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Abstract. Few families of tournaments satisfying the n-e.c. adjacency property are known.
We supply a new random construction for generating infinite families of vertex-transitive
n-e.c. tournaments by considering circulant tournaments. Switching is used to generate
new n-e.c. tournaments of certain orders. With aid of a computer search, we demonstrate
that there is a unique minimum order 3-e.c. tournament of order 19, and there are no 3-e.c.
tournaments of orders 20, 21, and 22. We show that there are no 4-e.c. tournaments of
orders 47 and 48 improving the lower bound for the minimum order of such a tournament.

1. Introduction

Adjacency properties of graphs and digraphs were discovered by Erdős and Rényi [8] in
their pioneering work on random graphs. We focus here on the n-e.c. adjacency property of
tournaments. For a positive integer n, a tournament is n-existentially closed or n-e.c. if for
all disjoint sets of vertices A and B with |A∪B| = n (one of A or B may be empty), there
is a vertex z not in A ∪ B such that there is an arc from z to each vertex of A and there
is an arc from each vertex of B to z. We say that z is correctly joined or c.j. to A and B.
Hence, for all n-subsets S of vertices, there exist 2n vertices joined to S in all possible ways.
For example, the tournament in Figure 1 is the unique minimum order 2-e.c. tournament.

Figure 1. The smallest order 2-e.c. tournament.

Although the n-e.c. property is straightforward to define, it is not obvious from the
definition that tournaments with the property exist. Let T (m, p) be a random tournament
on the vertex set [m] = {1, 2, . . . , m}, where for each ordered pair of vertices (i, j), i < j
a directed edge from i to j occurs independently with probability p. Note that p = p(m)
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may tend to zero with m. The probability space T (m, p) may be viewed as a result of
(

m
2

)
independent coin flips, one for each pair of vertices, where the probability of success is equal
to p. The probability that a random tournament T (m, 1/2) is not n-e.c. is bounded from
above by (

m

n

)
2n

(
1− 1

2n

)m−n

,

which is smaller than one for m sufficiently large. Hence, n-e.c. tournaments exist for all n.
Graham and Spencer [10] were the first to give explicit examples of tournaments satisfying
adjacency properties. The Paley tournament of order q, for a prime power q ≡ 3 (mod
4), written Tq, has vertices the elements of the finite field GF(q), where vertices x and y
are joined if and only if x − y is a non-zero quadratic residue in GF(q). In fact, T7 is the
unique isomorphism type of 2-e.c. tournament of order 7, and is the minimum order 2-e.c.
tournament; see Figure 1 and [4]. By [1, 2, 10], if q > n222n−2, then Tq is n-e.c. See [3] for
more background on n-e.c. tournaments and graphs.

In this article, we give a new construction of n-e.c. tournaments satisfying certain proper-
ties. While our construction is randomized, it always generates regular tournaments; in fact,
the tournaments are vertex-transitive; see Theorem 2.1. We demonstrate how switching in
tournaments generates new non-isomorphic n-e.c. tournaments in Theorem 2.3. We inves-
tigate the function tec(n), which is defined as the minimum order of an n-e.c. tournament.
From [4], tec(1) = 3 and tec(2) = 7 (realized by the directed 3-cycle and T7, respectively), but
before this article no other values of this function were known. We show in Section 3 that
tec(3) = 19, and using a computer search we found that there is a unique 3-e.c. tournament
of order 19 and there is no other tournament of order less than 23. We show that there
are no 4-e.c. tournaments of orders 47 and 48 improving the lower bound for the minimum
order of such a tournament.

All tournaments we consider are finite unless otherwise stated. For a tournament T , if
x ∈ V (T ), then let deg+

T (x) and deg−T (x) be the out- and in-degrees of x, respectively. Let
N+(x) and N−(x) be the out- and in-neighbourhoods of x, respectively. For a subset S of
V (T ), define T [S] to be the subtournament induced by S. We abbreviate isomorphism type
by isotype. We denote the natural numbers (including 0) by N, and the integers by Z.

