
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 1, JANUARY 1974 

Bounds for Binary Codes of Length Less Than 25 

81 

M. R. BEST, A. E. BROUWER, F. JESSIE MAcWILLIAMS, ANDREW M. ODLYZKO, MEMBER, IEEE, AND 

NEIL J. A. SLOANE, FELLOW, IEEE 

Abstract-Improved bounds for A(n,d), the maximum number 
of codewords in a (linear or nonlinear) binary code of word length 
n and minimum distance d, and for A (n&u), the maximum number 
of binary vectors of length n, distance d, and constant weight w in 
the range n 5 24 and d 5 10 are presented. Some of the new values 
are A (9,4) = 20 (which was previously believed to follow from the 
results of Wax), A (13,6) = 32 (which proves that the Nadler code 
is optimal), A (17,8) = 36 or 37, and A (21,8) = 512. The upper bounds 
on A (n,d) are found with the help of linear programming, making 
use of the values of A(n,d,w). 

I. INTRODUCTION 

T HE MAIN purpose of this paper is to present 
tables1 of two of the most basic functions in coding 

theory, namely: 

AW) * = maximum number of codewords in any 
(linear or nonlinear) binary code of length n 
and minimum distance d between codewords 
(see Table I), and 

A(n,d,w) = maximum number of codewords in any bi- 
nary code of length n, constant weight w and 
minimum distance d (see Table II), 

in the range n I 24, d I 10. We also give a table of the 
function 

T(wl,nl,wz,nz,d) = maximum number of codewords in a 
binary code of length nl + n2 and 
minimum distance d with exactly w 1 
ones in the first nl coordinates and 
exactly ws ones in the last n2 coordi- 
nates (see Table III), 

for nl + n2 I 24, d = 10. 
All of the upper bounds on A (n,d) outside the Plotkin 

range n I 2d are obtained from modifications of Delsarte’s 
linear programming method by making use of the values 
of A(n,d,w). The tables of A(n,d,w) are important both 
because they lead to bounds on A(n,d), and because in 
their own right they give the size of the largest constant 
weight codes. They also give the solution to the following 
widely studied packing problem (see ErdGs and Hanani 
[17], Kalbfleisch and Stanton [36], Schijnheim [X], 
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TABLE I 
VALUESOF A(n,d) 

d=b d=4 d-8 d=lO 

4 

6 

=16 

d20b 

d38 - 40 

d72 - 80 

d144 - 160 

512 

1024 

=2048 

d25b0 - 3276 

d5120 - 6552 

d9728 - 13104 

d1g45b - 26208 

d3b864 - 43690 

d 
73726 - 87380 

d147456 - 173704 

d294912 - 344636 

2 1 

2 1 

2 2 

4 2 

6 2 

12 2 

24 4 

32e 4 

64 8 

128 16 

f256 32 

256 - 340 36 - 37h 

512 - 680 64 - 74 

1024 - 1288 128 - 144 

g2048 - 2372 256 - 279 

g2560 - 4096 512 

4096 - 6942 1024 

8192 - 13774 2048 

%6384 - 24106 i40g6 

a Hamming code [24]. 
b Theorem 6. 
d Constructed in [21], [35], or [57]. 
e Theorem 4. 
f Nordstrom-Robinson code [46]. 
s Constructed in [55]. 
b Theorem 9. 
i Golay code (201. 
j From a (24,48,12) Hadamard code. 
k Constructed by [l]. 

Stanton, Kalbfleisch and Mullin [59]): what is D(t,k,u), the 
maximum number of k-subsets of a u-set S, such that every 
t-subset of S is contained in at most one k-set? The answer 
is D(t,k,u) = A(u,2k - 2t + 2,k), so that Table II is also a 
table of values of D(t,k,u). 

Two recent papers which also use the linear program- 
ming approach are Best and Brouwer [3] and McEliece, 
Rodemich, Rumsey, and Welch [43]. 

Earlier tables of bounds on A (n,d) were given in Johnson 
[33], McEliece et al. [42], and Sloane [53]. No table of 
A(n,d,w) seems to have been published before, although 
unpublished tables of upper bounds exist (e.g., Delsarte 
et al. [12] and Johnson [32]). A table of A(n,d,w) was 
promised in Stanton et al. [59] but has never appeared. A 
table of upper and lower bounds on linear codes appears 
in Helgert and Stinaff [29]. 

The following notation is used in this paper. All codes 
are binary. An (n,M,d) code consists of M (11) binary 
vectors (called codewords) of length n such that any two 
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11111111111100000000000000000000000 

11100000000011111111100000000000000 

00011100000011100000011111100000000 
00010011000010011100011000011110000 

00001000110010000011100110011101000 

10000100101000010010010101010010110 

01000110000100001001001010110001110 
00100001100101001000100011001010101 

00100010011000100110010000101001101 

10010000010101000101000100100110011 

01001001001000110000101001000101011 

Fig. 1. Columns form a constant weight code of length 11, weight 4, and 
distance 4, containing 35 codewords. Thus A(11,4,4) = 35. 

TABLE IIB 
DISTANCE& A(n,G,w)* 

3 4 

2 1 

$ 

2 2 

2 2 

3 3 

3 5 

3 6 

4 9 

4 13g 

4 14 

5 15 

5 20 

5 2od 

6 b22 

6 '25" 

6 230 

7 a31 

7 a37 

7 %O 

8 e42 24 

- 

* See footnotes to Table IIA. 

and 

A(46,26) = 86, A(n,26) = 1, if n < 26, (2) 

where here and hereafter [ . ] denotes the largest integer 
not exceeding the enclosed number. 

The linear programming approach is based on the fol- 
lowing theorem. 

Theorem 3: (Delsarte [8]-[lo]) Let 19 be an (n,M,d) code 
with distance distribution (Ao, * . * ,A,). Then the quan- 
tities Be, . . s ,B, are nonnegative, where 

n 
& = M--l c A;&(i), 

i=O 
h = O,l, -. . ,n, (24 

and Kk is a Krawtchouk polynomial, defined by 

Kk(t) =j$o(-l)i (1 1;) (f), h = O,l,..*,n. 

For later reference we give a short proof. 

