir 12797 7097 7097 7097
lms 18544 11814 11814 11814

matrix1 96168 52378 50558 50548
nrealupdates 23338 12658 11858 11838

simple-srt-test 668894 372034 372034 372034
looptest 6482 4742 4742 4742

Table 4. Timing Analysis for Different Data
Cache Categorizations in Cycles

11. Conclusion

This work demonstrates the benefits and the potential
of Cache Miss Equations in characterizing data cache be-
havior in a safe and accurate manner. The contributions of
this work are threefold. First, we provide exact data cache
reference patterns for scalar and non-scalar references in
loop nest oriented code as opposed to slightly pessimistic
miss counts produced in previous work. Second, we apply
a transformation we termed “forced” loop fusion to trans-
form any arbitrary loop nests into a single loop nest. While
we still consider whole programs with arbitrary loop nests,
the transformation brings the loop nests to the form re-
quired by the original CME framework and, thus, avoids

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

major changes to the framework. Also, we handle more gen-
eral data dependent conditionals and non-rectangular loop
nests. Third, we integrate our outputs with the static tim-
ing analyzer. This enables us to provide exact miss counts
to the analyzer, thus providing the potential to make WCET
estimates significantly tighter. Experimental results with
our framework indicate improvements in the tightness of
worst-case cache behavior of one, sometimes even two or-
ders of magnitude over the original CME approach. These
results tightly and safely approximate results from trace-
driven cache simulation under worst-case input. Subsequent
bounds on the WCET by the timing analyzer underline the
applicability of these results for end-to-end timing analy-
sis.

12. Future Work
While our method itself is scalable in terms of cache size,

considering larger caches is not useful due to the bench-
marks that we analyze. The benchmarks have small data
sets, which fit completely into a 4KB cache itself. Hence,
using a cache larger than that would not demonstrate the full
capabilities by our framework, such as modeling of conflict
and capacity misses, not just cold misses. As part of future
work, we shall explore larger benchmarks. Further, we in-
tend to test our framework with set-associative caches and
explore the applicability of our framework to L2 caches in
addition to L1 data caches.

References
[1] N. Bermudo and X. Vera. Coyote project documentation.

Technical report, Mlardalen University, 2001.
[2] C-Lab. Wcet benchmarks. Available from http://www.c-

lab.de/home/en/download.html.
[3] S. Chatterjee, E. Parker, P. Hanlon, and A. Lebeck. Exact

analysis of the cache behavior of nested loops. In ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 286–297, June 2001.

[4] D. Decotigny and I. Puaut. Low-complexity algorithms for
static cache locking in multitasking hard real-time systems.
In IEEE Real-Time Systems Symposium, page 114, dec 2002.

[5] B. B. Fraguela, R. Doallo, and E. L. Zapata. Automatic ana-
lytical modeling for the estimation of cache misses. In Inter-
national Conference on Parallel Architectures and Compila-
tion Techniques, 1999.

[6] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-
tions: a compiler framework for analyzing and tuning mem-
ory behavior. ACM Transactions on Programming Lan-
guages and Systems, 21(4):703–746, 1999.

[7] C. Healy, M. Sjodin, V. Rustagi, D. Whalley, and R. van En-
gelen. Supporting timing analysis by automatic bounding of
loop iterations. Real-Time Systems, 18(2/3):121–148, May
2000.

[8] S. Kim, S. Min, and R. Ha. Effi cient worst case timing anal-
ysis of data caching. In IEEE Real-Time Embedded Technol-
ogy and Applications Symposium, June 1996.

[9] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-
time software: Beyond direct mapped instruction caches. In
IEEE Real-Time Systems Symposium, pages 254–263, Dec.
1996.

[10] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y.
Park, H. Shin, and C. S. Kim. An accurate worst case tim-
ing analysis for RISC processors. In IEEE Real-Time Sys-
tems Symposium, pages 97–108, Dec. 1994.

[11] B. Lisper and X. Vera. Data cache locking for higher pro-
gram predictability. In ACM SIGMETRICS international
conference on Measurement and modeling of computer sys-
tems, pages 272–282, Mar. 06 2003.

[12] T. Lundqvist and P. Stenstrm. Empirical bounds on data
caching in high-performance real-time systems. Technical
report, Chalmers University of Technology, 1999.

[13] F. Mueller. Timing analysis for instruction caches. Real-Time
Systems, 18(2/3):209–239, May 2000.

[14] X. Vera, J. Llosa, A. González, and N. Bermudo. A fast and
accurate approach to analyze cache memory behavior (re-
search note). Lecture Notes in Computer Science, 1900:194–
198, 2000.

[15] X. Vera and J. Xue. Let’s study whole-program cache behav-
ior analytically. In International Symposium on High Perfor-
mance Computer Architecture. IEEE, Feb. 2002.

[16] J. Wegener and F. Mueller. A comparison of static analysis
and evolutionary testing for the verifi cation of timing con-
straints. Real-Time Systems, 21(3):241–268, Nov. 2001.

[17] R. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon.
Timing analysis for data caches and set-associative caches.
In IEEE Real-Time Embedded Technology and Applications
Symposium, pages 192–202, June 1997.

[18] R. T. White, F. Mueller, C. Healy, D. Whalley, and M. G.
Harmon. Timing analysis for data and wrap-around fi ll
caches. Real-Time Systems, 17(2/3):209–233, Nov. 1999.

[19] M. E. Wolf and M. S. Lam. A data locality optimizating algo-
rithm. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 30–44, June 1991.

[20] M. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley, 1996.

[21] V. Zivojnovic, J. Velarde, C. Schlager, and H. Meyr. Dsp-
stone: A dsp-oriented benchmarking methodology. In Signal
Processing Applications and Technology, 1994.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

	Southern Illinois University Carbondale
	OpenSIUC
	3-2005

	Bounding Worst-Case Data Cache Behavior by Analytically Deriving Cache Reference Patterns
	Harini Ramaprasad
	Recommended Citation

