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1 Introduction

The problem of relating the rate of convergence to stationarity of an ergodic birth-
death process to the transition rates of the process – the birth and death rates –
has been tackled in the literature by a variety of techniques. This range of solution
methods is, at least partly, brought about by the varying degrees of generality
with which one can approach the problem. One can, for example, formulate
the problem in a operator-theoretic setting, and use methods appropriate for
this setting to obtain general results that may subsequently be applied to birth-
death processes. This approach is chosen, for example, in [4]. But one can also
choose a setting tailored to birth-death processes by starting with Karlin and
McGregor’s [16], [17] spectral representation for the transition probabilities of a
birth-death process, and dealing with the problem using methods from the theory
of orthogonal polynomials. This approach is adopted, for example, in [8]. In the
present paper we take an intermediate position by choosing Kolmogorov’s forward
differential equations for the transition probabilities of an ergodic Markov chain
as our point of departure.

The purpose of this paper is twofold. In the first place we want to survey
the method for studying the rate of convergence of a birth-death process that
one of us, inspired by [11], initiated in the early 1990’s (see [29], [30] and [31]),
and developed further in cooperation with Granovsky (see [12], [13] and [14]).
Secondly, we want to present some new results obtained by the method, related in
particular to the asymptotic behaviour of the rate of convergence for some specific
birth-death processes as the number of states tends to infinity. The method is
based on two main ingredients. The first is the concept of logarithmic norm of a
square matrix, developed independently by Dahlquist [6] and Lozinskǐi [20] as a
tool to derive error bounds in the numerical integration of initial-value problems
for a system of ordinary differential equations (see also the survey papers [25]
and [24]). The second ingredient is a suitable transformation of the Kolmogorov
forward equations. We will consider the simple setting of a finite Markov chain
in order to be able to emphasize methodology and not be distracted by technical
details.

The plan of the paper is as follows. We start off in Section 2 in the setting of
a system of differential equations of the form

x′(t) = Bx(t), t ≥ 0, (1)

where B ≡ (bij) is an essentially positive square matrix, that is, B is irreducible
and bij ≥ 0 if i 6= j. We show how a technique involving the logarithmic norm of
B leads to representations and bounds for the eigenvalue of B with maximal real
part and, accordingly, to representations and bounds for the (suitably defined)
norm of x(t) (Theorems 1, 2 and 3). In Section 3 we apply the results of Section
2 to a system of differential equations obtained by a suitable transformation from
the Kolmogorov forward equations for the transient state probabilities of a finite
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Markov chain. Under the assumption that the matrix determining the system
is essentially positive, this approach results in representations and bounds for
the rate of convergence of the Markov chain to its stationary distribution, and
in representations and bounds for the (suitably defined) distance between the
distribution at time t ≥ 0 and the stationary distribution (Theorems 5 and 6).
Then, it is shown in Section 4 that the assumption underlying the results of
Section 3 is justified if the Markov chain is a birth-death process, leading to
unconditional results in this setting (Theorems 8, 9 and 10).

By substituting the birth and death rates and choosing values for a set of
parameters, the results of Section 4 can be transformed into explicit bounds for
the rate of convergence of a specific birth-death process. In exceptional cases an
appropriate choice of the parameter values can even produce the exact value of
the rate of convergence. More common is the situation in which the parameter
values can be chosen such that the bounds produced are asymptotically (as the
number of states tends to infinity) equal to the rate of convergence itself. In the
Sections 5 and 6 we exhibit some birth-death processes for which such a choice
is possible. Concretely, birth-death processes related to mean field models will
be considered in Section 5, and the number of customers in an M/M/N/N + R
service system in Section 6.

2 Preliminary results

In what follows 0 and 1 denote column vectors of zeros and of ones, respectively, of
appropriate length. Inequality for vectors and for matrices indicates elementwise
inequality, and superscript T denotes transposition. We assume that the matrix
norm || · || is induced by a vector norm, that is, ||A|| := max{||Aa|| : ||a|| = 1}.
As a consequence we have ||Aa|| ≤ ||A|| ||a|| for any matrix A and vector a of
suitable dimensions. Moreover, for any square matrix A with eigenvalue λ we
have |λ| ≤ ||A||.

Now let B ≡ (bij) be an n × n matrix, and suppose that x(.) is determined
by the system (1), so that

x(t) = etBx(0), t ≥ 0.

