
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Bounds and Complexity Results for Learning
Coalition-Based Interaction Functions in Networked Social Systems

Abhijin Adiga,1 Chris J. Kuhlman,1 Madhav V. Marathe,1,2 S. S. Ravi,1,3

Daniel J. Rosenkrantz,1,3 Richard E. Stearns,1,3 Anil Vullikanti1,2

1Biocomplexity Institute and Initiative, University Virginia, Charlottesville, VA 22904
2Computer Science Dept., University Virginia, Charlottesville, VA 22904

3Computer Science Dept., University at Albany – SUNY, Albany, NY 12222
{abhijin, cjk8gx, marathe, vskumar}@virginia.edu, {ssravi0, drosenkrantz, thestearns2}@gmail.com

Abstract

Using a discrete dynamical system model for a networked
social system, we consider the problem of learning a class
of local interaction functions in such networks. Our focus is
on learning local functions which are based on pairwise dis-
joint coalitions formed from the neighborhood of each node.
Our work considers both active query and PAC learning mod-
els. We establish bounds on the number of queries needed to
learn the local functions under both models. We also establish
a complexity result regarding efficient consistent learners for
such functions. Our experimental results on synthetic and real
social networks demonstrate how the number of queries de-
pends on the structure of the underlying network and number
of coalitions.

1 Introduction

Motivation. Learning the nature of interactions in net-
worked physical and social systems is a challenging problem
(see e.g., (Laubenbacher and Stigler 2004; Romero, Meeder,
and Kleinberg 2011; González-Bailón et al. 2011)). We use
a graphical dynamical systems model, called a synchronous
dynamical system (SyDS) (see e.g., (Barrett et al. 2006))
to represent these networked systems. Such a system con-
sists of an undirected graph G(V,E), where the nodes rep-
resent entities (agents) and the edges represent pairwise in-
teractions. (Formal definitions are provided in Section 2.)
Each node v has a time varying state value (assumed to be
Boolean) and a local function fv which determines the next
state of the node using the current states of v and its neigh-
bors. The SyDS model assumes that nodes compute and up-
date their state values synchronously. The graph and the lo-
cal functions determine the dynamics of the system.

The problem of understanding the nature of interactions in
a networked system can be formulated as that of inferring the
local functions in a SyDS model of the system. We consider
inference through interactions with the system where a user
may specify each query in the form of a configuration (i.e.,
the current state values of nodes) and the system provides the
successor configuration, i.e., states of the nodes at the next

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time instant (Adiga et al. 2018; He et al. 2016). We also con-
sider inference under the Probably Approximately Correct
(PAC) learning framework where configuration–successor
pairs are independently drawn from an unknown distribution
(see similar work in (Narasimhan, Parkes, and Singer 2015;
He et al. 2016)). Under both models, we assume that the net-
work is known.

The great majority of prior work focuses on each agent’s
individual behavior, where an agent treats each neighbor as
an autonomous influencer. However, in several situations, an
agent is influenced by groups formed by its neighbors. Here,
our focus is on learning a form of interaction based on pair-
wise disjoint coalitions formed by the neighbors of an agent.
The motivation for this model comes from the work reported
in (Ugander et al. 2012; Laubenbacher and Stigler 2004;
Colón-Reyes et al. 2006). The model studied in (Ugander
et al. 2012) uses a social network and considers the con-
nected components formed by the one-hop neighbors of a
node v. Since the connected components are node disjoint,
so are the coalitions. The experimental evidence presented
in (Ugander et al. 2012) shows that coalitions are indeed op-
erative in social networked systems. In particular, the results
in this reference point out that people consider coalitions
of their neighbors in deciding whether to join Facebook.
Thus, our model of non-overlapping coalitions has direct
relevance to social systems. The model studied in (Lauben-
bacher and Stigler 2004; Colón-Reyes et al. 2006) considers
polynomial interaction functions, where each polynomial is
a sum of monomials (products of variables where the de-
gree of each variable is at most 1). The monomials can be
thought of as coalitions. For Boolean functions, sums of
monomials correspond to monotone functions in disjunctive
normal form (DNF); such functions are in the sum of prod-
ucts form where no variable appears negated. Each prod-
uct term in a DNF represents a coalition. Since coalitions
considered in models of social systems generally do not
overlap (Branzei, Dimitrov, and Tijs 2005; Ugander et al.
2012), we have the additional requirement that the coali-
tions must partition the set of inputs. We call such func-
tions partitioned monotone DNF (PM-DNF) functions. As
an example, the Boolean function of five variables defined
by f(x1, x2, x3, x4, x5) = x1 x5 + x2 x3 + x4 consists of

3138

three pairwise disjoint coalitions. The interpretation is that
the function takes on the value 1 iff least one of the coali-
tions is unanimous, i.e., all the variables in that coalition
have the value 1. Thus, in a social system with PM-DNF
functions, a node changes to 1 at time τ + 1 iff there is at
least one unanimous coalition among its inputs at time τ .

Our work considers the problem of learning PM-DNF
functions under the active query model of (Adiga et al.
2018) and the PAC learning model (Valiant 1984). Two ex-
treme cases of the PM-DNF model are well studied: (i)
the Boolean OR function where every coalition has exactly
one neighbor (which corresponds to the simple contagion
model of (Granovetter 1978)) and (ii) Boolean AND func-
tion where all the neighbors form a single coalition (which
corresponds to a particular type of complex contagion model
of (Centola and Macy 2007)). Our model is a generalization
of these two extreme cases. Also, to the best of our knowl-
edge, this is the first work that addresses learning functions
that depend on groups of neighbors, rather than individual
neighbors. Such a dynamical system can also be viewed as
a model for diffusion on hypergraphs (Zhu et al. 2018).