2. New constructions of N-e.c. tournaments

We give a new construction of n-e.c. tournaments. The family we construct in Subsec-
tion 2.1 is not only regular, but vertex-transitive. In Subsection 2.2, we explain how switch-
ing provides a structural approach to generate an exponential number of non-isomorphic
n-e.c. tournaments, using our vertex-transitive n-e.c. tournaments as building blocks.

2.1. N-e.c. circulant tournaments. Fix an integer m ≥ 1. In the remainder of the
subsection, all arithmetic is modulo 2m + 1. Fix

J ⊆ [2m] = {1, 2, . . . , 2m} = {−m,−m + 1, . . . ,−2,−1, 1, 2, . . . , m− 1,m}
with the property that |J ∩ {j,−j}| = 1 for all j ∈ [m]. Hence, |J | = m, and j ∈ J if and
only if −j /∈ J . A circulant tournament G(J) has vertices Z2m+1 (for simplicity, we identify
the elements (or residues) of the ring Z2m+1 with 0, 1, . . . , 2m) and directed edges (i, j) if
i− j ∈ J . We call J the connection set of G(J). The tournament G(J) is vertex-transitive
and so is regular.
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For a fixed 0 < p ≤ 1/2, the random circulant tournament CT (m, p) consists of G(J)
where the connection set J has each element of the set [m] chosen with probability p. More
precisely, for each 1 ≤ i ≤ m, independently with probability p add i to J ; otherwise add
the element −i to J. Without loss of generality, we can assume that p ≤ 1/2, since in order
to construct CT (m, p) with p > 1/2 one can take the dual of CT (m, 1−p), which is n-e.c. if
and only if CT (m, 1− p) is. Note that the two events “i ∈ J” and “−i ∈ J” are dependent.

We now state the main result of this section, which generates a family of vertex-transitive
n-e.c. tournaments. We say that an event A holds asymptotically almost surely (a.a.s.) in
CT (m, p) if A holds with probability tending to 1 as m → ∞. The probability of A is
denoted by P(A).

Theorem 2.1. Let p ∈ (0, 1/2]. A.a.s. CT (m, p) is n-e.c. with

n = log1/p m− 4 log1/p log m−O(1).

Proof of Theorem 2.1. Let n = log1/p m − 4 log1/p log m − C, where C will be determined
later. Fix X = {x1, x2, . . . , xn} an n-set in G = CT (m, p), and fix z /∈ X. Define the
projection πX(z) to be the set of elements of [m] of the form z − i or i − z, where i ∈ X.
Observe that |πX(z)| ≤ n (it may happen that |πX(z)| < n; for example, in the case
z = (i1 + i2)/2 for some i1, i2 ∈ X). We would like to form a template set U disjoint from
X such that for all distinct z, z′ ∈ U ,

πX(z) ∩ πX(z′) = ∅ and |πX(z)| = n.

These properties ensure that edges between X and U are generated independently. Further,
we would like to choose |U | = r = bm/n2c. We construct U as a union of a chain of sets Uk

of vertices, where for all k ≥ 1 exactly one vertex is added to Uk to form Uk+1. In particular,
the set U = Ur. The sets Uk are constructed by induction on k ≥ 1, with the induction
stopping at k = r.

In the base step of the induction, we require that U1 ⊆ {0, 1, . . . , 2m} \ X. Remove all
vertices z with |πX(z)| < n from {0, 1, . . . , 2m} \X. Since each pair of vertices from X can
eliminate at most one vertex, there are at least

2m + 1− n−
(

n

2

)
.

vertices remaining, which is positive if m is sufficiently large and by the choice of n. Choose
an arbitrary remaining vertex z1 to form U1.

Suppose that for a fixed k ≥ 1 with r > k, the set Uk has been constructed with |Uk| = k.
To form Uk+1, some vertices from {0, 1, . . . , 2m} \ (X ∪ Uk) must be removed. As in the
base step, by considering all the pairs of vertices from X,

(
n
2

)
vertices are eliminated. Each

vertex z in Uk satisfies |πX(z)| = n. To ensure that πX(z) ∩ πX(z′) = ∅ for z ∈ Uk and
z′ ∈ Uk+1, we must eliminate another 2kn vertices. Hence, there are at least

2m + 1− n−
(

n

2

)
− 2kn

remaining vertices, which is positive for large m and by the choice of n and r. Add an
arbitrary remaining vertex zk+1 to Uk to form Uk+1.