It is well known (see, for example, [25, Lemma 1c] or [13, Assertion 3]) that

||etB|| ≤ etγ(B), t ≥ 0, (2)

and hence

||x(t)|| ≤ ||etB|| ||x(0)|| ≤ etγ(B)||x(0)||, t ≥ 0, (3)

where

γ(B) := lim
h↓0

||I + hB|| − 1

h
(4)
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is the logarithmic norm of B.
We denote the eigenvalues of B by λ1, λ2, . . . , λn and assume they are num-

bered such that ℜ(λn) ≤ ℜ(λn−1) ≤ . . . ≤ ℜ(λ1). Since eλt is an eigenvalue of etB

if λ is an eigenvalue of B, we have

etℜ(λ1) = |eλ1t| ≤ ||etB||, t ≥ 0,

and hence, in view of (2),

ℜ(λ1) ≤ γ(B). (5)

On the other hand, by Gelfand’s spectral radius formula (see, for example, [23,
Theorem 10.13] or [27, Theorem 3.4]),

||ekB||1/k → eℜ(λ1) as k → ∞,

so that

ℜ(λ1) = inf{b ∈ R : ||etB|| = O
(

ebt
)

as t → ∞}.
Since ||etB|| = max{||x(t)|| : ||x(0)|| = 1}, we also have

ℜ(λ1) = inf{b ∈ R : ||x(t)|| = O
(

ebt
)

as t → ∞ for all x(0)}. (6)

We will assume from now on that || · || = || · ||1, so that ||a|| =
∑

i |ai| for any
(column) vector a ≡ (ai), and ||A|| = maxj

∑

i |aij| for any matrix A ≡ (aij). As
a consequence,

γ(B) = max
j

{bjj +
∑

i6=j

|bij|}.

If B is essentially positive then, for r ∈ R sufficiently large, the matrix B +rI
is non-negative, so that we can employ Perron-Frobenius theory (see, for example,
[22] or [27]). It follows in particular that λ1 + r, and hence λ1, is real. Letting,

cmin(B) := min
j

∑

i

bij and cmax(B) := max
j

∑

i

bij, (7)

we also have γ(B) = cmax(B), so that (5) and (3) lead to λ1 ≤ cmax(B) and

||x(t)|| ≤ etcmax(B)||x(0)||, t ≥ 0,

respectively. Moreover, in the setting at hand etB is a positive operator, that is,
etBx ≥ 0 if x ≥ 0 (see, for example, [13, Assertion 1] or [27, Theorem 8.2]). As
a consequence

x(0) ≥ 0 =⇒ ||x(t)|| ≥ etcmin(B)||x(0)||, t ≥ 0 (8)

(see [13, Assertion 2], where the condition
∑

i bij ≤ 0 is not necessary). So, in
view of (6), we must have λ1 ≥ cmin(B). Clearly, replacing x(0) ≥ 0 by x(0) ≤ 0

in (8) does not alter the conclusion. We summarize the preceding results in the
next theorem.
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Theorem 1. Let B be essentially positive and x(0) any initial vector. Then

cmin(B) ≤ λ1 ≤ cmax(B), (9)

and

etcmin(B)||x(0)|| ≤ ||x(t)|| ≤ etcmax(B)||x(0)||, t ≥ 0, (10)

where the left inequality in (10) presupposes x(0) ≥ 0 or x(0) ≤ 0.

The system (1) does not change if we replace x(0) by −x(0) and B by −B, so
we can try to repeat the arguments leading to Theorem 1 in terms of −B rather
than B. However, since −B is not essentially positive if B is essentially positive,
we can now use only those arguments that do not require essential positivity.
Letting

smin(B) := min
j
{bjj −

∑

i6=j

bij} and smax(B) := max
j

{bjj −
∑

i6=j

bij}, (11)

and noting that −γ(−B) = minj{bjj −
∑

i6=j |bij|} = smin(B) if B is essentially
positive, this line of reasoning gives us the following additional results.

Theorem 2. Let B be essentially positive and x(0) any initial vector. Then

smin(B) ≤ ℜ(λn), (12)

and

etsmin(B)||x(0)|| ≤ ||x(t)||, t ≥ 0. (13)

Evidently, smin(B) ≤ cmin(B) if B is essentially positive, so the bound (13) is
relevant only if x(0) has negative as well as positive components.

Maintaining the assumption that B is essentially positive, we can do better
than Theorem 1. First note that for nonsingular T we can write

Tx′(t) = (TBT−1)Tx(t), t ≥ 0,

so, applying Theorem 1 to TBT−1 rather than B, we conclude

etcmin(TBT−1)||x(0)||T ≤ ||x(t)||T ≤ etcmax(TBT−1)||x(0)||T , t ≥ 0, (14)

where, for any n × n matrix T, the vector norm || · ||T is defined by

||a||T := ||Ta||,

and the left inequality in (14) presupposes Tx(0) ≥ 0 or Tx(0) ≤ 0.
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Next choose r ∈ R again so large that the matrix B+rI is nonnegative. Then
the Collatz-Wielandt theorem (see, for example, [22, pp. 666-669] or [27, Theorem
2.9]) states that, for any diagonal matrix D with positive diagonal entries, the
spectral radius ρ(B + rI) of the matrix B + rI satisfies either

cmin(D(B + rI)D−1) < ρ(B + rI) < cmax(D(B + rI)D−1)

or

cmin(D(B + rI)D−1) = ρ(B + rI) = cmax(D(B + rI)D−1).

Moreover, the latter occurs if and only if D1 is the positive eigenvector of B + rI
corresponding to the eigenvalue ρ(B +rI) (which is unique up to a multiplicative
constant). Noting that ρ(B + rI) = λ1 + r, and replacing T by D in (14), we
readily obtain the following generalization of Theorem 1.