Summary of results.

1. Bounds under the active query model. We present an al-
gorithm that can learn any PM-DNF function with q in-
puts using O(q log q) membership queries1 under the adap-
tive mode (where a query may depend on the answers
to the previous queries). We also show that in the worst-
case, Ω(q log q) queries are required under the adaptive
mode to infer such a function. In addition, we show that
O(χ∆ log∆) adaptive queries are sufficient to infer all the
local functions of a SyDS where χ and ∆ represent the num-
ber of colors needed to color G2 (the square graph2 of G)
and the maximum node degree of G respectively.

2. PAC model upper bound. For any fixed values of the pa-

rameters ǫ and δ, we show that for learning the PM-DNF
functions at all the nodes of a SyDS, an upper bound on
the sample complexity is O

(

(2m + n) log(∆ + 1)
)

, where

m = |E| and ∆ is the maximum node degree.

3. Complexity of efficient PAC learning. We show that the
class of PM-DNF functions with two or more product terms
is not efficiently PAC learnable unless NP = RP. (The cor-
responding problem for one product term is efficiently solv-
able since a PM-DNF function with one product term is just
the AND function.)

4. An algorithm for learning under the PAC model. To cope
with the intractability result mentioned in Item 3 above,
we present an integer linear programming (ILP)-based algo-
rithm for determining whether there is a PM-DNF function
that is consistent with all the given examples (definition in
Section 4). This algorithm can be used to construct a PAC
learning algorithm for PM-DNF functions in practice.

5. Experimental results. We present experimental results for
generating query sets under the adaptive model for both syn-
thetic and real social networks. The number of queries re-

1A membership query specifies an input to a Boolean function
and the response is the value of the function.

2The square G2(V,E2) of a graph G(V,E) has the edge {u, v}
whenever there is a path of length ≤ 2 between u and v in G.

quired depends on the structure of the graph and number of
blocks (i.e., coalitions). For example, in the case of scale-
free networks, the number of queries required is much less
than the theoretical upper bound established in this paper.
Under the PAC model, we analyze a single local function
with regard to sample distribution, size of the input and num-
ber of blocks. Interestingly, the ILP-based algorithm exhibits
better performance when the number of blocks is large.

For space reasons, proofs for many of the results are omit-
ted; they appear in (Adiga et al. 2019a).
Related work. Many researchers have addressed the prob-
lem of learning components of physical and social systems
(see e.g., (Adiga et al. 2018; He et al. 2016; Laubenbacher
and Stigler 2004; Romero, Meeder, and Kleinberg 2011;
González-Bailón et al. 2011)). As mentioned earlier, the
coalition-based interaction model was motivated by the
work in (Ugander et al. 2012; Colón-Reyes et al. 2006). The
problem of learning Boolean DNF functions has received
attention in the learning theory literature under membership
query and PAC learning models. For example, bounds on
the number of membership queries for learning monotone
DNFs are proven in (Abasi, Bshouty, and Mazzawi 2014).
In their work, the product terms may not partition the set
of variables. The problem of learning discrete distributions
over {0, 1}n is considered in (Kearns et al. 1994); some of
their results use circuits that compute monotone DNF (but
not PM-DNF) functions. Other learning problems for DNF
functions have been considered in several papers (e.g., (An-
gluin and Slonim 1994; Liśkiewicz, Lutter, and Reischuk
2017; Servedio 2004)). The topic of active learning has also
been explored in the context of sensor networks (e.g., (Cas-
tro and Nowak 2007)).

To our knowledge, the problem of learning PM-DNF
functions for networked systems has not been addressed in
the literature. In particular, the adaptive query techniques
presented in (Adiga et al. 2018) for learning symmetric
functions (and threshold functions which are a subclass of
symmetric functions) cannot be applied to PM-DNF func-
tions since the latter is not a subclass of the former. For ex-
ample, the PM-DNF function f(x1, x2, x3, x4) = x1 x2 +
x3 x4 is not a symmetric function since f(1, 0, 1, 0) = 0 �=
f(1, 1, 0, 0); hence, it is also not a threshold function. Learn-
ing threshold functions under the PAC model is considered
in (Adiga et al. 2019b); they present a complexity result for
efficient consistent learners for threshold functions similar to
our result for PM-DNF functions. However, our complexity
result is not implied by the one in (Adiga et al. 2019b).

2 Definitions and Problem Formulations
Model for networked social systems. Following (Barrett
et al. 2006), we use a formalism called a synchronous dy-
namical system (SyDS), to model a networked social sys-
tem. Let B denote the Boolean domain {0,1}. A SyDS S
over B is a pair S = (G,F), where (i) G(V,E), an undi-
rected graph with n = |V | nodes, represents the underlying
graph of the SyDS, and (ii) F = {f1, f2, . . . , fn} is a col-
lection of functions, with fi denoting the local function at
node vi, 1 ≤ i ≤ n. At any time, each node of G has a
state value from B. The inputs to function fi are the states

3139

v4

v1

v3v2

Node Local function

v1 s1 + s2 s3
v2 s1 + s2 + s3 s4
v3 s1 s2 + s3
v4 s2 + s4

Figure 1: An example of a PM-DNF-SyDS. The local func-
tions (which are all PM-DNF functions) are shown in the
table on the right. Variable si represents the state of node vi,
1 ≤ i ≤ 4.

of the nodes in the closed neighborhood of vi (i.e., node vi
and the neighbors of vi in G). For each input, the output of
function fi gives the next state of vi. In a SyDS, all nodes
compute and update their next state synchronously (i.e., in
parallel). At any time τ , if sτi ∈ B is the state of node vi
(1 ≤ i ≤ n), the configuration C of the SyDS is the n-
vector (sτ1 , s

τ
2 , . . . , s

τ
n). The system evolves in discrete time

steps by repeated application of F . If C and C ′ denote two
successive configurations of a SyDS, then C ′ is the succes-
sor of C.

