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Abstract

In this note, inequalities and bounds for weighted renewal-type in-
tegral equations are presented. Some upper and lower bounds for the
weighted renewal-type integral equations with monotone weight func-
tions are derived. Some upper and lower bounds for the weighted
renewal-type equations with monotone weight functions are derived.
Bounds for the difference between two weighted renewal functions as
well between the parent and weighted renewal functions are obtained
in terms of the parent renewal reliability functions and their first and
second moments. Relations for renewal-type integrals of the ruin proba-
bility are presented. Some inequalities, bounds and convergence results
are also established.
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1 Introduction

Renewal-type integral equations are useful in many contexts in applied proba-
bility models, including the study of replacement problems in reliability theory,
branching processes, insurance ruin theory and demography. The renewal-type
integral equation

H(t) = G(t) +
∫ t

0
H(t − s)dF (s), (1)

t ≥ 0, where H(t) is the number of renewals in the interval [0, t), is particu-
larly useful in applied stochastic processes and related areas. In general, closed
forms for renewal functions are not known and finding them for life distribu-
tions involves the summation of an infinite series of convolution integrals.
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There have been considerable interest in obtaining bounds and approxi-
mations to the expected number of system failures even for highly reliable
systems and for small times. These bounds and approximations are useful in
reliability computations and comparisons for systems or units whose sequences
of failures can be modeled as a renewal process. Let N(t) denote the number
of renewals in the interval [0, t), then the expectation of N(t), EN(t) satisfies
the integral equation (1). If it is assumed that X0, the time to the first event,
has the same distribution as X1, X2, ......, where Xi is the time between the ith

and the (i + 1)st events, then (1) reduces to

MF (t) = F (t) +
∫ t

0
MF (t − s)dF (s), (2)

t ≥ 0, where MF (t) = EN(t) is the renewal function. See Ross [9] and
references therein for details. Let F and G be life distributions, continuous
from the right, with F (0−) = G(0−) = 0 and F ∗ G(t) =

∫ t
0− F (t − y)dG(y).

Define F1 = F and for n > 1, Fn+1 = Fn ∗ F. Let F0 be the unit step function
with step at 0. The renewal function MF (t) can be written as

MF (t) =
∞∑

n=1

Fn(t). (3)

The augmented renewal function with renewal at 0 is given by M0
F = F0 +MF .

The limiting behavior of the renewal function is well known. In fact, as t → ∞,

MF (t) =
t

μ
+

σ2 − μ2

2μ2
+ o(1), (4)

where μ and σ2 are the mean and variance of Xi, i ≥ 1, the time between ith

and (i+1)st events and X0 the time to the first event has the same distribution
as Xi, i ≥ 1. The derivative of MF (t), if it exists is called the renewal density
and is given by

m(t) = f(t) +
∫ t

0
m(t − s)f(s)ds, (5)

t ≥ 0, assuming f(t) = dF (t)/dt exists, see Ross [9].
Let MF (t) and MG(t) be two renewal functions, where MF (t) is given by

equation (2). Let μ
F

and μ
G
, and σ2

F and σ2
G, denote the first moments and

second central moments of F and G, respectively. Assume these moments are
finite and the distribution functions F and G are nonlattice. For large values
of t, we know from elementary renewal theorem that if μF �= μG, then

MF (t) − MG(t) ∼ (μ−1
F − μ−1

G )t, (6)

and with the second term in the asymptotic expansion,

limt→∞[MF (t) − MG(t) − (μ−1
F − μ−1

G )t] =
σ2

F − μ2
F

2μ2
F

− σ2
G − μ2

G

2μ2
G

. (7)
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If μF = μG = μ, then

limt→∞[MF (t) − MG(t)] =
σ2

F − σ2
G

2μ2
. (8)

It follows therefore that MF (t) −MG(t) converges to 0 if and only if μF = μG

and σ2
F = σ2

G.
There are several useful results on bounds for the renewal function, includ-

ing those given by Brown [2], Daley [4], and Kao [6], and Xie [11] to mention
a few. Barlow at al. [1] obtained results of renewal process with increasing
failure rate (IFR) distribution function. Kijima [7] also presented results on
monotonicity properties of renewal processes. See references therein. Bounds
for the differences between two weighted distributions of number of renewals, as
well as bounds for differences between the weighted and parent or unweighted
distribution of the number of renewals under certain reliability conditions such
as increasing failure rate (IFR) or decreasing mean residual life (DMRL) are
of particular interest and are presented in this paper.