Theorem 3. Let B essentially positive and x(0) any nonzero initial vector. Then,
for any diagonal matrix D with positive diagonal entries,

cmin(DBD−1) ≤ λ1 ≤ cmax(DBD−1), (15)

and

etcmin(DBD−1)||x(0)||D ≤ ||x(t)||D ≤ etcmax(DBD−1)||x(0)||D, t ≥ 0, (16)

where the left inequality in (16) presupposes x(0) ≥ 0 or x(0) ≤ 0. The extreme
values in (15) (and hence in (16) if x(0) ≥ 0 or x(0) ≤ 0) are achieved if and
only if D1 is the positive eigenvector of B corresponding to λ1.

The next corollary is immediate (see also [27, Exercise 8.2.6]).

Corollary 4. If B is essentially positive and D a diagonal matrix, then, for any
nonzero initial vector x(0) ≥ 0,

||x(t)||D = eλ1t||x(0)||D, t ≥ 0, (17)

if and only if D1 is the positive eigenvector of B corresponding to λ1.

For completeness’ sake (and later reference) we also state the result one obtains
by replacing B by DBD−1 and x(t) by Dx(t) in (1) and (13), namely

etsmin(DBD−1)||x(0)||D ≤ ||x(t)||D, t ≥ 0, (18)

for any initial vector x(0) and diagonal matrix D with positive diagonal entries.
Evidently, in view of Theorem 3, the inequality is relevant only if x(0) has neg-
ative as well as positive components, since smin(DBD−1) ≤ cmin(DBD−1).
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Remark. A slight generalization of Theorem 3 and (18) may be obtained by
considering, instead of (1), the system

y′(t) = q(t)By(t), t ≥ 0, (19)

where q(·) is a nonnegative and locally integrable (scalar) function on [0,∞). In
this case we have

y(t) = eq̄(t)By(0), t ≥ 0,

where q̄(t) :=
∫ t

0
q(u)du. Defining x(t) := y(q̄−1(t)), the system (19) reduces to

the system (1), so we can immediately apply (16), (17) and (18) and translate
the results in terms of y(·). This amounts to replacing x(·) by y(·) in (16), (17)
and (18) and writing q̄(t) instead of t in the exponents. 2

If B is not essentially positive one might look for a similarity transformation
C = TBT−1, such that C is essentially positive, and apply Theorem 3 to C
instead of B to obtain bounds on λ1.

3 Convergence of Markov chains

Consider a continuous-time Markov chain X ≡ {X(t), t ≥ 0} taking values in
{0, 1, . . . , n} with q-matrix Q ≡ (qij). The state probabilities pj(t) := Pr{X(t) =
j}, j = 0, 1, . . . , n, are determined by the initial distribution and the system of
forward equations

p′(t) = QT p(t), t ≥ 0, (20)

where p(t) ≡ (p0(t), p1(t), . . . , pn(t))T . We will assume that X is honest and
irreducible, so that there exists a unique stationary distribution, represented by
the vector π ≡ (π0, π1, . . . , πn)T . The distribution π satisfies QT π = 0, and p(t)
converges to π as t → ∞, for any initial distribution p(0). In what follows we
are interested in the rate of convergence (sometimes called the decay parameter)
β, defined by

β := sup{a > 0 : ||p(t) − π|| = O(e−at) as t → ∞ for all p(0)}. (21)

Since
∑n

k=0 pk(t) =
∑n

k=0 πk = 1, we evidently have

0 < |p0(t) − π0| ≤
n
∑

k=1

|pk(t) − πk|, t ≥ 0.

So, letting x(t) := (p1(t) − π1, p2(t) − π2, . . . , pn(t) − πn)T , we obtain

||x(t)|| ≤ ||p(t) − π|| ≤ 2||x(t)||, t ≥ 0, (22)
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and it follows that

β = sup{a > 0 : ||x(t)|| = O(e−at) as t → ∞ for all x(0)}. (23)

Also observe that the forward equations (20) imply

p′i(t) = q0i(p0(t) − π0) +
n
∑

j=1

qji(pj(t) − πj)

=
n
∑

j=1

(qji − q0i)(pj(t) − πj), i = 1, 2, . . . , n, t ≥ 0,

so that

x′
i(t) =

n
∑

j=1

(qji − q0i)xj(t), i = 1, 2, . . . , n, t ≥ 0.

That is, x(·) actually satisfies the system of differential equations (1), and hence
x(t) = etBx(0), with B ≡ (bij) given by

bij := qji − q0i, i, j = 1, 2, . . . , n. (24)

As in the previous section we denote the eigenvalues of B by λ1, λ2, . . . , λn

and assume they are numbered such that ℜ(λn) ≤ ℜ(λn−1) ≤ . . . ≤ ℜ(λ1). Now
suppose λ is an eigenvalue of Q and let y∗ ≡ (y0, y1, . . . , yn)T be a corresponding
eigenvector. Since Q1 = 0, it follows readily that

BT (y − y01) = λ(y − y01),

where y := (y1, y2, . . . , yn)T . So λ is also an eigenvalue of B, unless y − y01 = 0,
the latter occurring if and only if y∗ is a constant vector, and hence λ = 0. Since
X is an honest and irreducible Markov chain, the matrix Q has an eigenvalue 0
of multiplicity one, while all other eigenvalues have negative real parts. We thus
conclude that λ1, λ2, . . . , λn are the nonzero eigenvalues of Q, and satisfy

ℜ(λn) ≤ ℜ(λn−1) ≤ . . . ≤ ℜ(λ1) < 0.