Now, suppose we use a template set U = Ur with |U | = r. For a fixed z in U and xi in
X,

P(z is c.j. to xi) ≥ p.
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The events “(z, xi) ∈ E” and “(z, xj) ∈ E” are independent (since |πX(z)| = n). Since U is
a template set, for z, z′ distinct elements of U , the events “(z, xi) ∈ E” and “(z′, xi) ∈ E”
are independent as well. Hence,

P(z is not c.j. to X) ≤ 1− pn,

and

P(No z in V (T ) is c.j. to X) ≤ (1− pn)r .

We therefore have that the probability P of the event that G is not n-e.c. satisfies

P ≤ mn2n (1− pn)r

= exp

(
n(log m + log 2)− (1 + o(1))

pnm

n2

)

= exp

(
O(log2

1/p m)− (1 + o(1))
p−4 log1/p log n−C

n2

)

= exp
(
O(log2

1/p m)− p−CΩ(log2
1/p m)

)

= exp
(−Ω(log2

2 m)
)

= o(1),

for C sufficiently large. ¤

Another adjacency property related to n-e.c. property was introduced by Schütte in [7].
Given a positive integer n, a tournament T satisfies property Pn if for any set S of n vertices
of a tournament T , there is a vertex z which dominates all elements of S. Define tP (n) to
be the minimum order of a tournament with property Pn. Note that tP (n) ≤ tec(n) for any
n ≥ 1. In [13] Szekeres and Szekeres, via a clever argument (which we think deserves to be
better known) showed that

tP (n) ≥ (n + 2)2n−1 − 1, (1)

so the same lower bound holds for tec(n) (see Section 3 for more details). On the other
hand, from Theorem 2.1 with p = 1/2, it follows that tec(n) = O(n42n). Using random
tournaments we have that tec(n) = O(n22n). It follows that

lim
n→∞

tec(n)1/n = 2.

However, the asymptotic order of tec(n) is not known. An open problem is to determine
whether the limits

lim
n→∞

tec(n)

n2n
, lim

n→∞
tec(n)

tP (n)

exist, and if so to find their values.
Theorem 2.1 naturally extends to the infinite case. The connection set J is chosen with

defining properties similar to the finite case, but J ⊆ Z\{0}, and we work in ordinary,
non-modular arithmetic. With probability 1, a random choice of J gives rise to a countably
infinite circulant tournament G(J) which is n-e.c. for all n ≥ 1 (that is, it is e.c.). There is
a unique isotype, written T∞, of countable tournament that is e.c. (see [5]). An analogous
construction was given in [6] for circulant graphs, and was used in [14] to examine the cycle
structure of the automorphisms of the infinite random graph. For an explicit construction
of an e.c. G(J), consider all finite binary sequences under the lexicographic order (according
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to increasing length), and form an infinite binary sequence Z by concatenating all of these
sequences. Hence,

Z = 0100011011000001010 · · · .

Let Y = {yi}∞i=1 be an enumeration of the terms of Z. Hence, y1 = 0, y2 = 1, y3 = 0,
y4 = 0, and so on. Now, include i ∈ J if and only if yi = 1 (otherwise, −i ∈ J). It is not
hard to see that G(J) is e.c.

2.2. Switching and new examples. If T is a tournament and A ⊆ V (T ), then the
tournament TA is formed by reversing the arcs between A and V (T ) \ A, and leaving all
other arcs unaltered. We say that TA is the tournament formed from T by switching on A.
If H is an induced subtournament of T , then we will abuse notation and write TH for TV (H).
Using switching, we develop a method for explicitly constructing many n-e.c. tournaments
from our circulant examples.