Partitioned monotone DNF functions. In this paper,
each local function fi is based on coalitions formed by the
closed neighborhood of node vi, 1 ≤ i ≤ n. Our focus is
on one class of such Boolean functions, called partitioned
monotone DNF (PM-DNF) functions.

Definition 1. A Boolean function f is a PM-DNF iff it has a
disjunctive normal form (DNF) (i.e., sum of products) repre-
sentation satisfying the following two properties: (i) all the
variables appear unnegated in f (i.e., f is monotone) and (ii)
the collection of product terms (also referred to as blocks or
coalitions) partitions the set of inputs to f ; i.e., each input

appears in exactly one block.

Example 1. Suppose we have five Boolean variables, de-
noted by x1, x2, x3, x4 and x5. One example of a PM-DNF
function is f1(x1, x2, x3, x4, x5) = x1 x3 x5 + x2 x4,
which has two product terms (coalitions). Note that the OR
function f3(x1, x2, x3, x4, x5) = x1+x2+x3+x4+x5 (five
coalitions) and the AND function f4(x1, x2, x3, x4, x5) =
x1 x2 x3 x4 x5 (one coalition) are PM-DNF functions. On
the other hand, f5(x1, x2, x3, x4, x5) = x1 x2+x4 x5 is not
a PM-DNF function since x3 doesn’t appear in any of the
product terms. Likewise, f6(x1, x2, x3, x4, x5) = x1 x2 +
x3 x4 + x5 is not a PM-DNF function since x4 is negated.

For simplicity, we use the abbreviation PM-DNF-SyDS to
denote a SyDS in which every local function is a PM-DNF
function. We now present an example of such a SyDS.

Example 2. The graph of a PM-DNF-SyDS is shown in
Figure 1. Suppose the initial configuration is (1, 0, 0, 0); that
is, node v1 is in state 1 and nodes v2, v3 and v4 are in state
0. It can be seen that the system goes through the following
sequence of configurations during the next two time steps:
(1, 0, 0, 0) −→ (1, 1, 0, 0) −→ (1, 1, 1, 1). From the con-
figuration (1, 1, 1, 1), no further state changes occur. Such a

configuration is a fixed point for this system.
Active query model. This query model for SyDSs was pro-
posed in (Adiga et al. 2018). Under this model, each query,
which we call a successor query, specifies a configuration
C; the response to the query is the configuration C ′, the suc-
cessor of C. One can think of C as specifying an input to
each local function and the response C ′ as specifying the
value of each local function for the input specified by C.

For expository purposes, we consider learning each local
function separately. Thus, to learn an unknown PM-DNF
function f , a query specifies an assignment α of values to
the inputs of f ; the response to the query is the Boolean
value f(α). In the learning theory literature, such queries are
called membership queries (see e.g., (Angluin and Slonim
1994)). Since our goal is to use as few membership queries
as possible, we will use the adaptive query mode considered
in (Adiga et al. 2018). In this mode, membership queries
are generated one at a time; a query may depend on the re-
sponses for previous queries. We also consider learning PM-
DNF functions under the PAC model; we refer the reader to
(Antony and Biggs 1992; Kearns and Vazirani 1994) for the
relevant definitions.
Positive and negative examples. For an unknown PM-
DNF f , each example η given to a PAC learner is a pair
(α, β), where α is an assignment of {0,1} values to the in-
puts of f and β ∈ {0, 1} is the value f(α) of the function.
These are positive examples. We need not consider negative
examples here since a negative example of the form (α, β),
that is, “β is not the output of f for input α”, is equivalent to

the positive example (α, β).
The concept class of PM-DNF functions is PAC learn-

able by a learner L using the hypothesis space H if for any
target concept c, values ǫ and δ such that 0 < ǫ, δ < 1/2,
and distribution D over the instance space, L outputs with a
probability of at least 1 − δ, a hypothesis h ∈ H such that
errorD(h) ≤ ǫ. The sample complexity of a learner, de-
noted by M(ǫ, δ), is the number of examples needed by the
learner to output an appropriate hypothesis h. We will use
the following well-known upper bound (Haussler 1988) on
M(ǫ, δ) based on the size of the hypothesis space H:

M(ǫ, δ) ≤
1

ǫ

(

log |H|+ log(1/δ)
)

. (1)

3 Bounds Under the Active Query Model

Lower bound. We establish the lower bound by pointing
out that any algorithm that uses membership queries under
the adaptive mode can be viewed as a decision tree, like the
one used to establish a lower bound on comparison-based
sorting algorithms (Cormen et al. 2009). A proof of the fol-
lowing theorem appears in (Adiga et al. 2019a).