Finally, (6) and (23) imply that

β = −ℜ(λ1), (25)

so studying the rate of convergence of the Markov chain X with q-matrix Q ≡ (qij)
amounts to studying the eigenvalue with largest real part of the matrix B ≡ (bij)
defined by (24).

Although Q is essentially positive, the matrix B, in general, is not. So, as
suggested at the end of the previous section, we must find a similarity transfor-
mation C = TBT−1 such that C is essentially positive (if it exists at all), before
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we can apply Theorem 3. In the next section we will display a suitable simi-
larity transformation in the specific setting of birth-death processes, but in the
remainder of this section we will only assume its existence. As a consequence of
this assumption λ1 must be real. Evidently, if B itself happens to be essentially
positive we let T = I, the identity matrix. We note, parenthetically, that, by
[13, Theorem 2], a suitable similarity transformation always exists when X is a
reversible Markov chain (in which case all eigenvalues are real).

Under the assumption then that there exists a nonsingular matrix T such
that C = TBT−1 is essentially positive, we can apply the first part of Theorem
3 to C and, in view of (25), obtain the following information about β, the rate of
convergence of the Markov chain X .

Theorem 5. Let T be a nonsingular matrix such that C = TBT−1 is essentially
positive, and let D be a diagonal matrix with positive diagonal entries. Then

cmin(DT (−B)(DT )−1) ≤ β ≤ cmax(DT (−B)(DT )−1), (26)

where the extreme values are achieved if and only if D1 is the positive eigenvector
of C corresponding to the eigenvalue λ1 = −β.

Defining z(·) := Tx(·), we have

z′(t) = TBT−1z(t) = Cz(t), t ≥ 0,

since x(·) satisfies the system of differential equations (1). Note further that

||z(t)||D = ||DTx(t)|| ≤ ||DT || ||x(t)||, t ≥ 0,

and

||x(t)|| = ||(DT )−1Dz(t)|| ≤ ||(DT )−1|| ||z(t)||D, t ≥ 0,

so that, in view of (22),

||DT ||−1 ||z(t)||D ≤ ||p(t) − π|| ≤ 2 ||(DT )−1|| ||z(t)||D, t ≥ 0. (27)

We are now ready to apply to z(·) the second part of Theorem 3 as well as (18).
Together with (27) this readily leads to the following bounds for ||p(t) − π||.
Theorem 6. Let T be a nonsingular matrix such that C = TBT−1 is essentially
positive, and let D be a diagonal matrix with positive diagonal entries. Then,
for any initial distribution p(0),

||p(t) − π|| ≤ κ e−cmint||p(0) − π||, t ≥ 0, (28)

and

||p(t) − π|| ≥ 1

κ
e−smaxt||p(0) − π||, t ≥ 0, (29)
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where κ := 2 ||DT || ||(DT )−1||, cmin and cmax denote the left-hand and right-
hand side, respectively, of (26), and smax := smax(DT (−B)(DT )−1). Moreover,
if pi(0) ≥ πi for i = 1, 2, . . . , n, or pi(0) ≤ πi for i = 1, 2, . . . , n, then

||p(t) − π|| ≥ 1

κ
e−cmaxt||p(0) − π||, t ≥ 0. (30)

We note that the condition preceding (30) is satisfied, for instance, when the
initial distribution concentrates all probability mass in state 0. Of course, (29)
becomes irrelevant if (30) holds true, since smax < cmax.

Since B and DTB(DT )−1 have the same eigenvalues, Theorem 2 tells us that
−smax ≤ ℜ(λn). We shall see in the next section that we can obtain more precise
results for λn, the eigenvalue of Q with the smallest real part, in the specific
setting of birth-death processes.

Our final observation in this section is the following.

Theorem 7. If there exists a nonsingular matrix T such that C = TBT−1 is
essentially positive, then there exists a nonnegative matrix ∆ such that, for any
initial distribution p(0) satisfying pi(0) ≥ πi for i = 1, 2, . . . , n, or pi(0) ≤ πi for
i = 1, 2, . . . , n,

||p(t) − π||∆ = e−βt||p(0) − π||∆, t ≥ 0.

Proof. Choose the diagonal matrix D such that D1 is the positive eigenvector
of C corresponding to λ1. By Corollary 3, applied to C and z(·), we then have

||z(t)||D = e−βt||z(0)||D, t ≥ 0.