In section 2, we present basic utility notions and results on the weighted
renewal density with monotone weight function. In section 3, we present some
upper and lower bounds for the weighted renewal function with monotone
weight functions. Bounds for the difference between two weighted renewal
functions and those between the weighted and unweighted renewal functions
are also presented. In section 4, we present renewal-type inequalities for the
ruin probability. Some convergence results are also presented. Concluding
remarks are given in section 5.

2 Utility Notions and Basic Results

In this section, we present some basic definitions and utility notions on renewal-
type integral equations as well as the weighted distribution and density func-
tions. In many cases, including the non-observability of some events, unequal
probability sampling, and damage to the original observations, the recorded
observations cannot be considered as a random sample from the original dis-
tribution, thus weighted distributions are the appropriate distributions that
are applicable in these situations. See Gupta and Keating [5], and Patil and
Rao [7], and references therein. In fact, in renewal theory the residual lifetime
has a limiting distribution that is a weighted distribution with weight func-
tion equal to the reciprocal of the hazard or failure rate function. Also, when
observations are selected with probability proportional to their ”length” the
resulting distribution is a weighted distribution referred to as a length-biased
distribution. Length-biased distributions occur naturally in a wide variety of
settings and finds various applications in reliability, biometry, survival analysis,
renewal theory to mention a few areas.
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Now consider a process or mechanism that generates a non-negative random
variable X with distribution function F and probability density function (pdf)
f . Let W (x) be a non-negative weight function with 0 < EFW (X) < ∞. The
weighted random variable X

W
has a reliability function given by

F W (x) =
EF [W (X)|X > x]

EF [W (X)]
F (x), (9)

where F (t) = 1−F (t). Note that the weighted reliability function FW (x) can
be expressed as:

F W (x) = F (x)(W (x) + TF (x))/EF (W (X)), (10)

where TF (x) =
∫ ∞
x (F (u)W

′
(u)du)/F (x), and W

′
(u) = dW (u)/du, assuming

that W (x)F (x) → 0 as x → ∞. The corresponding probability density function
(pdf) of the reliability function given in equation (9) is referred to as a weighted
probability density function (wpdf) with weight function W (x) ≥ 0. In this
paper, we assume that the weight function W (x) is monotone. The weighted
probability density function fW (x) of the weighted random variable XW is
given by

fW (x) = W (x)f(x)/δ∗, (11)

x ≥ 0, where 0 < δ∗ = EF (W (X)) < ∞. The hazard function corresponding
to the weighted distribution function F

W
is given by

λFW
(x) = W (x)λF (x)/(W (x) + TF (x)), (12)

where TF (x) is given above and λF (x) = f(x)/F (x). When W (x) = x, the
probability density function (pdf) is called the length-biased pdf and is given
by

fl(x) =
xf(x)

μF
, (13)

where 0 < μF =
∫ ∞
0 F (x)dx < ∞. The length-biased reliability function is

given by

F l(x) =
F (x)VF (x)

μF

, (14)

where VF (x) = EF (X|X > x) is the vitality function.

We assume that the distribution functions F and FW are absolutely con-
tinuous and both F (t) and FW (t) are zero for t < 0. We let H(t) denote the
solution to the general renewal-type integral equation (1) and let MF (t) and
m(t) be the renewal function and renewal density respectively. Similarly, we
let MFW

and mW be the renewal function and renewal density corresponding
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to the weighted distribution function FW . Following Xie [11], starting with an
arbitrary bounded function HW

j (t), we define the recursive relation:

HW
j+1(t) = G(t) +

∫ t

0
HW

j (t − s)dFW (s), (15)

t ≥ 0 for j = 1, 2, ....., as the weighted version of (1).

Theorem 2.1 . For any bounded HW
j (t), assume HW

1 (t) ≤ HW
2 (t) for all

t ≤ T, then HW
1 (t) ≤ .... ≤ HW

j (t) ≤ HW
j+1(t) ≤ .... ≤ HW (t). If HW

1 (t) ≥
HW

2 (t) for all t ≤ T, the inequalities are reversed.

Proof: The result follows directly from Xie [11] with HW
j (t) in place of Hj(t).