Proof: Let w be a word in (O,lJn of weight i. Then it is 
easily checked that, with (w,x) 6 Zwix; mod 2, 

&n (-l)( 
wax) = Kk (i). 

wt(xj=k 

Consequently, by the definition of Ai, 

n 
& = M-l c A&(i) 

i=o 

=M-2C c 
i=o u,uce 

~,,~l,n (-l)(“--uJ) 

n wt(u--u)=i wt(xj=k 

= M-2 $I, b,2 2 0, 
n (34 

wt(x’)=k 

TABLE IIC 
DISTANCE 8: A(n,8,w)* 

* See footnotes to Table IIA. 



r *Z 91 2 

*f *2 9 2 
r9 *4 *E *2 hl 2 

L w9 *9 *5 l f *2 El 2 
hl 21 L “9 r9 a9 *5 l f x2 21 2 

12 21 41 01 L *4 XL r9 *4 *4 *E *2 11 2 

GE 02 27 61 41 01 9 *s 8 XL r9 w4 ~4 SE ~2 01 2 

9f Of 81 01 12 91 ET 6 9 uh 6 XL x9 n9 x4 *h rf ~2 6 2 

hh 2f 42 9T 6 hZ 12 91 17 8 w4 xh 6 8 *L *9 ~4 *h *h rf ~2 8 2 

8s 8f 82 12 hl 8 h2 TZ 81 21 6 rL w4 xh 6 8 ;cL rL x5 %h uh rf *f r2 L 2 

09 4h Of T2 4T IIT 9 T2 02 81 41 01 8 9 *h *h 6 rL *9 ~9 ~5 xh *h rf xf rf ~2 9 2 

Oh Oh Of 22 Ll 27 8 9 02 Ll ST 21 01 8 9 r6 rh xf *9 u9 XG *G r4 *h x.h SE rf *f *2 ~2 4 2 
Of h2 hZ 8T 91 2T 8 9 *h hl hT 21 01 B 9 9 u4 *h *f x2 x4 x4 w4 sir xh sh rh *f *f rf ~2 x2 ~2 h 2 

l" 1, 

02 61 8T Ll 97 51 hT fT 2T 02 6T 81 LT 91 41 hT ET ZT Tl OT 02 61 81 LK 91 47 hl El 21 TT 01 6 8 'U 

)99999999944444444444hhhhhhhhhhhhhzM 

&)~‘Zdzm‘~tJ‘Im)J zIOdSCINnO~I3ddn 

8111 3?BVLL 

X2 

*2 *2 

rh *f *2 *2 

xh xh xf *f x2 "2 

r8 XL rh *h *h *f *f ~2 ~2 

21 x8 ~6 rL *h xh x9 *II *E rf *z rz 

8K 11 u8 21~8 IL *h *h u9 19 rh rf rf ~2 ~2 

92 81 11 XL Ll 11~8 nL *h rh XL r9 x9 sh uf rf r2 r2 

9f 92 8T 1K w9 12 Ll 11 8 x9 xh *h ~8 rL u9 x9 wh rf *f u2 w2 

Oh Of h2 41 01 19 02 02 51 01 L ~5 rh rh ~8 *L *L u9 ~4 uh xf *f r2 "2 

Oh 2f h2 02 21 6 x9 02 9T 91 21 6 L ~4 rh r,, *6 x8 *L r9 x4 xh xh rf xE rz r2 

6f Of h2 81 41 6 L ~9 12 SK 21 21: 6 8 9 r;4 xh SE *6 rL rL r9 x4 uh rh SE uf xf ~2 u2 

f 92 02 91 21 01 9 9 *h hl iiT OT 6 9 9 r4 8 rh *f x2 ~9 r9 r4 ~4 wh rh xh rf rf rf r2 r2 12 

: 12 02 61 81 LT 91 4T h1 22 12 02 67 87 LT 9T 4? hT ET 2T 22 12 02 61 81 Ll 91 51 hT El 21 TT 01 

‘LLLLLLLL999999999994444444444444 

~(~~‘zd~m‘~u‘~m) J, ~10,s ScINnOFJ ?I3ddn 

VIII 3?EIVJ 

‘( (?)“XV 7 + (0)‘x) I-A! = 93 

‘u‘ . . . ‘0 = q ‘0 7 9 

‘u‘ . . . ‘p = J ‘0 7 !v 

s~u!e.rfsuo~ ay? 0~ r)aafqns 

uv+**-+ T+Pv + Pv = 7 

az!uyxaw 0% se 0s “v‘. . . ‘l+Pv‘Pv 
salqe!Jea Iaar asooy3 :malqold Bu!u.uusJrBord .mau!l 
2~~~0~~03 aq? o$ uoynlos pmgdo ay3 s! (p‘u) *7 asoddns 

‘UV + . . . + r+pv + pv + T = (P‘U)V = w 

uaq& *p amqs!p umur~uyur pm u q@uaj 
30 apoD lawgdo UB aq 9 $a1 ‘g ruaroay& Qdde 0,~ 

nap03 Imp ayq 30 uognq!wrp qyB!a~ ay? si ug‘ . . . ‘08 
pue ‘$0~ .IO apoD Imp ay? 07 &!uoIaq x raq$ayM uo kpuad 
-ap 0 JO j?q spmba rq uayc) ‘ap03 raauy B s! &I 31 :a)o~ 

~(*‘n)(T-) a? = “q 

arayM 

hT 1 

El 1 

2T 1 

11 1 

01 T 

6 1 

8 1 
L 7 

9 1 

4 1 

h T 

i 1 

2 1 

r--F 
2-2 

*(m‘oT‘u)v :01 amvasm 
aII 37~~ 

8,X51 hZIVI1NVP ‘1 'ON ‘PZ-LLLI 'TOA 'hXO3HL NOLLVWZIOdNI NO SNOIXWSNW~ 3331 



BEST et al.: BOUNDS FOR BINARY CODES 85 

TABLE IIIC 
UPPERBOUNDSFOR T(~~~,n~,w~,n~,lO)* 

id2333333333333344 444444444555555555 

"* 6 7 8 9 10 11 12 13 14 15 16 17 18 8 9 10 II 12 13 14 15 16 17 18 10 11 12 13 14 15 17 16 It 