Letting ∆ be the matrix with zeros in the first row and column, and the remaining
block equal to DT, we also have

||p(t) − π||∆ = ||x(t)||DT = ||z(t)||D, t ≥ 0,

so that the result follows. 2

In the next section we will show that the technique expounded in the present
section for the analysis of the rate of convergence of a finite, continuous-time
Markov chain is applicable, and thus yields bounds and representations, in the
more restricted setting of birth-death processes.

4 Birth-death processes

We will assume in this section that the Markov chain X of the previous section
is a birth-death process, so that its q-matrix has the form
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Q =















−a0 a0 0 · · · 0 0
b1 −(a1 + b1) a1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −(an−1 + bn−1) an−1

0 0 0 · · · bn −bn















, (31)

with positive birth rates ai, 0 ≤ i < n, and death rates bi, 0 < i ≤ n. It is
well known that the nonzero eigenvalues λ1, λ2, . . . , λn of Q are real, distinct and
negative (see, for example, [17]). We have seen in the previous section that these
eigenvalues are precisely the eigenvalues of the matrix B of (24), which is now
given by

B =















−(a0 + a1 + b1) b2 − a0 −a0 · · · −a0 −a0

a1 −(a2 + b2) b3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −(an−1 + bn−1) bn

0 0 0 · · · an−1 −bn















.

Choosing T to be the upper triangular matrix with 1’s on and above the diagonal,
that is,

T =















1 1 1 · · · 1 1
0 1 1 · · · 1 1
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1















and T−1 =















1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1
0 0 0 · · · 0 1















, (32)

the similarity transformation C = TBT−1 yields the essentially positive matrix

C =















−(a0 + b1) b1 0 · · · 0 0
a1 −(a1 + b2) b2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −(an−2 + bn−1) bn−1

0 0 0 · · · an−1 −(an−1 + bn)















. (33)

So we can apply Theorem 5 and obtain after a little algebra the next theorem,
which, in its full generality, was first stated in [31].

Theorem 8. The rate of convergence β of a birth-death process with q-matrix
(31) satisfies

max
d>0

{

min
1≤i≤n

αi

}

= β = min
d>0

{

max
1≤i≤n

αi

}

, (34)
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where d ≡ (d1, d2, . . . , dn), and

αi := ai−1 + bi −
di+1

di

ai −
di−1

di

bi−1, i = 1, 2, . . . , n, (35)

with an = b0 = d0 = dn+1 = 0.

There is a vast literature on results related to Theorem 8, derived by a variety of
methods, and often pertaining to ergodic birth-death processes with an infinite
state space. We refer to [2], [3], [4], [7], [8], [9], [12], [13], [15], [18], [29], [30], [31],
[32], and the references there for further information.

Information about λn, the smallest eigenvalue of Q, and hence of C, may
be obtained by observing that −λn is the largest eigenvalue of −C. Since the
characteristic polynomial Pr(λ) for the leading principal submatrix of order r of
the matrix −C satisfies the recursion

Pr(λ) = (ar−1 + br − λ)Pr−1(λ) − ar−1br−1Pr−2(λ), r = 2, 3 . . . , n,
P0(λ) = 1, P1(λ) = a0 + b1 − λ,

we see that Pn(λ), and hence the spectrum of −C, does not change if we change
the signs of its nondiagonal elements. In other words, −λ1 = β < −λ2 < . . . <
−λn are the eigenvalues of the nonnegative (and irreducible, and hence essentially
positive) matrix C∗, which is obtained from C by changing the signs of its diagonal
elements. Subsequently applying Theorem 3 to C∗ gives us the next result.

Theorem 9. Let χ = −λn, with λn the smallest eigenvalue of the q-matrix (31).
Then χ satisfies

max
d>0

{

min
1≤i≤n

ζi

}

= χ = min
d>0

{

max
1≤i≤n

ζi

}

, (36)

where d ≡ (d1, d2, . . . , dn), and

ζi := ai−1 + bi +
di+1

di

ai +
di−1

di

bi−1, i = 1, 2, . . . , n, (37)

with an = b0 = d0 = dn+1 = 0.

We next give exponential bounds for ||p(t) − π|| in the setting at hand. The
results have essentially been derived earlier in [29] and [31].

Theorem 10. Let X be a birth-death process with q-matrix (31). Then, for any
initial distribution p(0) and vector d ≡ (d1, d2, . . . , dn) such that d := mini{di} >
0, we have

||p(t) − π|| ≤ κ e−mini{αi}t||p(0) − π||, t ≥ 0, (38)
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and

||p(t) − π|| ≥ 1

κ
e−maxi{ζi}t||p(0) − π||, t ≥ 0. (39)

where κ = 4
∑n

i=1(di/d), and αi and ζi are given by (35) and (37), respectively.
Moreover, if pi(0) ≥ πi for i = 1, 2, . . . , n, or pi(0) ≤ πi for i = 1, 2, . . . , n, then

||p(t) − π|| ≥ 1

κ
e−maxi{αi}t||p(0) − π||, t ≥ 0. (40)

Proof. Letting D = diag(d1, d2, . . . , dn) and T as in (32), we have

||DT || =
n
∑

i=1

di and ||(DT )−1|| =
2

d
.