Theorem 1. Every algorithm that uses membership queries
under the adaptive mode to learn a PM-DNF function with
q inputs must use Ω(q log (q)) queries in the worst-case.

Upper bound: A query generation algorithm to learn
a PM-DNF function. We now discuss our algorithm for
generating membership queries under the adaptive mode to
learn an unknown PM-DNF function f with q inputs, de-
noted by x1, x2, . . ., xq . For each block of f , the variable

3140

with the smallest index will be referred to as the key vari-
able for that block. For example, if one of the blocks is
x2 x7 x9, then the key variable for that block is x2. For a
set of blocks, the key block for that set is the block with the
largest key variable. For a set of blocks, we define the su-
perkey variable for that set of blocks to be the key variable
of the key block in the set of blocks.

The algorithm consists of a loop that identifies the blocks
of f , one block at a time. For each iteration of this loop, we
refer to the already discovered blocks as the known blocks,
and the remaining blocks as the unknown blocks. We refer
to the variables in the known blocks as allocated variables,
and the variables in the unknown blocks as unallocated
variables. The unallocated variables are sorted by their in-
dex, lowest index first. The list of unallocated variables can
be considered to be divided into two parts; a left part con-
sisting of primary unallocated variables, and a right part
(possibly empty) consisting of secondary unallocated vari-
ables. As the algorithm proceeds, the primary unallocated
variables are unallocated variables that are potentially the
key variable of some unknown block, whereas secondary
unallocated variables are unallocated variables that the re-
sponses to previously issued queries have shown are not the
key variable of any block.

Initially all the blocks are unknown, and all the variables
are primary unallocated variables. At each iteration of the
loop, the algorithm finds the key block among the currently
unknown blocks. The algorithm does this by first finding
the superkey variable for the set of unknown blocks, thereby
identifying the key variable of the key unknown block. The
current iteration of the loop then proceeds by finding all the
remaining variables in the key unknown block, one variable
at a time. Once all the variables of the key unknown block
have been found, that block is now known, and the status of
its variables changes to allocated. After changing the status
of this block, if all the variables are allocated (i.e., belong
to known blocks), then all the blocks of f have been iden-
tified, so the algorithm is finished. Otherwise, the algorithm
reiterates the loop, to discover the new key unknown block.

Each iteration of the loop consists of two major substeps;
the details of these substeps are provided below. Recall that
each membership query specifies an assignment α of {0,1}
values to the variables, and the response to the query is the
value f(α). The algorithm uses two types of membership
queries: superkey queries and block queries. Substep 1
of each loop iteration uses superkey queries to find the su-
perkey variable of the unknown blocks. Once this superkey
variable is identified, Substep 2 uses block queries to find
the other members of the key block.

Substep 1: Finding the superkey variable of the unknown
blocks. The algorithm uses a binary search over the primary
unallocated variables, using superkey queries to guide the
search. The binary search maintains a list L of candidate
variables, each of which is a primary unallocated variable,
and might potentially be the superkey. List L initially con-
sists of all the primary unallocated variables, since the su-
perkey is one of these variables.

If list L of candidate variables contains only one variable,
say variable xk, then the binary search is over, and variable

xk is the superkey. Otherwise, the binary search to find the
superkey proceeds as follows. Let xj be the ⌈|L|/2⌉th vari-

able on list L. Let αj be the assignment to the q variables
where a given variable xi is 1 iff xi is unallocated and i > j.
The algorithm issues αj as a query, which we refer to as a
superkey query.

Suppose f(αj) = 0. Then the unallocated variables to the
right of xj do not contain a complete block, so none of these
variables can be the key of any unknown block. So, the status
of each primary unallocated variable xi such that i > j is
changed to secondary. Also, each candidate variable xi on
list L such that i > j is deleted from L.

Suppose f(αj) = 1. Then the unallocated variables to the
right of xj contain a complete block, so the superkey is a
candidate variable xi such that i > j. So, each candidate
variable xi on list L such that i ≤ j is deleted from L.

In this manner, the search for the superkey variable is re-
cursively continued on the left or right half of list L, depend-
ing on the value of f(αj), until L contains just one variable.
Note that each query reduces the size of L by a factor of 2.
(More precisely, if L and L′ denote respectively the list be-
fore and after the list shortening, then |L′| = ⌈|L|/2⌉). Thus,
the number of queries used to find the superkey variable is
at most ⌈log (q)⌉.
Substep 2: Finding the other variables in the key block.
Substep 2 uses a loop that searches for the other variables
in the key block, one variable at a time. At the beginning
of each iteration of this loop, a nonempty set of key block
members (including the superkey) have already been found.
We refer to this set of variables as identified key block
members. The iteration begins by issuing a block query
α wherein a given variable is 1 iff it is an identified key
block member. If f(α) = 1, then the identified key block
members form the complete key block. The key block is
now known, so the status of its members is changed to
allocated, and Substep 2 is complete.

If f(α) = 0, then the key block contains at least one
additional member, and a binary search is used to find the
additional member with the lowest index. The binary search
maintains a list L of candidate variables, each of which is a
secondary unallocated variable, and which might potentially
be the next member of the key block. List L initially con-
sists of all the secondary unallocated variables to the right
of the last member added to the key block, since the next
member of the key block is one of these variables. If list L
of candidate variables contains only one variable, say vari-
able xj , then the binary search is over, and variable xj is
the next member of the key block. Variable xj is now the
newest identified key block member, and another iteration
of the main loop for Substep 2 begins.