For the ease of reference, we give some basic definitions that are useful in
the results presented in sections 3 and 4.

Definition 2.2 . Let X and Y be random variables with distribution func-
tions F and G respectively. We say X is larger than Y in stochastic ordering
(X ≥st Y ) if F (t) ≥ G(t) for all t ≥ 0.

Definition 2.3 . A distribution function F is said to have increasing (de-
creasing) hazard rate or failure rate on [0,∞), denoted by IHR (DHR) or IFR
(DFR), if F (0−) = 0, F (0) < 1 and P (X > x + t|X > t) = F (x + t)/F (t) is
decreasing (increasing) in t ≥ 0 for each x > 0.

Definition 2.4 . A distribution function F with probability density func-
tion (pdf) f is said to have increasing (decreasing) mean residual life on
(0,∞), denoted by IMRL (DMRL), if μF =

∫ ∞
0 F (x)dx < ∞, F (0) < 1 and

E(X − x|X > x) is increasing (decreasing) in x ≥ 0.

Note that if F has DHR and μF =
∫ ∞
0 F (x)dx < ∞, then F has IMRL.

3 Bounds for Weighted Renewal-Type Equa-

tions

In this section, we present some bounds and inequalities for the weighted
renewal-type integral equations with monotone weight function. In theorem
3.3, an upper bound for the difference between the parent and weighted renewal
functions corresponding to the distribution functions F and FW respectively is
obtained in terms of the parent reliability function, the mean of the weighted
distribution function and the expectation of the weight function. In particular,
when the weighted distribution is length-biased, the bound and approximation
is expressed in terms of the parent reliability function F , the first and the
second moments of the distribution function F.
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Theorem 3.1 . If fW (t) is a non-decreasing weighted probability density
function (wpdf) and f

′
W (t) exists for 0 ≤ t ≤ t0 < ∞, then mW (t) is monotone

and in the same direction.

Proof: Suppose fW (t) is non-decreasing on [0, t0]. We show that dmW (t)
dt

≥ 0 for

0 ≤ t ≤ t0. Assume f
′
W exists, then

dmW (t)

dt
= f

′
W (t) + mW (0)f

′
W (t) +

∫ t

0

∂

∂t
mW (t − s)dFW (s)

= g(t) +
∫ t

0

∂

∂t
mW (t − s)dFW (s),

(16)

where g(t) = f
′
W (t) + mW (0)f

′
W (t). Note that, since fW (t) is non-decreasing,

we have g(t) ≥ 0 for 0 ≤ t ≤ t0, and dmW (t)
dt

= g(t) +
∫ t
0

∂
∂t

mW (t − s)dFW (s)

is a renewal-type integral equation. Consequently, dmW (t)
dt

≥ 0, in view of the

fact that mW (0) = fW (0), and f
′
W (t) ≥ 0 for 0 ≤ t ≤ t0 < ∞.

Theorem 3.2 . Let fW (t) be a wpdf with monotone weight function W (t)
and F W (t) the corresponding weighted reliability function. If the λFW

(t) ≥ b
for all t ≤ t0 < ∞, then the weighted renewal density mW (t) ≥ b for all
t ≤ t0 < ∞.

Proof: Let Let mW
1 (t) = b, and applying Theorem 1, we have mW

j+1(t) ≥ mW
j (t)

for all t ≤ t0. Infact,

mW
j+1(t) ≥ fW (t) +

∫ t

0
bdFW (x)

= fW (t) + bFW (t)

≥ b,

(17)

for t ≤ t0. Consequently, mW (t) ≥ b for all t ≤ t0. Similarly, mW (t) ≤ b for all
t ≤ t0 if λFW

(t) ≤ b.

It is well known that if G1 and G2 are absolutely continuous with respect
to a σ-finite measure ν, with Radon-Nikodym derivative g1 and g2, then

∫
|g2 − g1|dν = 2Supγ|G1(Δ) − G2(Δ)|, (18)

where γ is the collection of Borel subsets of [0,∞), see [2]. Indeed if P (X = Y )
is small then g1 and g2 are close in L1(ν) norm, where the distributions of X
and Y are given by G1 and G2 respectively. The following results are due in
part to an application of the lemma given by Brown [3].
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Theorem 3.3 . Let F and FW be the parent and weighted life distribution
functions with monotone weight function W (t) ≥ 0. If W (x) is not a linear
function of x, then for every T ∗ > 0 satisfying F (T ∗) < 1, FW (T ∗) < 1,

|MFW
(t) − MF (t)| ≤ (F (t))−2(1 − δ∗/μ

FW
),

where 0 < δ∗ < μ
FW

=
∫ ∞
0 F W (y)dy, and MF (t) is given by equation (2).