The results (38) and (40) now follow from Theorem 6, while (39) is implied by
(18). 2

We note that, by Theorem 9, the exponent in the lower bound (39) is at best
equal to −χt. In the setting of an arbitrary initial distribution (and unspecified
n > 1) this cannot be improved, in the sense that examples can be constructed
for which ||p(t) − π|| = O(e−χt) as t → ∞. One should bear in mind, however,
that for large t the lower bound (39) is (almost surely) very conservative, since
the spectral expansion of the quantities pj(t)− πj, and hence of ||p(t)−π||, will
involve a term of the order e−βt, unless the birth and death rates and the initial
distribution satisfy a very specific constraint (which happens with probability
zero if, say, the initial distribution is chosen randomly).

We conclude this section with the simple example of a birth-death process
with constant birth rates ai = a, 0 ≤ i < n, and death rates bi = b, 0 < i ≤ n.
We will indicate dependence on n by writing βn and χn instead of β and χ,
respectively. Choosing

di =

(

−
√

b

a

)i−1
sin inπ

n+1

sin nπ
n+1

, i = 1, . . . , n,

(which is positive since (i − 1)π < inπ
n+1

< iπ) and exploiting the trigonometric
identity

sin
(i + 1)nπ

n + 1
+ sin

(i − 1)nπ

n + 1
= 2 sin

inπ

n + 1
cos

nπ

n + 1
, i = 1, . . . , n,

it follows readily that the quantities αi of (35) and ζi of (37) are constant and
given by

αi = a + b − 2
√

ab cos
π

n + 1
, ζi = a + b + 2

√
ab cos

π

n + 1
, i = 1, . . . , n.
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Hence, by the Theorems 8 and 9,

βn = a + b − 2
√

ab cos
π

n + 1
, χn = a + b + 2

√
ab cos

π

n + 1
, n ≥ 1. (41)

These results are, in fact, well known (see, for example, [26, p. 13]) and [12,
Example 2.3]), but the proof seems to be new. It follows in particular that

lim
n→∞

βn = (
√

a −
√

b)2 and lim
n→∞

χn = (
√

a +
√

b)2, (42)

which are examples of the type of asymptotic results we will be interested in in
the following sections.

5 Mean-field models

In this section we consider a spin system Φ ≡ (φ(t), t ≥ 0) on a complete graph
with n vertices (or sites). The state space for this process is the set of all 2n

binary vectors of length n, where the ith component of a state vector indicates
whether the ith site is empty (0) or occupied (1), say. The process is described
by 2n nonnegative flip rates λi and µi, i = 0, 1, . . . , n−1, where λi and µi are the
rates with which an empty site and an occupied site, respectively, swap states
if the site has i occupied neighbouring sites. Such spin systems are known in
statistical physics as mean-field models.

Denoting the total number of ones in a binary vector a by |a| (so that |φ(t)|
represents the total number of occupied sites at time t), and defining

X(t) := |φ(t)|, t ≥ 0,

it is clear that X := {X(t), t ≥ 0} is a birth-death process with state space
{0, 1, . . . , n}, and birth and death rates

ai = (n − i)λi, 0 ≤ i < n, and bi = iµi−1, 0 < i ≤ n,

respectively. So the speed of convergence of the mean-field model Φ to its station-
ary regime may be characterized by the rate of convergence of the corresponding
birth-death process X , and hence the techniques of the previous section may be
applied to study convergence of mean-field models. This approach was adopted
in [12], [13] and [15].

For instance, by using Theorem 8 it was shown in [12], that if λi + µi = c for
0 ≤ i ≤ n − 1, then

βn ≥ c − (n − 1) max
i

{|λi − λi−1|, |µi − µi−1|}, n ≥ 1,

with equality subsisting if and only if

λi = λ0 + ih, µi = µ0 − ih, 0 ≤ i ≤ n − 1,
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for some real number h, in which case βn = c − (n − 1)h, n ≥ 1. In a similar
fashion it was shown in [15] that, given λi + µi = c, the value of χn can be
determined exactly, namely

χn = nc, n ≥ 1.

As before we have indicated dependence on n by writing βn and χn instead of β
and χ, respectively.

A special class of mean-field models, characterized by a uniform stationary
distribution, arises when λi = µi, 0 ≤ i ≤ n − 1. The case

λi = µi = c(i + 1)s, 0 ≤ i ≤ n − 1,

for some c > 0 and s ≥ 0, was considered in [13] and [15]. Specifically, by using
Theorem 8 again, it was shown in [13] that

lim
n→∞

βn

ns
= 21−sc, 0 ≤ s < 1,

and

lim
n→∞

βn

n
= c, s ≥ 1, (43)

while an asymptotic result for χn was obtained in [15]. The result (43) can
actually be generalized, as shown in the next theorem.

Theorem 11. Let λ0 = µ0 = c > 0, and suppose λi = µi ≥ c(i + 1) for
0 < i ≤ n − 1. Then

lim
n→∞

βn

n
= c.