An n-e.c. problem is a pair (B, σ), where B is an ordered n-subset of vertices and σ is
binary n-sequence; if B = (x1, . . . , xn) and σ = (i1 . . . in), then a solution to (B, σ) is a
vertex z not in B so that there is a directed edge from z to xj if and only if ij = 1. If
(B, σ) is an n-e.c. problem, then the (B, σ)-solution set is the set of all solutions to the
n-e.c. problem (B, σ). If B and σ are clear from context, then we will just say solution set.
For simplicity, if B is clear from context, we will identify σ with the (B, σ)-solution set. For
example, if B consists of 3 vertices x, y, and z, then (101) consists of N−(x)∩N+(y)∩N−(z)

For a positive integer n, we say that T is n-good if:

(i) T is odd order and regular,
(ii) For all n-e.c. problems (B, σ), the solution set determined by B and σ has cardinality

at least n + 1.

We note that an n-good tournament is n-e.c. A.a.s. random circulant tournaments are
n-good. In particular, if m = Ω(n42n), then with positive probability CT (m, 1/2) is n-good.
By [1, 2, 10], a Paley tournament with sufficiently many vertices is n-good.

Theorem 2.2. Let n ≥ 2 be an integer, and let T be an n-good tournament. Then for all
n-vertex induced subtournaments H of T , we have that TH is n-e.c.

Proof. Fix an n-subset A of V (T ). Let 0′ = 1 and 1′ = 0. Consider the n-e.c. problem (A, σ).
Write A = B ∪ C, where B = A ∩ V (H) and C = A\B (note that A or B may be empty).
Let σB = (i1 . . . ik) be the subsequence of σ that corresponds to the elements of B, and let
σC be the subsequence of σ that corresponds to the elements of C. Define σ′B = (i′1 . . . i′k).
Consider the n-e.c. problem (A = B ∪ C, σ′BσC) with a solution z in T chosen outside H
(which is permissible since G is n-good (see property (ii))). Then z solves (A, σ) in TH . ¤

If T is a tournament with n vertices and out-degrees d1 ≤ . . . ≤ dn, then the n-tuple
(d1, . . . , dn) is called the out-degree sequence of T . Note that two distinct length n out-
degree sequences must correspond to non-isomorphic tournaments (but the converse may
fail). Let ods(n) be the number of distinct out-degree sequences of order n. We now apply
Theorem 2.2 to give many non-isomorphic examples of n-e.c. tournaments.

Theorem 2.3. Let n ≥ 2 be any integer and let T be an n-good tournament. Then there
are at least ods(n)-many non-isomorphic n-e.c. tournaments of order |V (T )|.
Proof. Say that T has constant in-degree r (and so has constant out-degree r). Fix H an
n-vertex tournament. Since an n-e.c. tournament is (n + 1)-universal (that is, includes an
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isomorphic copy of each tournament of order at most n + 1 as an induced subtournament),
there is an isomorphic copy of H that is an induced subtournament of T . Let J = TH ; by
Theorem 2.2, J is n-e.c. and has order |V (T )|.

Fix a vertex x in H, and suppose that deg+
H(x) = kx ≥ 0 (so deg−H(x) = n−1−kx). Then

x is joined to (r − n + kx + 1)-many vertices outside of H in J . Therefore,

deg+
J (x) = r − n + 2kx + 1. (2)

Now consider all the 2n distinct solution sets (i1 . . . in), where i ∈ {0, 1}, in T determined
by the n vertices of H (each of which is nonempty since T is n-e.c.). These solution sets
partition V (T )\V (H) into 2n sets. The out-degree of a vertex in (1 · · · 1) in J is r − n; the
out-degree of a vertex in (01 · · · 1) in J is r− n + 2; the out-degree of a vertex in (0 . . . 0) is
r + n = r− n + 2n. In general, the out-degrees of vertices y in V (T )\V (H) in J are always
one of the integers

r − n + 2j, (3)

where 0 ≤ j ≤ n.
For all x ∈ V (H), y ∈ V (T )\V (H), we have that

deg+
J (x) 6= deg+

J (y).

This follows since by (2) deg+
J (x) is of the form r − n + m1, where m1 is odd, and by (3)

deg+
J (y) is of the form r − n + m2, where m2 is even.