Otherwise, if list L of candidate variables contains more
than one variable, the binary search to find the next member
of the key block proceeds as follows. Let xj be the ⌈|L|/2⌉th

variable on list L. Let αj be the assignment to the q variables
where a given variable xi is 1 iff either xi is an identified key
block member or xi is unallocated and i > j. The algorithm
issues block query αj .

Suppose f(αj) = 0. Then the key block has a variable
xi such that i ≤ j and xi is on list L. Thus, each candidate

3141

variable xi on list L such that i > j is deleted from L.
Suppose f(αj) = 1. Then the next member of the key

block is a variable xi such that i > j and xi is on list L.
Thus, each candidate variable xi on list L such that i ≤ j is
deleted from L.

In this manner, the search for the next member of the key
block is recursively continued on the left or right half of list
L, depending on the value of f(αj), until L contains just one
variable. Since each query reduces the size of L by a factor
of 2, the number of queries used to find the next member of
the key block is at most ⌈log (q)⌉.

Overall, the algorithm uses at most 1 + ⌈log (q)⌉ queries
per variable. Thus, an upper bound on the number of queries
is q(1 + ⌈log (q)⌉) = O(q log (q)). Thus, we have:

Theorem 2. A PM-DNF function f with q inputs can be
learned using at most q(1+ ⌈log (q)⌉) = O(q log (q)) adap-
tive membership queries.

Inferring all local functions. The following theorem pro-
vides an upper bound on the number of queries needed to
learn all local functions of a PM-DNF-SyDS. A proof of the
theorem appears in (Adiga et al. 2019a).

Theorem 3. For a PM-DNF-SyDS with underlying graph
G, O(χ(G2)∆ log (∆)) successor queries are sufficient to
infer all the local functions. Here, ∆ is the maximum node
degree in G and χ(G2) is the minimum number of colors
needed for a valid node coloring of G2.

4 Results Under the PAC Learning Model

4.1 Upper bound on the number of queries

We begin with an upper bound on the sample complexity to
learn a PM-DNF function under the PAC model. A proof of
the following result appears in (Adiga et al. 2019a).

Proposition 1. Let ǫ, δ > 0 be fixed. The asymptotic sample
complexity M(ǫ, δ) for PAC learning all the PM-DNF local

functions for a given graph G(V,E) is M(ǫ, δ) = O
(

(2m+

n) log(∆ + 1)
)

, where m = |E| and ∆ is the maximum
degree of G.

4.2 A complexity result for efficient PAC learning

We will show that a class of PM-DNF functions is not effi-
ciently PAC learnable unless NP = RP. To do this, we need
to introduce the notion of consistency of a PM-DNF func-
tion with respect to a set of examples.
Consistent hypothesis. Given a set E of examples, we say
that a hypothesis (i.e., a PM-DNF function) f is consistent
with respect to E if for each example (α, β) ∈ E , f(α) = β.
As is well known in the learning theory literature (see e.g.,
(Kearns and Vazirani 1994)), algorithms for obtaining con-
sistent hypotheses are useful in constructing PAC learning
algorithms.

We now present our complexity result for the class of PM-
DNF functions with two or more product terms. (As stated
in Section 1, the case of a PM-DNF function with one prod-
uct term is trivial.) To prove the result, we use the follow-
ing problem which is known to be NP-complete (Garey and
Johnson 1979).

Hypergraph 2-Colorability (H2C): Given a set U =
{u1, u2, . . . , uq} and a collection Y = {Y1, Y2, . . . , Yk} of
subsets of U (i.e., the hyperedges) with |Yj | ≥ 2, 1 ≤ j ≤ k,
can the elements in U be colored with two colors so that no
hyperedge in Y is monochromatic (i.e., each subset in Y
contains at least one element of each color)?

Theorem 4. If NP �= RP, the class of PM-DNF functions
with two or more product terms is not efficiently PAC learn-
able.

Proof (idea). We use a reduction from H2C to show that
if there is an efficient PAC learning algorithm for PM-DNF
functions with two or more blocks, then there is an RP-time
algorithm for H2C, contradicting the assumption that NP �=
RP. Details appear in (Adiga et al. 2019a).

We note that Theorem 4 holds for the case of proper learn-
ing where the hypothesis class and the concept class are the
same, namely the class of PM-DNF functions. Whether the
result can be extended to the representation-independent set-
ting (see, e.g., (Warmuth 1989)) is left for future work.

4.3 An ILP-based PAC learning algorithm

As is well known, if a hypothesis h (which in this case is
a PM-DNF function) that is consistent with all the given
examples can be constructed, then the number of exam-
ples used to learn h is within a constant factor of the min-
imum sample complexity needed to learn the hypothesis
class (Blumer et al. 1989). Therefore, we focus on devel-
oping an algorithm for a consistent learner. We consider the
following problem which we call Consistent Learning of
Partitioned Monotone DNF functions (CL-PMDNF).
Given: A set E of examples for an unknown PM-DNF func-
tion f with q inputs given by X = {x1, x2, . . . , xq}; E is
partitioned into E0 and E1, where E0 (E1) is the set of exam-
ples in which the function value is 0 (1); integer k ≤ q.
Requirement: Determine whether the variable set X can be

partitioned into exactly k blocks, with each block forming a
product term of the function, so that the resulting function is
consistent with E . If so, find one such partition.

The above formulation assumes that we know the number
of blocks. This can be done without loss of generality since
we can try the values 1, 2, . . ., q for the number of blocks.