Proof: Note that (See Tortorella[10])

|MFW
(t) − MF (t)| ≤ (F (t)FW (t))−1Sup{|F (t)− FW (t)|, 0 ≤ t ≤ T ∗}.

Since δ∗F W (t)/F (t) is non-decreasing, we have F W (t) ≥ F (t) for all t ≥ 0 and

Sup{|F (t) − FW (t)|, 0 ≤ t ≤ T ∗} ≤ 1 − δ∗/μ
FW

.

Also, since the weighted function W (t) is non-decreasing, the reliability func-
tions F (t) and F W (t) are stochastically ordered, so that

|MFW
(t) − MF (t)| ≤ (F (t)FW (t))−1Sup{|F (t)− FW (t)|, 0 ≤ t ≤ T ∗}

≤ (F (t))−2(1 − δ∗/μ
FW

). (19)

Remark: If W (x) is a linear function of x with W (0) > 0 and X is
stochastically small, then δ∗ > μ

FW
. Note also that if the weight function is

known and/or additional information on F W and F are available, the bound
may be improved.

Theorem 3.4 . Under length-biased distribution, W (x) = x and

|MFl
(t) − MF (t)| ≤ (F (t))−2(1 − μ2/μ2) =

σ2
F

(F (t))2(σ2
F + μ2

F )
,

where μ2 =
∫ ∞
0 x2f(x)dx, δ∗ = μF =

∫ ∞
0 F (x)dx, σ2

F is the variance of the
distribution function F and

F l(t) = F (t){t +
∫ ∞

t
F (y)dy/F (t)}/μ

F

is the length-biased reliability function.

Theorem 3.5 . Let F and FW be the parent and weighted life distribution
functions with non-decreasing weight function W (t) ≥ 0. If |FW (t)) − F (t)|
is non-decreasing on [0, T ∗], then for every T ∗ > 0 satisfying F (T ∗) < 1,
FW (T ∗) < 1,

|MFW
(t) − MF (t)| ≤ (F (t))−1{E[W (X)|X > t] − δ∗},

where δ∗ is given in (11), E[W (X)|X > t] = δ∗F W (t)

F (t)
and MF (t) is given by

(2).
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Proof: Note that, since |F W (t)) − F (t)| is non-decreasing on [0, T ∗],

Sup0≤t≤T∗|F W (t)) − F (t)| = |FW (T ∗)) − F (T ∗)|,

for all 0 ≤ t ≤ T ∗, so that

|MFW
(t) − MF (t)| ≤ (F (t)FW (t))−1Sup{|F (t)− FW (t)|, 0 ≤ t ≤ T ∗}

= (F (t)FW (t))−1|F (T ∗) − FW (T ∗)|
= (F (t)FW (t))−1|FW (T ∗) − F (T ∗)|
≤ (F (t))−2|F W (T ∗) − F (T ∗)|
≤ (F (t))−1{δ∗F W (t)

F (t)
− δ∗}

= δ∗(F (t))−2{FW (t) − F (t)}, (20)

for all 0 ≤ t ≤ T ∗, by using the fact that E[W (X)|X > t] = δ∗F W (t)

F (t)
is

non-decreasing so that F (t) and F W (t) are stochastically ordered.

Theorem 3.6 . Let the weight function W (t) be non-decreasing in t ≥ 0.
Then MF (t) ≥ MFW

(t), for all 0 ≤ t ≤ T ∗.

Proof: Since W (t) is non-decreasing, δ∗FW (t)/F (t) is non-decreasing, so that
F W (t) and F (t) are stochastically ordered, that is, F (t) ≥ FW (t) for all t ≥ 0.

Clearly, for every n < ∞,

MF (t) − MFW
(t) ≥

n∑
k=1

[Fk(t) − FWk
(t)] ≥ 0, (21)

due to the fact that

MF (t) − MFW
(t) = [F (t) − FW (t)] +

∞∑
k=1

[Fk(t) − FWk
(t)]. (22)

Consequently,

MF (t) − MFW
(t) ≥ F (t) − FW (t) ≥ 0. (23)

The result follows.