Suppose that H has out-degree sequence α = (d1, . . . , dn), with d1 ≤ . . . ≤ dn. If s is a
sequence of positive integers, let 〈s〉 be the sequence with the same elements but sorted in
non-decreasing order. By the above discussion, TH has out-degree sequence 〈(α̂, σ)〉, where
α̂ = (r−n+2d1+1, . . . , r−n+2dn+1) is a subsequence consisting of out-degrees from vertices
V (H) in TH , and σ is a subsequence containing the out-degrees r − n, r − n + 2, . . . , r + n
from the solution sets

(1 · · · 1), (01 · · · 1), . . . , (0 · · · 0),

respectively. Note that the elements of σ depend only on n and r, and not on the degrees
in H. Furthermore, for any tournament H, by previous discussion, none of the terms of α̂
can equal a term in σ. Suppose that H and H ′ have distinct out-degree sequences α and
β, respectively. Therefore, by the above discussion, TH and TH′ have distinct out-degree

sequences 〈(α̂, σ)〉 and 〈(β̂, σ)〉, respectively. Hence, TH � TH′ and the result follows. ¤
A straightforward inductive argument establishes that 2n−1 ≤ ods(n). Hence, we obtain

the following corollary, which gives new n-e.c. tournaments. We emphasize that the corollary
gives an explicit, non-randomized method for constructing new n-e.c. tournaments (for
example, when applied to Paley tournaments).

Corollary 2.4. If there is an n-good tournament of order r, then there are at least 2n−1

non-isomorphic n-e.c. tournaments of order r.

3. The unique minimum order 3-e.c. tournament

By the results of [13] it follows that tP (3) = 19, and so tec(3) ≥ 19. We verified that
T19 is 3-e.c., and so tec(3) = 19. In this section, we describe our computer search which
demonstrated that this is the only isotype of 3-e.c. tournament with 19 vertices. It seems
that one should be able to do this by hand, although we have not found a simple way to do
it. See Section 5 for more details.
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Moreover, we checked that there is no other 3-e.c. isotype of order less than 23 vertices.
We summarize our search results on small order 2- and 3-e.c. tournaments, respectively, in
the following tables.

2-e.c. tournaments

order isotypes
7 1
8 0
9 14
10 1083

3-e.c. tournaments

order isotypes
19 1
20 0
21 0
22 0

The theoretical tools and methodology used in our computer search have some similarities
to those used in [9], but some substantial adjustments were required.

Before we describe our computer search, we state some results on 3-e.c. tournaments
which are of interest in their own right. We start with the following necessary condition for
a tournament to be n-e.c. The proof of (4) uses an argument similar to the one of Szekeres
and Szekeres [13], so let us start with restating their lemmas in terms of the n-e.c. property.

Lemma 3.1. Let n > 0. If a tournament T is n-e.c., then for any set X of vertices with
|X| = n− 1,

∣∣⋂
x∈X N−(x)

∣∣ ≥ n + 1 and
∣∣⋂

x∈X N+(x)
∣∣ ≥ n + 1.

Proof. Let X ⊆ V (T ), |X| = n − 1. We prove the first inequality only, as the second one
can be shown analogously. For a contradiction, suppose that the set Z =

⋂
x∈X N−(x) has

at most n vertices. As T is n-e.c., then there exists a vertex v ∈ ⋂
z∈Z N−(z). Furthermore,

there exists a vertex u ∈ ⋂
x∈X∪{v} N−(x) ⊆ Z. But u ∈ Z implies that u ∈ N+(v), which

gives us a contradiction. ¤

Lemma 3.2. Let n > m > 0. If a tournament T is n-e.c., then for any set X of vertices
with |X| = m,

∣∣⋂
x∈X N−(x)

∣∣ ≥ 2n−m−1(n + 2)− 1 and
∣∣⋂

x∈X N+(x)
∣∣ ≥ 2n−m−1(n + 2)− 1.

Proof. Let X ⊆ V (T ), |X| = m. Again, we prove the first inequality only. We prove it by
(downward) induction on m with 1 ≤ m ≤ n − 1. The base case (m = n − 1) is obtained
directly from Lemma 3.1.