Let B1, B2, . . ., Bk denote the blocks (product terms) of
the unknown PM-DNF function. To develop our ILP formu-
lation for CL-PMDNF, let zij be an indicator variable which
has the value 1 if variable xi is in Block Bj and 0 otherwise,
1 ≤ i ≤ q and 1 ≤ j ≤ k. We now explain the constraints
in our ILP.

The following two sets of constraints enforce the follow-
ing requirements: (i) each variable appears in exactly one
block and (ii) each block is nonempty (since we must have
exactly k blocks).

k
∑

j=1

zij = 1, 1 ≤ i ≤ q;

q
∑

i=1

zij ≥ 1, 1 ≤ j ≤ k .

Consider any example ηp = (αp, 0) in E0. Let Sp ⊆ X be
the set of variables that have the value 0 in the input assign-
ment αp. Since the value of the function is 0, each block

3142

must have at least one of the variables from Sp. This gives
rise to the following set of constraints:

∑

xi∈Sp

zij ≥ 1, 1 ≤ j ≤ k.

Consider any example ηr = (αr, 1) of E1. Let Sr ⊆ X
be the set of variables that have the value 0 in the input as-
signment αr. Since the value of the function is 1, there is
at least one block which does not have any of the variables
from Sr. To capture this constraint, we introduce k auxiliary
{0,1} variables, denoted by br,1, br,2, . . ., br,k, and the fol-
lowing constraints. (Note that each example in E1 gives rise
to a distinct set of auxiliary variables.)

br,j ≥ zij , ∀i ∈ Sr;

k
∑

j=1

br,j ≤ k − 1 .

It can be verified that the last two sets of constraints together
imply that there is a block Bj that does not contain any of
the variables in Sr.

Thus, the CL-PMDNF problem is represented by the set
of constraints given above along with the following con-
straints on the variables: (i) zij ∈ {0, 1}, for 1 ≤ i ≤ q,
1 ≤ j ≤ k and (ii) br,j ∈ {0, 1} for each example ηr in E1

and 1 ≤ j ≤ k. There is a PM-DNF function with k blocks
that is consistent with E iff there is a feasible solution to the
above set of constraints.
A PAC learning algorithm from the ILP formulation. Our
PAC learning algorithm for PM-DNF functions constructs
the ILP from the given set E of examples and each possi-
ble value of k (the number of blocks) and outputs one such
function when there is a feasible solution to the ILP.

5 Experimental Results

In this section, we evaluate the algorithms developed in the
previous sections and compare the results to the derived
bounds. In the case of active query, key aspects that we ad-
dress are how network and local function structures affect
the number of queries. We consider both the size (number of
nodes as well as edge density) and structure (regular, scale-
free, etc.) of the network. For local functions, we consider
different numbers of blocks. For PAC learning, our focus is
on the difference between the structures of the inferred par-
tition and the true partition with respect to the number of
examples sampled, example distribution, and the number of
blocks. We used both synthetic and mined networks from the
web for the experiments. As shown in Table 1, five mined
networks and three classes of synthetic networks were used.
There are five graph instances for each of the random reg-
ular (RR) and Barabási-Albert (BA) synthetic (scale-free)
networks for a specified edge density.

5.1 Active query

We applied the greedy coloring algorithm in (Kosowski and
Manuszewski 2004) to obtain a coloring of the square of the
network. The number of colors C(G2) is shown in Table 1.
In each experiment, a PM-DNF function was chosen ran-
domly for each node. Let parameter b denote the maximum

Network
Properties

n dave ∆ C(G2)
CitHep 34401 24.46 846 847

CoAstro 17903 22 504 505

Jazz 198 27.69 100 109

NRV 769 11.84 20 35

WikiVote 7115 28.32 1065 1082

Star 1001 1.998 1000 1001

RRa 1000 10,50,100 10,50,100 34, 367, 994
BAa 1000 10, 50, 100 100,261,374 111,379,780

a 5 replicates and ∆, dave (in case of BA) and C(G2) values
are approximate.

Table 1: Table of networks used in our experiments and
their properties. Parameters n, dave and ∆ are the number
of nodes, average degree and maximum degree respectively.
C(G2) is the number of colors used to color the square graph
G2 by the greedy coloring scheme.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

#
qu

er
ie

s

Number of blocks

RR10
RR50
BA10
BA50
NRV
CitHEP
CaAstro
Jazz
WikiVote

Figure 2: Performance of the active query algorithm on syn-
thetic and mined networks. The Y-axis shows the ratio of the
number of queries used to the upper bound given by Theo-
rem 3. The number of queries is averaged over results from
100 repetitions of the experiments. The standard deviation is
less than 0.01.

number of blocks possible. The local function was gener-
ated using the following iterative process. Blocks were in-
dexed {1, 2, . . . , b}. In each iteration, the block index was
cyclically incremented. We chose a node uniformly at ran-
dom without replacement and assigned the block index cor-
responding to that iteration. For example, suppose q = 5 and
b = 3. Then, there are 5 iterations and the block ID assign-
ment happens in the following order: [1, 2, 3, 1, 2]. In the 4th
iteration, for example, there are 2 inputs without block ID
(since we are sampling without replacement). One of them
is chosen randomly and assigned block ID 1. Given this,
the algorithm was evaluated using five different values of
b (namely 2, 5, 10, 20, and 50) for each network. Each ex-
periment was repeated 100 times.