'1 "1 

3 6 1* 2" 2* 3* 3* 3* 4* ii* 4* 4* 4* 4* iI* 2* 3" 4* 4* 6 6 7 8 9 10 12 4* 6 8 11 16 20 24 30 3' 

3 7 2* 2* 3" 3" 3" 4' 0' 4* 5* 5* 5" 5" 3* 4* 5* 6 7 9 11 13 14 16 6 8 12 18 23 33 41 46 

3 8 2* 2* 3* 3* 4* o* 5* 5' 5* 6* 6" 4* 5* 6 8 10 13 17 18 21 8* 11 18 24 32 48 56 

3 9 3* 3" 3" II* 4* 5" fi* 6" 6* 7* 4* 6* 7 10 15 18 21 22 9 15 24 33 48 63 

3 10 3* 3* 4" 4* 5* 6 7 7 8 iI* 7 10 13 18 20 23 12 20 30 43 53 

3 11 3' 4" 4* 5" 6 7* 8 9 5* 7 11 16 21 25 14 22 36 54 

3 12 4* 4* 5* 6* 7 8 9 G* 9 13 19 24 18 28 40 

3 13 4% 4* 5" 6" 7 9 6* 9 15 19 18 30 

3 14 4s 5* 5" 6" 8 6* 10 15 20 

3 15 4' 5* 6% 7" 7 12 

3 16 4* 5* 6" 8 

* Bound is exact. 

TABLE IIID 
UPPERBOUNDSFORT(UI~JZ~,W~JZ~,~O) 

~~8888888 

n2 16 17 18 19 20 21 22 

w1 "1 

12 8 12 18 21( 40 52 70 

13 12 18 27 36 60 78 

14 16 24 36 48 80 

15 20 30 45 60 

I 6 22 36 54 

17 22 38 

18 22 

w27777777 

n2 14 15 16 17 18 19 20 

Wl "1 

2 4 10 14 1'3 30 36 48 GC 

2 5 15 22 30 50 60 80 

2 6 18 30 45 72 90 

2 7 21 38 63 91 

2 8 28 44 72 

2 9 36 49 

2 10 40 
- 

9 9 9 9 9 
18 19 20 21 22 

20 38 52 8211' 

30 57 78123 

40 76 104 

50 95 

60 

0 8 8 8 8 
16 17 18 19 20 

24 36 54 72 12 

40 60 go 120 

60 90 135 

76 115 

88 

1.1~6 6 6 6 6 6 6 7 7 7 7 7 

n2 12 13 14 15 16 17 18 14 15 16 17 18 

ql "1 

3 6 10 1 10 16 24 2 3 34 44 44 60 80 30 30 44 44 60 100 120 60 100 120 

3 7 14 25 35 49 70104 14 25 35 49 70104 42 70 105 153 

3 8 21 21 37 37 56 56 74 101 74 101 56 100148 

3 9 27 08 75 96 84 129 

3 10 33 60 94 104 

3 11 44 73 

3 12 48 

TABLE IIIE 
UPPERBOUNDSFOR T(wl,nl,wz,nz,lO)* 

4 4 4 4 4 4 4 114 5 5 5 5 5 5 5 6 6 6 6 6 

8 9 10 11 12 13 14 15 16 10 11 12 13 14 15 16 12 13 lli 15 16 

4* 6* 8 10 14 18 21 22 28 lo* 16 24 36 46 63 

6' g* 12 18 21 29 31 37 la* 24 40 54 72 93 

8 12 17 25 33 42 51 22 37 60 82 107 

10 18 25 35 48 55 33 55 81108 

14 21 33 48 63 42 66 102 

18 29 '42 55 58 89 

21 31 51 62 
__---~ 

361 48 73 96 125 

48 77 106146 

73 106 154 

116 

* Bound is exact. 

Then plainly so bounds on A(n,d,w) can be used (see Table II). Some- 

A(n,d) 5 1 + L*(n,d). times several such bounds can be combined, as the fol- 

This is the simplest version of the linear programming 
lowing example illustrates. 

bound for binary codes (Delsarte [8]). Theorem 4: A(13,6) = 32, and so the Nadler code is op- 

Often it is possible to impose additional constraints on timaL 
the Bi. Certainly Proof: In 1959, Stevens and Bouricius [60] found 

Bi I A(n,d,i), (4) (13,32,6) and (14,64,6) codes, showing that A(13,6) 2 32. 
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The former code was rediscovered by Nadler [45], and is 
usually referred to as the Nadler code. (See also Van Lint 
1411.) 

To prove A(13,6) _< 32, we proceed as follows. First ob- 
serve that, if we shorten a (13,M,6) code and then add an 
overall parity check, we get a (13,M,6) code @ in which all 
distances are even. 

If (Ai) is the distance distribution of c?, then A0 = 1 and 
the remaining Ai’s are zero except (possibly) for Ag, As, 
Alo, and A12. The inequalities Bk 1 0 become 

13 + As - 3As - 7Alo - llAlz 10, 

13 

( > 2 
- 6AG - 2A8 + 18AIo + 54A12 2 0, 

13 

( > 3 
- 6A6 + 14A8 - 14AIo - 154A12 2 0, 

13 

( > 4 
+ 15AG - 5As - 25Alo + 275A12 2 0, 

13 

( > 5 
+ 15AG - 25As + 63Alo - 197Acx 2 0, 

13 

( > 
- 20As + 20A8 - 36Alo + 132A12 2 0. (5) 

6 

Furthermore we have 
A&U) 5 A(13,6,12) = A(13,6,1) = 1, 

A&) 5 A(13,6,10) = A(13,6,3) = 4. 

However, these can be combined. For if A&U) = 1 then 
A&) = 0. So 

Alob) + 4A&) 5 4, 

and averaging over u gives 

Al0 + 4A12 5 4. (6) 

Actually (6) and the first two constraints of (5) turn out to 
be enough, and so we consider the problem: maximize 

subject to 

&+As+Alo+An 

Agr0,A820,Alo10,AlaI0 

and 

13 + A6 - 3A8 - 7Alo - llA12 > 0, 

78 - 6Ae - 2A8 + 18AIo + 54A12 10, 

4 - Alo- 4A12?CO. 