For the inductive step, suppose that for a given m+1 < n and for any set Y ⊆ V (T ) with
|Y | = m + 1 an inequality

∣∣⋂
x∈Y N−(x)

∣∣ ≥ 2n−m−2(n + 2) − 1 holds. Now, let X ⊆ V (T )
be any set of m vertices, Z =

⋂
x∈X N−(x), and k = |Z|. Since T is n-e.c. (so, in particular,

m-e.c.), |Z| is not empty. Let us consider a subtournament T [Z]. Clearly, the number of
edges of T [Z] is

(
k
2

)
. It follows from the inductive hypothesis that the in-degree of any

vertex in T [Z] is at least 2n−m−2(n + 2)− 1. Hence, we obtain that
(

k

2

)
≥ k

(
2n−m−2(n + 2)− 1

)
,

which gives k ≥ 2n−m−1(n + 2)− 1. ¤

Now, we are ready to present a tool that is needed to achieve our goal. We conjecture
that the stronger statement holds, that is, (4) can be replaced by |Z| ≥ 2n−m−1(n + 2)− 1,
as in Lemma 3.2. This is shown to be the case when X or Y is empty but the general case
still remains an open problem.
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Theorem 3.3. Let n > m > 0. If a tournament T is n-e.c., then for all disjoint sets of
vertices X and Y with |X ∪ Y | = m (one of X or Y can be empty), the set Z = Z(X, Y )
of vertices defined as

Z =

( ⋂
x∈X

N−(x)

)
∩

(⋂
y∈Y

N+(y)

)

satisfies
|Z| ≥ 2n−m−1(n + 1)− 1, (4)

and a tournament induced by Z is (n−m)-e.c.

Proof. Let X, Y ⊆ V (T ), X ∩Y = ∅, and |X ∪Y | = m. We will show that T [Z] is (n−m)-
e.c. and that (4) holds. First note that |Z| ≥ 2n−m. Indeed, since T is n-e.c., for any
(n−m)-subset S ⊆ V (T ) \ (X ∪ Y ) of vertices, there exist 2n−m vertices dominating each
vertex of X, no vertex of Y , and connected to S in all possible ways.

Let now A,B ⊆ Z, A ∩ B = ∅, and |A ∪ B| = n − m. In order to prove that T [Z] is
(n −m)-e.c. it is enough to show that there is a vertex z ∈ Z \ (A ∪ B) that is correctly
joined to A and B. Since G is n-e.c., X ∩ Z = ∅, Y ∩ Z = ∅, there is a vertex z′ ∈ V (G)
correctly joined to A ∪X and B ∪ Y , and z′ ∈ Z \ (A ∪B).

We prove (4) by (downward) induction on m with 1 ≤ m ≤ n − 1. For the base case
(m = n − 1), we would like to show that |Z| ≥ n. For a contradiction, suppose that
|Z| ≤ n− 1. But then, according to Lemma 3.1, Z is dominated by at least n + 1 vertices.
So there exists a vertex v ∈ V (T ) \ Y which dominates all the vertices in Z. In addition,
since T is n-e.c., there exists a vertex

u ∈ N−(v) ∩
( ⋂

x∈X

N−(x)

)
∩

(⋂
y∈Y

N+(y)

)
⊆ Z.

But u ∈ Z, implies that u ∈ N+(v), which gives us a contradiction.
For the inductive step, suppose that (4) holds for a given m, 2 ≤ m ≤ n − 1. In other

words, for any two sets A,B ⊆ V (T ), A ∩B = ∅, and |A ∪B| = m,

|Z(A,B)| ≥ 2n−m−1(n + 1)− 1.

Let X, Y ⊆ V (T ), X ∩ Y = ∅, and |X ∪ Y | = m− 1. We would like to show that (4) holds
for Z(X,Y ); that is,

|Z(X, Y )| ≥ 2n−m(n + 1)− 1.