Effect of network structure. In Figure 2, we note that for
a majority of the networks, the number of queries (#queries)
required is < 30% of the upper bound. This is mainly due
to the skewed degree distribution of most networks except
for random regular networks. Consider the maximum de-

3143

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 50 100 200 500 100020005000

R
an

d
in

d
ex

Number of examples

Varying number of inputs and number of blocks

10;2
10;5
20;2
20;5
20;10 0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 50 100
200

500
1000

2000
5000

R
an

d
in

d
ex

Number of examples

Varying distribution

20;2;0.5
20;2;0.75
20;5;0.5
20;5;0.75
20;10;0.5
20;10;0.75

0.001

0.01

0.1

1

10

100

1000

10000

10 20 50 100 200 500 100020005000

R
u
n
n
in

g
ti
m

e
(s

ec
on

d
s)

Number of examples

Running time w.r.t. no. of inputs and blocks

10;2
10;5
20;2
20;5
20;10

Figure 3: Performance of the ILP algorithm. Each curve in the first and third figures corresponds to (q; k): the number of inputs
and true size of the block. In both cases, the results are shown for uniform distribution with p = 0.5. The Rand index is averaged
over 100 repetitions. In the second figure, each curve corresponds to a distinct (q, k, p). In all cases, the block size parameter
for the ILP was set to k.

gree of a node in each color class. For scale-free networks,
most color classes have a small maximum degree; therefore,
few queries are needed to determine the local functions of
vertices in these classes. Interestingly, there is no clear cor-
relation between edge density and #queries. For example,
the NRV (New River Valley Friendship) network is much
smaller in size, average degree and maximum degree when
compared to CoAstro (Coauthorship Astrophysics) network.
Yet, when compared with the upper bound, the #queries re-
quired is much higher for the NRV network.

Effect of the number of blocks b. As the number of
blocks increases, the #queries required also increases. This
is because most queries are required to discover the begin-
ning of a block. Also, when b > ∆ (the maximum degree),
we observe a plateau due to saturation, as all the partitions
contain only blocks of size one. For RR10, RR50 and NRV,
there is a sharp increase in #queries between b = 2 and 10 as
in every color class, b log2 ∆ additional queries are required.
However, for other networks, because of the skewed degree
distribution which leads to many nodes with small degrees,
saturation occurs at much lower values of b.

5.2 PAC Model

In the PAC model we restricted our attention to a single lo-
cal function. The objective is to evaluate the ILP-based al-
gorithm with regard to sample distribution, number of inputs
and true block size. The true PM-DNF and the inferred PM-
DNF were compared using Rand index (Rand 1971). Rand
index for two partitions X and Y of a set is a+b

a+b+c+d
where

a, b, c, and d are respectively the number of pairs of ele-
ments (x, y) from the set such that x and y are in (i) the
same subset in X and in Y , (ii) different subsets in X and
in Y , (iii) same subset in X but different subsets in Y , and
(iv) different subsets in X but same subset in Y . The exam-
ples were sampled from a uniform distribution over config-
urations. Each element is set to state 1 independently with
the same probability p. The values of p considered were
0.25, 0.5 and 0.75. Also, we considered input sizes q = 10
and 20 and block sizes k = 2, 5 and 10. Each experiment
was repeated 10 times. We assumed that the inference al-
gorithm has knowledge of the number of blocks in the true

partition. Given the number of inputs and number of blocks,
we used a similar method as in the active query case to con-
struct the PM-DNF function.

The results in Figure 3 show a rapid increase in the quality
of inference with relatively small increments in the number
of queries for the case of uniform distribution (Figures 3(a)
and (b)). As expected, the greater the number of inputs, the
greater is the number of queries required. Interestingly, un-
like the active query case, fewer samples are required to in-
fer the local function as the number of blocks increases. This
can be explained as follows. Under the uniform distribution,
the probability that all elements of a block of size ℓ are 1
is pℓ; this gives a greater chance of a block being discov-
ered. This is also the reason why as p increases, the chance
of discovering a block is higher. However, when p is too high
(as in p = 0.75), there is a higher chance that a block is hid-
den in a bigger set of nodes in every example, thus leading
to a lower Rand index. Also, we note that as the number of
examples is increased, there is an increase in the variance of
the Rand index before it is 1 for all repetitions. This variance
is higher when the number of blocks is much less than the
number of inputs. The running time (Figure 3(c)) steadily
increases with the number of examples and blocks.

6 Future Work

It is of interest to extend our results to other types of
coalition-based functions; for example, we may require that
for the function to have the value 1, at least k ≥ 2 coali-
tions must be unanimous. Our complexity result for learning
PM-DNF functions is for the case of proper learning where
the hypothesis class and the concept class are the same. It
is of interest to consider the learning problem under the
representation-independent setting. Developing other learn-
ing algorithms that can scale to large networks is another
direction for future work.

Acknowledgments. We thank the reviewers for carefully
reading the manuscript and providing very helpful com-
ments. This work has been partially supported by DTRA
CNIMS (Contract HDTRA1-11-D-0016-0001), NSF Grant
IIS-1908530, NSF Grant OAC-1916805, NSF CRISP 2.0
Grant 1832587, NSF DIBBS Grant ACI-1443054, NSF BIG

3144

DATA Grant IIS-1633028, and NSF EAGER Grant CMMI-
1745207. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.

References

Abasi, H.; Bshouty, N. H.; and Mazzawi, H. 2014. On exact
learning monotone DNF from membership queries. CoRR
abs/1405.0792:1–16.