Corollary 3.7 . Under length-biased distribution, and for 0 ≤ t ≤ T ∗, we
have MF (t) ≥ MFl

(t).

Proof: Since λFl
(x) = fl(x)/F l(x) ≥ λF (x) for all t ≥ 0, we have F l(t) ≥ F (t)

for all t ≥ 0, so that the result follows immediately.
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Theorem 3.8 . Let f
Wi

(t) = Wi(t)fi(t)/E[Wi(T )] be weighted probability
density functions with 0 < E[Wi(T )] < ∞, i = 1, 2. If FW2(t)/FW1(t) is non-
decreasing for all t ≥ 0, and F W2 or FW1 are DHR reliability functions, then
MFW1

(t) ≥ MFW2
(t), for all 0 ≤ t ≤ T ∗.

Proof: Since B(t) = FW2(t)/FW1(t) is non-decreasing, it follows that F W2 and
F W1 are stochastically ordered, that is, FW2(t) ≥ FW1(t) for all t ≥ 0. Note
that B(t) is non-decreasing for all t ≥ 0 and F

W2
or F

W1
are DHR distribution

functions implies that
λFW2

(t) ≥ λFW1
(t), (24)

for all t ≥ 0. It follows from Theorem 7 that

MFW1
(t) − MFW2

(t) ≥ F
W2

(t) − F
W1

(t) ≥ 0.

for all 0 ≤ t ≤ T ∗.
Consequently, MFW1

(t) ≥ MFW2
(t), for all 0 ≤ t ≤ T ∗.

Theorem 3.9 . If FW (t)/Fl(t) is non-decreasing for t ≥ 0 and FW or F l

are DHR reliability functions, then we have

|MFW
(t) − MFl

(t)| ≤ σ2
F + μF (μF − δ∗)

(F (t))2(σ2
F + μ2

F )
,

and
MFW

(t) − MFl
(t) ≥ F

W
(t) − F

l
(t),

for all 0 ≤ t ≤ T ∗, provided μF ≥ δ∗.

Proof: Since K(t) = F
W

(t)/F
l
(t) is non-decreasing, it follows that F W (t) ≥

F l(t) for all t ≥ 0. Note that K(t) is non-decreasing for all t ≥ 0 and F
W

(t) or
F

l
(t) are DHR distribution functions implies that

λFW
(t) ≥ λFl

(t), (25)

for all t ≥ 0. Now, under length-biased distribution, the weight function
W (t) = t and the reliability function is

F l(t) = F (t){t +
∫ ∞

t
F (y)dy/F (t)}/μ

F
,

so that
|MFW

(t) − MFl
(t)| ≤ (Fl(t))

−2(1 − δ∗/μ
F

l
).

That is,

|MFW
(t) − MFl

(t)| ≤ (Fl(t))
−2(1 − δ∗μ2/μ2)

≤ σ2
F + μF (μF − δ∗)

(F (t))2(σ2
F + μ2

F )
, (26)
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where μ2 =
∫ ∞
0 x2f(x)dx, δ∗ is given by (11), and σ2

F is the variance of the
distribution function F. Note that since λFW

(t) ≥ λFl
(t), we have F W (t) ≥

F l(t) , so that

MFW
(t) − MFl

(t) ≥ F
W

(t) − F
l
(t) ≥ 0,

for all 0 ≤ t ≤ T ∗. Consequently, MFW
(t) ≥ MFl

(t), for all 0 ≤ t ≤ T ∗.

4 Renewal-Type Inequalities for Ruin Proba-

bility

In this section, we establish stochastic inequalities, bounds and relations for
renewal-type inequalities for the ruin probability. Let the claim sizes {Yj} for
j ≥ 1 be independent an identically distributed (i.i.d) with common distri-
bution function G(x) and mean μ > 0. The arrival times of claims follow a
Poisson process with rate λ, independent of {Yj}. It is well known that for an
initial capacity x and premium rate δ > 0 the ruin probability Ψ(x) is given
by

Ψ(x) = P (
N∑

i=1

Xi > x)

=
1

1 + θ

∞∑
j=1

(
1

1 + θ
)jF

(j)
(x),

(27)

where θ = (δ/λμ) − 1 > 0 is the relative safety loading factor, {Xi} are i.i.d
random variables following the stationary distribution

F (x) =
1

μF

∫ x

0
G(y)dy, (28)

F (j)(x) is the j-convolution of F (x), N is a geometric random variable with

parameter θ
1+θ

, which is independent of {Xi}, and F
(j)

(x) = 1 − F (j)(x).