Proof. Writing d1 = d/λ0, and choosing di+1 := 1/(iλi) for i = 1, 2, . . . , n, it
follows after some algebra that the quantities αi of (35) are given by

αi =



























λ0

((

1 − 1

d

)

n + 1 +
1

d

)

, i = 1,

λ1

2
(n + 4 − 2d) , i = 2,

λi−1

i

(

n − i

i − 2

)

, i = 3, 4, . . . , n.

So, choosing d :=
√

n, say, it follows that

βn

n
≥ min

1≤i≤n

{αi

n

}

≥ c(1 + o(1)) as n → ∞.

On the other hand, we have

min
1≤i≤n

αi ≤ α1 = c(n + 1 − (n − 1)/d1) ≤ c(n + o(n)) as n → ∞

for any d1 > 0, so that the result follows from the max-min representation in
Theorem 8. 2
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6 The M/M/N/N + R service system

In this section we will consider the M/M/N/N + R service system, where N ≥ 1
is the number of servers and R ≥ 0 the number of waiting places. We allow the
arrival rate λ(N) > 0 and R ≡ R(N) to be functions of N. With µ denoting the
service rate per server, the number of customers in this system is a birth-death
process with rates

ai = λ(N), 0 ≤ i < n(N), and bi = min{i, N}µ, 0 < i ≤ n(N),

where n(N) := N+R(N). We wish to study the asymptotic behaviour as N → ∞
of β ≡ βn(N), the rate of convergence, and of χ ≡ χn(N). Our first result concerns
the case in which λ(N) is constant.

Theorem 12. Let λ(N) = λ > 0, then, irrespective of the behaviour of R(N),

lim
N→∞

βn(N) = µ.

Proof. Choosing

di =



























1, 1 ≤ i ≤ N,
(

N

N − 1

)i−N

, N < i < N + R(N),

(N − 1)µ

(N − 1)µ + λ

(

N

N − 1

)R(N)

i = N + R(N) (if R(N) > 0),

it follows after some algebra that the quantities αi of (35) are given by

αi =



















µ, 1 ≤ i < N and i = N + R(N),

µ − λ

N − 1
, N ≤ i < N + R(N) − 1,

µ − λ(λ − µ)

(N − 1)µ + λ
, i = N + R(N) − 1 (if R(N) > 1).

Consequently, αi = µ + o(1) as N → ∞ for all i, and so, by Theorem 8, the
statement of the theorem follows. 2

It is not difficult to see that under the conditions of Theorem 12 we also have

lim
N→∞

χn(N)

N
= µ. (44)

Indeed, by choosing di = N i/2 for 1 ≤ i ≤ n(N), the quantities ζi of (37) satisfy
ζi ≤ Nµ + o(N), so that χn(N) ≤ Nµ + o(N) as N → ∞ by the min-max
representation in (36). On the other hand, ζN > Nµ for any choice of di’s so that
χn(N) > Nµ.
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It was shown in [1] that in the special case R(N) = 0 (the Erlang loss system)
βn(N) ≡ βN can be identified with the smallest zero of the polynomial

S(x) :=
λ(N)

x

{

cN+1

(

x

µ
,
λ(N)

µ

)

− cN

(

x

µ
,
λ(N)

µ

)}

,

where

cn(x, a) :=
n
∑

m=0

(−1)m

(

n

m

)(

x

m

)

m!

am
, n ≥ 0, (45)

are the Charlier polynomials (see, for example, [5, Section VI.1]). Since Charlier
polynomials satisfy the recurrence relation

acn+1(x, a) − acn(x, a) + xcn(x − 1, a) = 0, n ≥ 0,

we can write

S(x) = −cN

(

x

µ
− 1,

λ(N)

µ

)

,

and hence

βN = µ + µξN,1

(

λ(N)

µ

)

, (46)

where ξN,1(a) denotes the smallest zero of the Charlier polynomial cN(x, a). It is
known that ξN,1(a) > 0, so that

βN > µ, (47)

but no explicit expression for ξN,1(a) seems to be available (for general a). How-
ever, we can say more about the asymptotic behaviour of βN as N → ∞. The
case λ(N) is constant is covered by Theorem 12, and we will now consider the
more interesting case λ(N) = λN, studied, for example, in [10] and [28].

When λ = µ, we can actually establish the exact value of βN . Indeed, since
cN(x, a) = cx(N, a) for natural x, we have cN(1, N) = c1(N, N) = 0. But Charlier
polynomials are orthogonal with respect to a measure consisting of point masses
at the points 0, 1, . . . , so it follows from the theory of orthogonal polynomials
(see [5, Ch. 2]) that the ith smallest zero of cN(x, a) is larger than i − 1, for
i = 1, 2, . . . . As a consequence we must have ξN,1(N) = 1, and hence, for all
N ≥ 1,

βN = 2µ if λ = µ. (48)

We also observe that cN(1, a) = c1(N, a) = 1−N/a < 0 if a < N. Since c0(0, a) =
1, it follows that ξN,1(a) < 1 if a < N, and hence

βN < 2µ if λ < µ. (49)

Moreover, by exploiting our Theorem 8 we can give the following asymptotic
results, which are consistent with (unproven) statements in [10].
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Theorem 13. Let λ(N) = λN with λ > 0, then

lim
N→∞

βN = µ if λ < µ,

and

lim
N→∞

βN

N
= (

√
λ −√

µ)2 if λ > µ.