Adiga, A.; Kuhlman, C. J.; Marathe, M. V.; Ravi, S. S.;
Rosenkrantz, D. J.; and Stearns, R. E. 2018. Learning the be-
havior of a dynamical system via a “20 questions” approach.
In Thirty second AAAI Conference on Artificial Intelligence,
4630–4637.

Adiga, A.; Kuhlman, C. J.; Marathe, M.; Ravi, S. S.;
Rosenkrantz, D. J.; Stearns, R. E.; and Vullikanti, A. 2019a.
Learning coalition-based interactions in networked social
systems. Technical report, Biocomplexity Institute and Ini-
tiative, University of Virginia, Charlottesville, VA.

Adiga, A.; Kuhlman, C. J.; Marathe, M.; Ravi, S. S.; and
Vullikanti, A. 2019b. PAC learnability of node functions in
networked dynamical systems. In Proc. ICML 2019, 82–91.

Angluin, D., and Slonim, D. K. 1994. Randomly falli-
ble teachers: Learning monotone DNF with an incomplete
membership oracle. Machine Learning 14(1):7–26.

Antony, M., and Biggs, N. 1992. Computational Learning
Theory. Cambridge, UK: Cambridge University Press.

Barrett, C. L.; Hunt, H. B.; Marathe, M. V.; Ravi, S.;
Rosenkrantz, D. J.; and Stearns, R. E. 2006. Complexity of
reachability problems for finite discrete dynamical systems.
Journal of Computer and System Sciences 72(8):1317–1345.

Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth,
M. K. 1989. Learnability and the Vapnik-Chervonenkis di-
mension. Journal of the ACM (JACM) 36(4):929–965.

Branzei, R.; Dimitrov, D.; and Tijs, S. 2005. Models in
cooperative game theory. Springer.

Castro, R., and Nowak, R. 2007. Active learning and sam-
pling. In Proc. Foundations and Applications of Sensor
Management, 177–200.

Centola, D., and Macy, M. 2007. Complex contagions and
the weakness of long ties. American Journal of Sociology
113(3):702–734.

Colón-Reyes, O.; Jarrah, A. S.; Laubenbacher, R. C.; and
Sturmfels, B. 2006. Monomial dynamical systems over fi-
nite fields. Complex Systems 16(4).

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2009. Introduction to Algorithms. Cambridge, MA: MIT
Press and McGraw-Hill, Second edition.

Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-completeness.
San Francisco: W. H. Freeman & Co.

González-Bailón, S.; Borge-Holthoefer, J.; Rivero, A.; and
Moreno, Y. 2011. The dynamics of protest recruitment
through an online network. Scientific Reports 1:7 pages.

Granovetter, M. 1978. Threshold models of collective be-
havior. American Journal of Sociology 1420–1443.

Haussler, D. 1988. Quantifying inductive bias: AI learn-
ing algorithms and valiant’s learning framework. Artificial
intelligence 36(2):177–221.

He, X.; Xu, K.; Kempe, D.; and Liu, Y. 2016. Learning influ-
ence functions from incomplete observations. In Advances
in Neural Information Processing Systems, 2073–2081.

Kearns, M. J., and Vazirani, V. V. 1994. An Introduction
to Computational Learning Theory. Cambridge, MA: MIT
Press.

Kearns, M.; Mansour, Y.; Ron, D.; Rubinfeld, R.; Schapire,
R.; and Sellie, L. 1994. On the learnability of discrete dis-
tributions. In Proc. ACM STOC, 273–282.

Kosowski, A., and Manuszewski, K. 2004. Classical color-
ing of graphs. Contemporary Mathematics 352:1–20.

Laubenbacher, R., and Stigler, B. 2004. A computational al-
gebra approach to the reverse engineering of gene regulatory
networks. J. Theoretical Biology 229:523–537.

Liśkiewicz, M.; Lutter, M.; and Reischuk, R. 2017. Proper
learning of k-term DNF formulas from satisfying assign-
ments. Electronic Colloquium on Computational Complex-
ity (ECCC) 24:114.

Narasimhan, H.; Parkes, D. C.; and Singer, Y. 2015. Learn-
ability of influence in networks. In Advances in Neural In-
formation Processing Systems, 3186–3194.

Rand, W. M. 1971. Objective criteria for the evaluation
of clustering methods. J. American Statistical Association
66(336):846–850.

Romero, D.; Meeder, B.; and Kleinberg, J. 2011. Differ-
ences in the mechanics of information diffusion across top-
ics: Idioms, political hashtags, and complex contagion on
twitter. In Proceedings of the 20th international conference
on World wide web, 695–704. ACM.

Servedio, R. A. 2004. On learning monotone DNF under
product distributions. Inf. Comput. 193(1):57–74.

Ugander, J.; Backstrom, L.; Marlow, C.; and Kleinberg, J.
2012. Structural diversity in social contagion. Proceedings
of the National Academy of Sciences 109(16):5962–5966.

Valiant, L. G. 1984. A theory of the learnable. Communica-
tions of the ACM 18(11):1134–1142.

Warmuth, M. K. 1989. Towards representation indepen-
dence in PAC learning. In Proc. International Workshop on
Analogical and Inductive Inference (AII’89), 78–103.

Zhu, J.; Zhu, J.; Ghosh, S.; Wu, W.; and Yuan, J. 2018.
Social influence maximization in hypergraph in social net-
works. IEEE Transactions on Network Science and Engi-
neering.

3145