Let v ∈ Z(X, Y ). By inductive hypothesis, both Z1 = Z(X∪{v}, Y ) and Z2 = Z(X, Y ∪{v})
have at least 2n−m−1(n + 1)− 1 elements. Then the set Z = Z(X,Y ) = Z1 ∪Z2 ∪ {v} must
have at least

2
(
2n−m−1(n + 1)− 1

)
+ 1 = 2n−m(n + 1)− 1

elements, which finishes the proof. ¤
According to the necessary condition we can construct 3-e.c. tournament using 2-e.c.

ones as building blocks. By a computer search, there are 14 and 1083 isotypes of 2-e.c.
tournaments on 9 and 10 vertices, respectively. However, only 2 and 295 of them have both
out- and in-degree at least 4, which is necessary according to Lemma 3.2. We now give
high-level description of the computational approach that we used to determine that T19

is the only 3-e.c. tournament on 19 vertices. Suppose that G has 19 vertices and is 3-e.c.;
each vertex has out- and in-degree 9 by Lemma 3.2. Fix a vertex v0 and insert a 2-e.c.
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tournament on 9 vertices on vertex set X = N+(v0). It remains to check that we get a
tournament isomorphic to T19 when edges between X and Y = N−(v0) and those within Y
are distributed to satisfy the necessary condition stated in Theorem 3.3. In order to do this,
we can take any vertex v1 ∈ X and assign to this vertex in-neighbours from Y so that both
out- and in-neighbourhoods induce a 2-e.c. tournament. This assignment may be done in
many different ways. Next, we can take any other vertex v2 and try to assign in-neighbours
to keep the required property. We take v2 from the set of vertices that are not processed
(in this case, not equalling v0 nor v1) for which the number of determined incident arcs is
maximized; this helps to minimize the number of cases. We repeat this process to discover
that there is no chance to create a 3-e.c. tournament different than T19.

Two improvements are crucial. We improve the running time of the algorithm dramati-
cally by checking (at each step) the necessary condition stated in Theorem 3.3. After vertex
v1 is processed, we check the condition with m = 2 for the two vertices that are processed
at this point, that is, vertices v0, v1. All configurations that fail this test are removed. In
the next steps, after satisfying a new vertex vi, the additional test is checked for m = 2 and
m = 3, and for all sets of processed vertices containing vertex vi we deal with at the current
round.

In order to remove unnecessary configurations we use McKay’s nauty software package [11]
for computing automorphism groups of graphs and digraphs. We cannot use, however, the
package directly since it does not support removing isomorphisms in digraphs. Furthermore,
we need to keep the information of which vertices are processed (note that this cannot be
determined; having all out- and in-arcs determined is only a necessary condition for a vertex
to be processed). To overcome this problem we introduce a bijection from our configuration
to an undirected graph H on 3|V (G)|+ 4 vertices. Let

V (G) = {v1, v2, . . . , vn}
and let

V (H) = {x1, x2, y, z} ∪ {u1, u2, . . . , un} ∪ {s1, s2, . . . , sn} ∪ {t1, t2, . . . , tn}.
Now, we construct H as follows: sitj ∈ E(H) if and only if (vi, vj) ∈ E(G) (this corresponds
to the arcs of G), siui ∈ E(H) and uiti ∈ E(H) for i ∈ [n] (to match si’s with ti’s),
x1x2 ∈ E(H), xisj ∈ E(H) and ytj ∈ E(H) for i = 1, 2, j ∈ [n] (to distinguish the input
from the output). Note that x1, x2 are the only vertices of degree n + 1 in H, while y has
degree n. All other vertices have degree less than n. Finally, uiz ∈ E(H) if vi is processed.
An example of this transformation is depicted in Figure 2; vertex v1 is processed. It is clear
that we can reconstruct the graph G, together with the information of which vertices are
processed, from H.

The operation of removing isomorphisms, together with checking the additional condition,
can decrease the number of configurations by up to 90% in each round. The first operation
works well during the first few rounds, whereas the second one works better later on.