The dual problem is minimize 

13Ul + 78U2 + 4u3 

subject to 

Ul 2 0, u2 10, u3 2 0 

and 

1 + 6~2 5 0, UI- 

1 - 3Ui - 2us _< 0, 

1 - 7~1+ 18~2 - ~3 IO, 

1 - 11~1 + 54~2 - 4~3 5 0. 

(7) 

Feasible solutions to these two problems are 

As = 24, A8 = 3, Al0 = 4, Al2 = 0, (9) 

1 16 
U1=U2=-,U3=-. 

5 5 
(10) 

In fact, since the corresponding objective functions are 
equal, i.e., since 

it follows that (9) and (10) are optimal solutions. (These 
solutions are easily obtained by hand using the simplex 
method-see [18] or [52].) It follows that A(12,5) = A(13,6) 
5 32. Q.E.D. 

Remark: The following argument shows that (9) is the 
unique optimal solution. Let xs,xs,~ 10,~ 12 be any optimal 
solution to the primal problem. The ui of (10) are all pos- 
itive and satisfy the first three constraints of (8) with 
equality, but not the fourth. Hence, from the theorem of 
complementary slackness (Simonnard [52]), the xi must 
satisfy the primal constraints (7) with equality, and 3~12 = 
0. These three equations have the unique solution 

xs = 24,~s = 3, x10 = 4. 

Thus (9) is the unique optimal solution. Therefore the 
distance distribution of a (13,32,6) code in which all dis- 
tances are even is unique. This result has been used by 
Goethals [19] to show that the code itself is unique and that 
there are exactly two nonequivalent (12,32,5) codes (cf. 
Nadler [45], Van Lint [41]). 

If A(n,d) g 0 (mod 4), the right side of the Delsarte 
inequalities Bk 2 0 can sometimes be increased, as shown 
by Theorems 5 and 8. 

Theorem 5: Let @ be an (n,M,d) code with M = A(n,d), 
and suppose that M is odd. Then 

& 1 M-2 ; , 
0 

k = O,l, . . . ,n. (104 

Proof: If M is odd, then b, (in (3b)) is odd, and hence 
nonzero. From (3a) we get 

& 1 M-2 C 6: 1 M-2 (;). Q.E.D. 
nt{o,lp 
wt(x)=k 

Remark: In the expression (2a) for Bk, the term corre- 

sponding to i = 0 (with A0 = 1) is M-l& (0) = M-1 
0 
L . 

Therefore the inequality (10a) enables us to rewrite (2a) 
as 

M-l n 

0 M2 k 
+ i ,$ A&(i) 2 0, OIk<n. 

I 1 

This means that if no extra inequalities have been added, 
the optimal solution is simply (M - 1)/M times the original 
one, and hence Zr=&i 5 M - 1, lowering the bound by 
exactly one. If extra inequalities are added, the gain is in _ _ 

(8) general less. 
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As an application, we prove the following result. 

Theorem 6: A (9,4) = 20. 

By induction on the weight of x it follows that, since bo = 
M = 2 (mod 4), 

Proof: Golay [al] found a (9,20,4) code, thus A(9,4) 
L 20. A cyclic (8,20,3) code is given in Sloane and White- 
head [57]. To prove A(9,4) I 20, as usual let C?- be an 
(8,M,3) code with M = A(8,3) = A(9,4); and let C? be the 
(9,M,4) extended even weight code, which has distance 
distribution (Ao, . * a ,Ag) with A0 = 1 and Al = A2 = A3 = 
A5 = A7 = As = 0. 

b, = 2 + 2(x,[) (mod 4). 

Now, for each k E (OJ, . -. ,n], 

Bk = M-2 C b,2 2 2M-2 C (1 + (-l)(“,o) 
rclO,lI” XC(O,lp 
wt(r)=k wt(r)=k 

First, we maximize A4 + A6 + A8 subject to Ai L 0, Bk 
2 0, and A8 I 1. We obtain Ad + Ag + As I 201/3 and hence 
M I 21. 

= 244-2 ((;) +&z(l)>. Q.E.D. 

Suppose M = 21. Then, by Theorem 5, we can replace 

9 
&~Oby&~(?‘id k . 

0 
Since M is odd, it is obvious 

that A8 5 2ohr. Hence in this case, in spite of the extra in- 
equality, all constant terms occurring in the inequalities 
are multiplied by 2ohr, so 

We mention the following immediate consequence of 
Theorem 8, which is weaker but easier to apply. 

Corollary: Let c? be an (n,M,d) code with M = A(n,d), 
and suppose that M = 2 (mod 4). Then 

Bk 2 2M-2 min 
le{O,l, . . . ,n) 

e.g., B2 2 (4/M2) ((9) - b2M). 

MS1+$.205<21. 

Hence A(9,4) = 20. Q.E.D. 

If A (n,d) = 2 (mod 4), then a positive lower bound for Bk 
can be obtained by noting that b, cannot be zero too often. 
For example, if ui, us, and ui + uz are distinct, then bul, 

bug, and bul+up cannot all be zero. The following linear 
inequality can be obtained in this way. 

Theorem 7: Let @ be an (n,M,d) code with M = A(n,d), 
and suppose that M = 2 (mod 4). Then 

4 n 
Bk >--- 

0 3M2 k ’ 

if (i) k is even and 0 < k 5 2/3n, or (ii) if d is even, k e n 
(mod 2), and l/pz 5 k < n. 

A slightly stronger result is stated in the following the- 
orem. 

Theorem 8: Let @ be an (n,M,d) code with M = A(n,d), 
and suppose that M s 2 (mod 4). Then there exists an 1 t 
{OJ, * * * ,n) such that 

Bk : 2 .2i’14-~ ((3 +Kk(l)), k = O,l, . . . ,n. 

(Since IKk(l)l 5 (k”), this also improves Theorem 3.) 

Proof: Since M is even, b, is even for each u t (O,l}“. 
Let cj be the jth unit vector in (0,l)“. Then 

b, - b,+,j = C (1 - (-l)(“,ei))(-l)(u,“). 
use 

Hence, for fixed j, the residue class of b, - b,+,j (mod 4) 
is even and independent of the choice of x. 

Let J be the set of those j t (1,2, . . . ,n) for which b, - 
bz+ej E 2 (mod 4), and let 1~ ] JI and t = ZjcJ6?j. Then 

bx - b,+ej E 2(ej,[) (mod 4). 