There is usually no explicit expression for Ψ(x), however if F (x) = G(x) =
exp{−x/μ}, then

Ψ(x) =
1

1 + θ
exp{− θx

(1 + θ)μ
}. (29)

In this context, we consider the following renewal-type integral equation sat-
isfied by Ψ(x) and given by

Ψ(x) =
1

1 + θ
F (x) +

1

1 + θ

∫ x

0
Ψ(x − y)dF (y), (30)
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for x ≥ 0. Assume that the distribution function F is absolutely continuous
and F (x) = 0 for x < 0. Let Ψ(x) denote the solution to the general renewal-
type integral equation. If we write

Ψn(x) =
n∑

i=1

(
1

1 + θ
)j[F (j)(x) − F (j+1)(x)], (31)

then Ψn(x) satisfies the recursive equation

Ψn+1(x) =
1

1 + θ
F (x) +

1

1 + θ

∫ x

0
Ψn(x − y)dF (y), (32)

for n ≥ 1, with Ψ0(x) = 1
1+θ

F (x).

Theorem 4.1 . If Ψ1(x) ≤ (≥)Ψ(x) for all x ≤ X, where X may be
infinite, then Ψn(x) ≤ (≥)Ψ(x) for all n and x ≤ X, where Ψn(x) is given by
equation (31).

Proof: Suppose Ψn(x) ≤ Ψ(x) for all x ≤ X, then

Ψn+1(x) ≤ 1

1 + θ
F (x) +

1

1 + θ

∫ x

0
Ψ(x − y)dF (y)

= Ψ(x).

(33)

Since Ψ1(x) ≤ Ψ(x) for all x ≤ X, the proof follows by induction.

Theorem 4.2 . For any bounded Ψ1(x), assume Ψ1(x) ≤ Ψ2(x). Then
Ψn(x) monotonically increases to Ψ(x) as n → ∞.

Proof: We have

Ψn+1(x) − Ψn(x) =
∫ x

0
{Ψn(x − y) − Ψn−1(x − y)}dF (y), (34)

so that Ψn+1(x) ≥ Ψn(x) for all n ≥ 1 and x ≤ X. Consequently, Ψn(x)
satisfies Ψ1(x) ≤ Ψ2(x) ≤ ....... ≤ Ψn(x) ≤ Ψn+1(x) ≤ ....... ≤ Ψ(x) and the
result follows. The inequalities are reversed if Ψ2(x) ≤ Ψ1(x) for all x ≤ X.

Theorem 4.3 . Let Ψn(x) be bounded and defined recursively as above for
for all x and n ≥ 1. Then |Ψn(x) − Ψ(x)| → 0 as n → ∞, provided F (x) < 1
for all x.
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Proof:

|Ψ(x) − Ψn(x)| = | 1

1 + θ
{F (x) +

∫ x

0
Ψ(x − y)dF (y)}

− 1

1 + θ
{F (x) +

∫ x

0
Ψn(x − y)dF (y)}|

= |
∫ x

0
Ψ(x − y) − Ψn(x − y)dF (y)|

≤
∫ x

0
|Ψ(x − y) − Ψn(x − y)|dF (y)

≤ sup
0≤y≤x

|Ψ(y) − Ψn(y)|F (x)

≤ ........ ≤ sup
0≤y≤x

|Ψ(y) − Ψn(y)|(F (x))n.

(35)

Consequently, Ψn(x) converges to Ψ(x) as n → ∞, since Ψ1(x) is bounded
and by virtue of the fact that F (x) < 1 for all x. It is clear that the rate of
convergence to zero is of order (F (x))n.

5 Some Concluding Remarks

In this paper, we have presented some useful results on the bounds for weighted
renewal-type integral equations including renewal-type integral for the ruin
probability. Results on the upper and lower bounds for the renewal den-
sity with monotone weight functions are presented. Also, upper bounds for
the difference between two weighted renewal functions and those between the
weighted and the parent renewal functions are presented in terms of the the
parent reliability function and the first two moments, when the weighted dis-
tribution is a length or size-biased distribution.
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