The same approach can be used to show that there is no isotype of 3-e.c. tournament on
20, 21, or 22 vertices. In order to eliminate 21 and 22 we start by inserting a tournament
on at most 10 vertices on N+(v0) (one out of 297 = 2 + 295 ones). It is worth to note that
the Paley tournament T23 of order 23 is also 3-e.c., moreover we have checked that it is the
unique 3-e.c. doubly-regular (Hadamard) tournament of such order (see Section 4 for the
definition and more details). We were not able to check all possibilities of construction of
3-e.c. tournament order 23 in the way shown, because the number of building blocks on 11
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z

The digraph G The graph H = H(G, {v1})

Figure 2. A transformation from G to H.

vertices (that is, the number of isotypes of 2-e.c. tournaments of out- and in-degree at least
4) is high: there are 131, 396 such tournaments.

4. 4-e.c. tournaments and skew Hadamard matrices

Before we move to the 4-e.c. property, we need to introduce a few definitions first. A
doubly regular tournament of order n is a tournament T such that there exist integers
m1,m2, satisfying |N+(v)| = m1 for every vertex v ∈ V (T ), and |N+(v) ∩N+(u)| = m2 for
every pair of distinct nodes v, u ∈ V (T ). It is not difficult to see that m1 = 2m2 + 1 and
n = 4m2 + 3 so that an order of any doubly regular tournament is congruent to 3 (mod 4).
A Hadamard matrix H of order 4m is a 4m × 4m matrix of ±1’s such that HHT = 4mI,
where I is the identity matrix. A Hadamard matrix is skew if H + HT = 2I. In [12], it has
been shown that the existence of a doubly regular tournament of order n is equivalent to
the existence of a skew Hadamard matrix of order n + 1.

Now, we are ready to come back to our problem. We know that tec(4) ≥ 47. From
Lemma 3.2 we derive that in any 4-e.c. tournament

|N+(x)| ≥ 23, |N+(x) ∩N+(y)| ≥ 11, |N+(x) ∩N+(y) ∩N+(z)| ≥ 5,

|N−(x)| ≥ 23, |N−(x) ∩N−(y)| ≥ 11, and |N−(x) ∩N−(y) ∩N−(z)| ≥ 5, (5)

for all distinct triples of vertices x, y, z.
Hence, if there exists a 4-e.c. tournament on 47 vertices, then it must be doubly regular

(in fact, even triply regular). Therefore, the connection with Hadamard tournaments and
skew Hadamard matrices we discussed earlier may be of use. We know that there exist
doubly regular tournaments on 47 vertices. The incomplete list was computed by Brendan
McKay [16] using skew Hadamard matrices from Christos Koukouvinos’s catalogue [17]. We
have examined three tournaments on 47 vertices and 36, 350 tournaments on 51 vertices,
but no such tournament was 4-e.c. As the list is incomplete no definitive conclusion can be
obtained, but we do think that the connection may play an important role in determining
the minimum order of 4-e.c. tournaments.



BOUNDS AND CONSTRUCTIONS FOR N-E.C. TOURNAMENTS 11

However, we emphasize that the Paley tournament T23 is the unique 3-e.c. doubly regular
(Hadamard) tournament of order 23, so if there is a 4-e.c. tournament of order 47, then for
every vertex v both N+(v) and N−(v) induce T23. Similarly, from (5), a 4-e.c. tournament
of order 48 must contain T23 as an induced subgraph by considering either the out- or in-
neighbourhood of each vertex. With computer support, we verified that when the vertex
set of T23 is partitioned into two subsets A,B, containing |A| = 11 and |B| = 12 vertices,
respectively, then at least one of them does not induce 2-e.c. tournament. (We have verified
that there are 35 isotypes of 2-e.c. tournaments that can be obtained by appropriately
choosing the set A.) This implies that there cannot be a 4-e.c. tournament of order either
47 or 48. (It may be possible to show this without computer support using the above property
of T23.)

The bound (1) gives that tP (5) ≥ 111. We verified that T67 is the smallest order Paley
tournament that has property P4, and it is also 4-e.c. Hence,

49 ≤ tec(4) ≤ 67.

We checked that T359 is the first Paley tournament that is 5-e.c. which implies that

111 ≤ tec(5) ≤ 359.

We note that T331 is the first Paley tournament that has property P5.
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