For example, this corollary can be used to prove the 
upper bound in Theorem 9; the lower bound comes from 
1561, 1571. 

Theorem 9: A(17,8) = 36 or 37. 

Table I gives the bounds on A(n,d). Many values come 
from Theorems 1 and 2. Otherwise the unmarked upper 
bounds are obtained by linear programming, as illustrated 
in Theorems 4 and 6. Other entries are explained by the 
key. The bounds A (9,4) I 20, A (10,4) I 39, A (11,4) I 78, 
and A(12,4) I 154 were claimed by Wax [63] in 1959. 
However, as we shall see in the next section, such bounds 
cannot be obtained by his method. 

We conclude this section by repeating Elspas’s question 
[16]: can A(n,d) be odd and greater than one? From The- 
orem 2 and Table I we have the following theorem. 

Theorem 10: If A(n,d) is odd (and greater than one), 
then A(n,d) 2 37. If Hadamard matrices exist of all orders 
congruent to O(mod 4), then A(n,d) is even whenever n I 

2d. 

III. THE END OF THE WAX BOUND 

In 1959, Wax [63] computed a number of upper bounds 
for binary codes by a method used by Rankin [49] to obtain 
sphere packing bounds in Euclidean space (see also Rogers 
[50]). Most of the bounds obtained were rather weak, but 
there were three special cases in which his “soft sphere 
model” seemingly yielded astonishingly good results. 
These were 

A(8,3) 5 20, 
A(9,3) < 39 (and hence A(10,3)‘1 78), 
A(11,3) I 154. 

The first bound is confirmed by Theorem 6, but no proof 
of the other bounds is known. 
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We were unable to duplicate Wax’s calculations, and in 
fact in this section we shall establish a lower bound on the 
best upper bound that can be achieved with the soft sphere 
model, no matter which weight function is used. Since this 
lower bound is inconsistent with the data found by Wax, 
we may conclude that Wax’s results are-at least in the 
interesting cases mentioned above-erroneous. 

We are now left with the following bounds for A(8,3), 
A(9,3), A(10,3), and A(11,3): 

A(8,3) = 20, 

38 5 A(9,3) I 40, 

72 I A(10,3) I 80, 

144 I A(11,3) _< 160. 

A. The Soft Sphere Model 

Consider an (n,M,d) code as a subset of the vertices of 
the hypercube [O,l] n in Euclidean n-space lR n. The Eu- 
clidean distance between two code points is at least 4. 
Therefore the spheres with centers at the code points and 
radii R = r/z4 are disjoint. If V denotes the volume of the 
intersection of each sphere with the hypercube [O,l] n (by 
symmetry these volumes are all equal), then the number 
of code points evidently cannot exceed l/V. Hence A (n,d) 
I [l/V]. 

This method, called the “hard sphere model,” yields very 
modest results, e.g., A(9,3) 5 566 (and not 56.7 as in Wax 
[63]) or A(10,4) < 401. 

In order to sharpen the bounds, the hard spheres are 
replaced by larger ones with variable mass density. As basic 
conditions, it is required that 

(i) the density P(X) associated with a single sphere is 
nonnegative and depends only on the distance to the 
center of that sphere, and 

(ii) in any configuration of (partly overlapping) spheres 
with centers at least 2R apart, the total density at 
each point does not exceed unity. 

If p is the mass of the intersection of each sphere with the 
hypercube3, we now obtain 

A(n,d) I [l/p]. 

The main problem is to determine a suitable density 
which satisfies the basic conditions (i) and (ii) and maxi- 
mizes the mass p. Rankin studied this problem in [49]. In 
order to simplify computations, he required in addition 
that 

(iii) the spheres have radius R-\/2, i.e., p(r) = 0 if r L 
Rd. 

The model described, with the conditions (i), (ii), and 
(iii), is called the “soft sphere model.” We shall denote the 

s In case d 5 4, one may instead define p by 2-” times the mass of the 
whole sphere, since the configuration may be continued with period 2 in 
all directions in R”. However, this extended model is also included in 
our analysis. 

least upper bound for A(n,d) that can be achieved with this 
model by A,(n,d). Our aim is to give a lower bound for 
&Wh 

B. A Lower Bound for A,(n,d) 

First we derive an upper bound for p. We define, for each 
positive integer m, 

ym = 42(m - 1)/m 

(note: y1 = 0, yz = l), and the function u: [O,m] - [O,l] 

by 

u(r) = 1 
m’ 

if Ry, I r< Ry,+l, m = 1,2,. . . ,n, 

1 =- 
n+l’ 

ifRy,+ 5 r <Rfi, 

= 0, ifr kRv5. 

Then we have the following lemma. 
Lemma 11: p I c. 

Proof: We have to prove that p(r) I l/m if r > Ry, 
for m = 1,2, - - - ,n + 1. Let m e (1,2,. . . ,n + l]. Suppose m 
spheres with density function p are arranged so that their 
centers form the vertices of an (m - 1)-dimensional regular 
simplex in lR n with edges of length 2R. Then the distance 
from the center of gravity of the simplex to each of the 
vertices equals 

Rd2(m - 1)/m = Ry,. 

(Proof by induction.) 
The total density at the center of gravity equals 

mp(Rym). Hence p(Ry,) I: l/m and a fortiori p(r) 5 l/m 
if r 1 Ry,. Q.E.D. 

This estimate for p immediately gives rise to an upper 
bound on the mass p. 

Lemma 12: 

Proof: We denote the volume of the intersection of the 
n-dimensional hypersphere with radius r and center 0 in 
lRfl and the n-dimensional hypercube [OJ] n by B(r). The 
volume of the n-dimensional unit sphere will be denoted 
by J,. It is well-known (see Sommerville [57a, p. 1361, 
Feller [17a, p. 521) that 

*n/2 
Jn=------< 

?yn/2e n/2 

(n/2)! - (n/2)n/2&Yz = 
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Hence Theorem 15: If a 2d X 2d Hadamard matrix exists, 

S 
RdZ 

S 
Rv’2 

Ir = p(r) dB(r) 5 u(r) dB(r) 
A(2d -2,d,d - 1) = d, 

0 0 
A(2d - l,d,d - 1) = 2d - 1, 

=- JRJ2 B(r) da(r) I: - JR\/’ 2-V/ da(r) A(2d,d,d) = 4d - 2. 