Proof. First assume λ < µ. Let L := [Nλ/µ] and choose dN+1 := 0, dN :=
(N − 1)µ,

di := di+1 + (di+1 − di+2)
Nλ

iµ
, i = N − 1, N − 2, . . . , L,

and di := dL for i < L. Clearly, di > di+1 for i = L, L + 1, . . . , N, and hence
di > 0 for 1 ≤ i ≤ N. Substitution of these di’s in (35) readily yields that αi = µ
for i 6= L. Moreover,

0 < 1 − di+1

di

=
di+1

di

(

1 − di+2

di+1

)

Nλ

iµ
<

(

1 − di+2

di+1

)

Nλ

iµ
, L ≤ i < N,

so that

1 − dL+1

dL

<
Nλ

Lµ
. . .

Nλ

(N − 1)µ
<

(

λ

µ

)N−L

.

As a consequence

αL = µ +

(

1 − dL+1

dL

)

Nλ < µ + Nλ

(

λ

µ

)N−L

= µ + o(1) as N → ∞,

which, in view of (47) and the min-max representation in Theorem 8, proves our
first claim.

Next assume λ > µ. By choosing di := (µ/λ)i/2, i = 1, 2, . . . , N, the quantities
αi of (35) satisfy

αi =

{

(λ −
√

λµ)N − (
√

λµ − µ)i +
√

λµ, 1 ≤ i < N,

λN − (
√

λµ − µ)N +
√

λµ, i = N,

so that αN−1 = mini{αi}. By Theorem 8 we therefore have

βN ≥ αN−1 = (
√

λ −√
µ)2N + 2

√

λµ − µ. (50)

On the other hand, letting M1 := [N −
√

N ] and M2 := [N − 1
2

√
N ], and

choosing

di :=

(

2

√

µ

λ

)i

, 1 ≤ i < M1, (51)
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and

di+1 :=































i − M1 + 3

i − M1 + 2

√

µ

λ
di, M1 ≤ i < M2,

√

µ

λ
di, i = M2,

N − i

N − i + 1

√

µ

λ
di, M2 < i < N,

(52)

it follows after some algebra that the quantities αi of (35) satisfy

αi ≤ (
√

λ −√
µ)2 + o(N) as N → ∞, 1 ≤ i ≤ N.

Hence, by the min-max representation in Theorem 8,

βN ≤ (
√

λ −√
µ)2N + o(N) as N → ∞, (53)

and so, in view of (50), the second claim of the theorem follows. 2

Remarks. 1. Using an entirely different technique Krasikov [19, Theorem 3]
has shown that

ξN,1(aN) > (
√

a − 1)2N + c
3
√

N if a > 1,

for some positive constant c, so that (50) can actually be strengthened to

βN > (
√

λ −√
µ)2N + cµ

3
√

N.

2. An alternative proof of (53) may be given along the lines of the proof of
Lemma 36 in [21, Ch. 17], by exploiting the relation

acn(x + 1, a) + (n − a − x)cn(x, a) + xcn(x − 1, a) = 0, n ≥ 0.

(This approach was suggested to us by Ilia Krasikov.) 2

We can use the d’s from the proof of the previous theorem to obtain upper bounds
for ||p(t) − π|| by means of (38). This results in

||p(t) − π|| ≤
{

C1e
−{N(

√
λ−√

µ)2+2
√

λµ−µ}t, if λ > µ
C2e

−µt, if λ < µ
, t ≥ 0, (54)

where C1 and C2 are positive constants that are independent of N. These bounds
slightly improve upon the bounds given in [10, Propositions 6 and 10].

Our final result concerns the asymptotic behaviour of χN as N → ∞ in the
setting of Theorem 13.
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Theorem 14. Let λ(N) = λN with λ > 0, then

lim
N→∞

χN

N
=
(√

λ +
√

µ
)2

.

Proof. By choosing di := (µ/λ)i/2, i = 1, 2, . . . , N, the quantities ζi of (37)
satisfy

ζi =

{

(λ +
√

λµ)N + (
√

λµ + µ)i −
√

λµ, 1 ≤ i < N,

λN + (
√

λµ + µ)N −
√

λµ, i = N,

so that, for N sufficiently large, ζN−1 = maxi{ζi}. By (36) we therefore have

χN ≤ ζN−1 = (
√

λ +
√

µ)2N − 2
√

λµ − µ. (55)

On the other hand, choosing di as in (51) and (52), it follows after some algebra
that the quantities ζi of (37) satisfy

ζi ≥ (
√

λ +
√

µ)2 + o(N) as N → ∞, 1 ≤ i ≤ N.

so that, by the max-min representation in (36),

χN ≥ (
√

λ +
√

µ)2N + o(N) as N → ∞. (56)

In view of (55) and (56) the theorem follows. 2
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