Theorems 16-18 are due to Johnson [30], [31]. 

Theorem 16: 

* (RYmP + 

’ (:)n (y)“‘2& (1% (m :l)m 
. (2’m; l))n12 I ,“=‘,) 

= (FIni & ($1 m(m’+ 1) 

A(n,d,w) S 
dn 

dn - 2w(n - w) 1 
provided the denominator is positive. 

A slightly stronger result is given in the following theo- 
rem. 

Theorem 17: Suppose A(n,d,w) = M, and define q and 

r by 

wM = nq + r, O_ir<n. 
nl2 ‘1 

+- 
> 

Q.E.D. 
Then 

n+l ’ nq(q - 1) + 2qr 5 (w - d/2)M(M - 1). 

This leads to the lower bound for A,(n,d). 

Theorem 13: 

Theorem 18: 

A(n,d,w) I 14A(n - l,d,w - 1) 
I 

, (n I w L l), 
W 

A,hd) 1 [ (s)n’2fi (l$, ,(,l+ 1) A(n,d,w) 5 & A(n - l,d,w) 
IY 1 , (n > w L 0). 

m 

( > 
n/2 1 -1 

* m+l 
+- > 1 n-l-l . 

Theorem 19: If n 1 w 1 t, then 

n n-l 
A(n,d,w) I --*p..... 

n-t-l-l 
- A(n - t,d,w - t). 

Proof: R = l/sfl and A, (n,d) = [l/g] for some density w w-l w-t+1 

function p. Q.E.D. 

If equality holds, then any optimal constant weight code 
Examples: with parameters n,d,w is a t-design. In particular, 

A,(8,3) 1 45, A,(9,4) 1 27, 
A(n,26,w) = 

n(n - 1) - - - (n - w + 6) 

A,(9,3) L 101, A,(10,4) L 56, w(w - 1) - * * 6 

A,(I0,3) 2 238, A,(11,4) > 119, 

A, (lL3) 1 579, A,(12,4) 2 259. 

IV. BOUNDS ON A(n,d,w) 

The first two theorems are well-known (cf. Johnson 
]331). 

Theorem 14: Let d,w,n be integers, d # 0, w 5 n. 
Then, 

(i) A(n,d - 1,~) = A(n,d,w), if d is even, 
(ii) A(n,d,w) = A(n,d,n - w), 

(iii) A(n,d,w) = 1, ifd > 2w, 

, if d = 2w. 

if and only if a Steiner system S(w - 6 + l,w,n) exists. (For 
a bibliography of Steiner systems up to 1973, see Doyen 
and Rosa [14].) 

A. Optimal Constant Weight Codes 

As noted in the introduction, the determination of 
A(n,d,w) is equivalent to determining L ,here u = 
n, k = w, and t = k + 1 - l/zd (if d is even). However, this 
requires the construction of (maximal partial) Steiner t - 
designs, which is trivial for t = 1, while for t = 2 the rec- 
ursive techniques of Hanani and Wilson are available (see, 
e.g., Wilson [64], [65]). For larger t, almost nothing is 
known (the best studied case being t = 3, k = 4). The 
known results are as follows. 

1) t = 1: This is Theorem 14 (iv): A(n,2w,w) = [n/w]. 
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2) t = 2: In this case, we must look for a maximal col- Hence for these values of n we have A(n,4,4) = Y! 1 
0 

. 
lection of w-subsets of an n-set such that no 2-subset is 
covered twice (in other words, an edge-disjoint packing of Shortening these codes once gives A(n,4,4) = n(n - l)(n 

w-cliques in the complete graph on n points). If a balanced - 3)/24 for n = 1 or 3 (mod 6). Upon using triplewise bal- 

incomplete block design exists with parameters (b,u = n,r,k anced designs TBD((4,6];n) in which the blocks of size 6 

= w,X = l), that is, an S(B,w,n), then obviously A(n,d,w) form a partition, it follows that A(n,4,4) = n(n2 - 3n - 

= b = om 
* otherwise we must look for the nearest 

6)/24 for n = 0 (mod 6) (cf. Brouwer [6]). Exact values for 
the case n E 5 (mod 6) are not known. 

approximation to this Steiner system. 
a) d = 4, w = 3: It has been shown by Kirkman [38] B. The Linear Programming Bound for A(n,d,w) 

in the cases n = 0, 1,2, or 3 (mod 6) and by Schonheim [51] 
in the remaining cases that 

This bound is based on the following theorem. 

Theorem 21: (Delsarte [9], [lo].) Let C? be an (n,M,26) 
for n s 5 (mod 6) code of constant weight w I n/2, having distance distri- 

A(n,4,3) = bution (Ao, . . a ,AzW). Then the quantities Bo, . . . ,Bzw are 

- 1, for n = 5 (mod 6), 
nonnegative, where now 

1 w 

(see also Guy [22], Spencer [58] and Swift [61]). The cases 
&k = - c &&k(i,n,w), 

Mi=o 
k = 0, -.a ,w, 

n = 1 or 3 (mod 6) correspond to Steiner triple systems. 
b) d = 6, w = 4: As has been shown by Hanani [26], 

the coefficients Qk (i,n,w) are given by 

there exist Steiner systems S(2,4,n) if and only if n z 1 or 
4 (mod 12). In Brouwer and Schrijver [7], group divisible 

&k(i,n,w) = “,-“k”+‘: Ei(k) (It)/(!)) (” y “>, 1 1 
designs GD(4,1,2;n) are constructed for each n = 2 (mod 
6), n # 8. In Brouwer [5], pairwise balanced designs 

(11) 

PBD((4,7*];n) are constructed for each n z 7 or 10 (mod 
and Ei(x) is an Eberlein (or dual Hahn) polynomial de- 

12), n # 10,19. By using these and some similar con- 
fined by 

structions, it follows that if we define 

JBhW 

- 1, for n = 7 or 10 (mod 12) 

otherwise, 

then A(n,6,4) = JB(n,6,4) for all n with the exceptions of 
Aai 1 0, i = 6, - -. ,w, 

n = 8-11,17,19. The values of A(n,6,4) for n = 8-11 are 
easily determined by hand, that of A(17,6,4) was deter- 

A0 = 1, A2 = A4 = ... = Az6-2 = 0, (12) 

mined in Brouwer [4], and A(19,6,4) was determined by and 
Phinney [47] and Stinson [60a]. 

We conjecture that, for t = 2, w fixed and n sufficiently 
&k 2 0, k =O,-..,w. (13) 

large (i.e., n 2. no(w)), A(n,d,w) equals the Johnson bound Additional constraints on the Ai can be expressed in 

&t)ained by applying Theorems 14 and 18) (cf. Wilson terms of the function T(wl,nl,w2,n2,26) defined in Section 
I (see Table III). Let u E @ and consider the codewords u 

c) d = 8, w = 5: As shown by Hanani [26], [27], there t CC? such that dist(u,u) = 2i. By a suitable permutation of 
exist Steiner systems S(2,5,n) if and only if n = 1 or 5 (mod the coordinates, we may assume that 

20). Shortening these gives optimal codes for n = 0 or 4 
(mod 20). -We -n-w- 

The values of A(n,8,5) in Table II for n 5 15 follow from u=(ll...l ll...l oo...o OO...O), 

the following observation. u = (11 e-.1 00 -**o 11 - * * 1 00 - * * 0). 

Theorem 20: If d is even, X = w - d/2 and M I w/X + 1, 
hi+ +i-+ 

then A(n,d,w) > M if and only if n 1 wM - X 7 . 
0 

The number of such u’s is AQ~ (u), and by definition of T 
we have 

Many more values of A(n,8,5) are known, but most lie 
outside the range of the table. 

AZ;(U) I T(i,w,i,n - w,26), i = 6, . . . ,w, 

3) t = 3, d = 4, w = 4: As shown by Hanani [25], Steiner 
so that 

quadruple systems exist for each n = 2 or 4 (mod 6). Azi I T(i,w,i,n - w,26), i = 6, . . . ,w. (14) 

(See Delsarte [9], Eberlein [ 151, Hahn [ 231, and Karlin and 
McGregor [37] for these polynomials.) 

As in the case of A(n,d), we obtain a bound on A(n,d,w) 
by maximizing A0 + A2 + - -. + AzW subject to the con- 
straints 
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Sometimes it is possible to say more, as the following ex- 
ample illustrates. 

(e) If d = 2wi + 2~2, then 

Theorem 22: 

A(17,8,7) I 31. 

Th,nl,w,n2,4 = min ([ 21, [ $I], 

Proof: Let @ be a code of length 17, distance 8, and 
constant weight 7. Suppose C? contains M = A(17,8,7) 
codewords. For u c c?, the only nonzero components of the 
weight distribution with respect to u are Ao(u) = 1, Am, 
Alo( AI&), AM(U), and then 

I nl T(wl - l,nl - l,ws,ns,d) , 
Wl 1 

(g) Th,nl,w2,m,4 

Ai = $ C Ai( 
uee 

We have 

i = 0,8,10,12, 14. 
5 

nl 
~ T(wl,nl - l,ws,ns,d) , 
nl - WI 1 

A14(u) I A(10,8,7) = A(10,8,1) = 1, 

A12(u) I T(6,7,6,10,8) = T(1,7,4,10,8) = 5. 

These imply A12 I 5, A14 5 1 as in (14). But we can say 
more. For if A14(u) = 1, then A&u) I 2. Therefore, for all 
u t @, 

09 Wwww2,2~) 5 
6 

W4 4 1 > 
-+--+6-w1-w2 
nl n2 

Alz(u) + 3A14(u) < 5 and A14(u) 5 1, 

and so 

provided the denominator is positive. 

A slightly stronger result than Theorem 23(h) is the 
following. 

A12 + 3A14 I 5 and A14 I 1. (15) 

Linear programming with the constraints (12), (13), and 
(15) gives the stated result. Q.E.D. 

Table II gives the bounds on A(n,d,w). Upper bounds 
marked with an L are obtained by linear programming, as 
illustrated by Theorem 22. Unmarked lower and upper 
bounds are from Theorems 14-20. A useful technique for 
getting lower bounds is the following. Let ~9 be an (n,M,d) 
code, and I?* = a + @ = (a + u, u t c?) any translate of C?, 
with weight distribution Ai (0). Then 

Theorem 24: Suppose T(wl,nl,wz,n2,26) = M, and de- 
fine qi,ri (i = 1,2) by 

Mwi = qini + ri, 0 I ri < TZi. 

Then 

2 (niqi(qi - 1) + 2qiri] 5 (~1 + ~2 - 6)M(M - l), 
i=l 

Ai(0) I A(n,d,i). 

with equality if and only if all distances are 26. 

There is also a linear programming bound for 
T(wl,nl,w2,n2,26), based on Theorem 25. Define the 
left and right weights of a vector u = (~1, * * * ,u,,+,~) to 
be WL(U) = wt(ul, *a* ,Unl) and wR(u) = wt(unl+l, ---, 

UnJ. 

This technique works well for example with the (short- 
ened) Nordstrom-Robinson and Golay codes. Other 
entries in the table are explained by the key. Letters on the 
left of an entry refer to lower bounds, on the right to upper 
bounds. 

V. BOUNDS ON T(wl,nl,wz,nz,d) 

Theorem 25: Let C? be an (nl + nz,M,26) code such that 
WL(U) = wl, WR(u) = ws for all u 6 C?, and let 

A2i,2j(U) = lb c ~2 :WL(u + u) = 2i,wR(u + u) = 2j)l, 

A2i,2j = $ C Azi,g(u). 
u<e 

Then 
T(wl,nl,wz,n2,d) is the maximum number of binary 

vectors of length nl + n2, having mutual Hamming dis- 
tance of at least d, where each vector has exactly w i’ones 
in the first nl coordinates and exactly wg ones in the last 
n2 coordinates. For example, we see that T(1,3,2,4,6) = 2, 
as illustrated by the vectors (lOOllOO), (0100011). Prop- 
erties of this function are given in the following theo- 
rems. 

&a,21 = - Aiz jroA2i,2jQh( i,nl,wdQ~O’,m,wd 2 0, 

where Qk(i,n,w) is given in (11). 

Theorem 23: (Johnson [34]). 

(a) Th,nl,wmd = Tbwwww% 
(b) Th,m,w2,nd = T(nl - wl,nw2,nd, 
Cc) T(O,nw2,w,d) = Ahdwd, 
(4 T(wl,nl,w2m,d) 5 Ah& - ~WPJZ), 

Proof: For v = 1,2, suppose (Xc”); Rt’, . . - ,RtJ) is an 
association scheme with intersection numbers p$, inci- 
dence matrices Dp), idempotents Ji(“), and eigenvalues 
Pk’(i), &b’(i) (cf. Delsarte [9], [lo], Sloane [54]). Then 
(X(l) X Xc2); Rij = R{l’ X Rj2’,0 I i I nl, 0 I j 5 n2) is an 
association scheme (the product scheme) with intersection 
numbers p$p$i, incidence matrices Dl(l) Q Dj”‘, idempo- 
tents Ji’) 8 Jy’, and eigenvalues Pg’(i)Pl”(j), 

Q!?WQt2)ti). H ence C? is a code in the product of two 
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Johnson schemes. The result now follows from Theorem 1281 --, “Balanced incomplete block designs and related designs,” 

3.3 of Delsarte [9] and Theorem 21 above. Q.E.D. Discrete Math., vol. ll,-pp. 255-369,1975. 
(291 H. J. Helnert. and R. D. Stinaff. “Minimum-distance bounds for 
& , 

Table III gives upper bounds on T(wl,nl,w2,m,lO). 
binary linear codes,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 
344-356, May 1973. 

Entries marked with an asterisk (*) are exact. [30] S. M. Johnson, “A new upper bound for error-correcting codes,” 

Note Added in Prooj? The first author has recently shown 1311 

that A(9,3) = 40, A( 10,3) 5 79, A( 11,3) 5 158, A( l&3) > [32] 
10 240, A(19,3) > 20 480, A(20,9) 5 54, and A(21,9) I [33] 
89. 

IEEE Trans. Inform. Theory, vol. IT-S, pp. 203-207, Apr. 1962. 
-- “Improved asymptotic bounds for error-correcting codes,” 
IEEE Trans. Inform. Theory, vol. IT-g, pp. 198-205, July 1963. 
-- , unpublished tables, 1970. 
-- “On upper bounds for unrestricted binary error-correcting 
code;,” IEEE Trans. Inform. Theory, vol. IT-17, pp. 466-478, July 
1971. 

ill 
121 

131 

141 

[51 

[‘31 

171 

WI 

PI 

WI 

[Ill 

t: ;j 
[I41 

[I51 

1161 

[I71 

[341 
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Some Results on Arithmetic Codes of Composite Length 

TAI-YANG HWANG AND CARLOS R. I’. HARTMANN, MEMBER, IEEE 

Abstract-A new upper bound on the minimum distance of hi- 
nary cyclic arithmetic codes of composite length is derived. New 
classes of binary cyclic arithmetic codes of composite length are 
introduced. The error correction capability of these codes is dis- 
cussed, and in some cases the actual minimum distance is found. 
Decoding algorithms based on majority-logic decision are proposed 
for these codes. 

I. INTRODUCTION 

A RITHMETIC CODES, first proposed by Diamond 
[l], are useful for error control in digital computation 

as well as in data transmission. They are particularly 
suitable for checking or correcting errors in arithmetic 
processors. Finding the minimum distance d of an arith- 
metic code is a major problem. Despite many similarities 
between cyclic arithmetic and cyclic block codes, no gen- 
eral lower bound analogous to the BCH bound for cyclic 
codes has been found for arithmetic codes. Thus in general, 
the determination of d still relies on a computer search. 
The search for a systematic way of constructing arithmetic 
codes is another major area of research. Three known 
classes of arithmetic codes are the high-rate perfect sin- 
gle-error correcting codes [2]-[4], the large-distance low- 
rate Mandelbaum-Barrows codes [5], [6], and the inter- 
mediate-rate intermediate-distance codes [7]. One of the 
interesting features of the codes introduced in [7] is that 
they can be decoded using majority-logic decisions. 

In this paper, we present a new upper bound on d for 
binary cyclic arithmetic codes of composite length. This 
bound is quite tight and gives a rather good estimation of 
the actual minimum distance. We also construct new 
classes of binary cyclic arithmetic codes. Many of these 
codes have intermediate rate and intermediate distance, 
and they can be decoded by majority-logic decisions. 
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In Section II, we present the new upper bound on d. In 
Section III, we construct new classes of binary cyclic 
arithmetic codes. The decoding algorithms for these codes 
are given in Section IV. A discussion of the results is con- 
tained in Section V. Numerical examples are given in 
Appendix A. The conditions for the existence of codes in 
the classes constructed in Section III are given in Appendix 
B. 

II. BOUND ON THE MINIMUM DISTANCE OF BINARY 

CYCLIC ARITHMETIC CODES OF COMPOSITE LENGTH 

A binary cyclic arithmetic code (or “AN code”) of length 
n is of the set of integers of the form AN, where A is a fixed 
integer, called the generator of the code, and N = O,l, . - - ,B 
- 1. The integer B is chosen so that AB = 2” - 1, where n 
is the multiplicative order of 2 modulo A. For a general 
background on binary cyclic AN code as well as for the 
definitions of arithmetic distance and arithmetic weight, 
the readers are referred to [8]-[lo]. 

The following theorem, which is a generalization of [ll, 
Theorem l], gives an upper bound on d. 

Theorem 1: Let A generate a binary arithmetic code of 
composite length n = nili, 1 < 11 < R. If B is divisible by 
either 2nl + 1 or by 2”1 - 1, then d 5 1i. 

Proof: Let B = B1(2~l+ 1). By [12, Lemma 6.31, Ii is 
even. Thus 

2” - 1 A&=-----= 2(11-l)n1 - 2(11-2)n1 + - . . . + 2n1 - 1 

2”1+ 1 

is a codeword of arithmetic weight 11, W(AB1) = 11. Simi- 
larly, one can show that d I II when B = B~(2~l - 1). 

Q.E.D. 

The following example will illustrate the application of 
Theorem 1. 

Example 1: Let AB = 220 - 1 with A = 5.31.41. Thus, 
B = 3.5 * 11 and n = 20. We note that GCD(A,22 - 1) = 
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