
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

A. M. ODLYZKO

Bounds for discriminants and related estimates

for class numbers, regulators and zeros of zeta

functions : a survey of recent results

Journal de Théorie des Nombres de Bordeaux, tome 2, no 1 (1990),
p. 119-141

<http://www.numdam.org/item?id=JTNB_1990__2_1_119_0>

© Université Bordeaux 1, 1990, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_1990__2_1_119_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


119-

Bounds for discriminants and related estimates for
class numbers, regulators and zeros of zeta functions :

a survey of recent results.

par A.M. ODLYZKO

Résumé - Nous présentons une bibliographie d’articles récents sur les
bornes inférieures des discriminants de corps de nombres et sur des sujets
voisins. Nous discutons quelques unes des principales méthodes, et nous
donnons les résultats principaux et des problèmes ouverts.

Abstract 2014 A bibliography of recent papers on lower bounds for discrim-
inants of number fields and related topics is presented. Some of the main
methods, results, and open problems are discussed.

1. Introduction.

This paper presents a guide to the recent literature on lower bounds for
discriminants of number fields and on several related topics, and discusses
some open problems in these areas. Let Ii be an algebraic number field of
degree n = over the rationals Q with r, real and 2r2 complex conjugate
fields, so that n = ri + 2r2. Let D = DK denote the absolute value of
the discriminant of A. (Recall that the sign of the discriminant is (-1)r~,
so little information is lost by considering just D.) The root-discrimina.nt
rd = rdK of K is defined by

The Dedekind zeta function of Il is denoted by (¡«(s). The Generalized
R,iemann Hypothesis for Il is the conjecture that all the zeros of
the zeta function (1«S) that lie within the critical strip 0  Re(s)  1

actually lie on the critical line Re(s) = 1/2.
For Il = Q, D = 1, and one of Minkowski’s fundamental results was the

proof that D &#x3E; 1 for n &#x3E; 1. He la.ter obtained a lower bound for D that
was exponential in n. MinkoNvski’s bound was subsequently improved by
many authors. Most of the papers on this subject before 1970, including
all those with the strongest estimates, used geometry of numbers methods.

Manuscrit reçu le 25 aout 1989, r4vis6 le 26 f4vrier 1990 
’
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H. Stark [Bl,B2] introduced a new analytic method for proving lower
bounds for discriminants by showing that for every complex s (other than
0,1, or a zero of ~’If(s)),

where p runs over the zeros of in the critical strip, and 2:’ means
that the p and p terms are to be taken together, and

This identity is a variant of the classical identity [12; Satz 180] that comes
from the Hadamard factoriza.tion of ~’j~(.s), and Stark noticed that two of
the constants that occur in that identity a.nd which are hard to estimate
can be eliminated. (It is ironic that Landau did not notice this, since he
proved the corresponding result for Dirichlet L-functions [Il]. Ila,d he seen
the extension to Dedekind zeta functions, a large part of the recent research
might have been done 70 years earlier.) Since

for Re (s) &#x3E; 1, where q3 runs over the prime ideals of one finds that for

sreal,s&#x3E; 1,

By taking s = 1 + n-~~2, say, one obtains from (1..5) the estimates

where C = 0.5772156... denotes Euler’s constants, and

These estimates are substantially better tha.n Minkowski’s, although not as
good as some of the more recent geometry of numbers bounds.
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The Stark bound (1.5) was improved by the a,uthor in a series of pa.pers
[B3,B4,B5]. Those papers used the fundamental identity (1.2) and com-
binations of identities derived from it by differentiation with respect to s.
This led to substantial improvements on previous lower bounds for discrim-
inants. Some of the bounds of those papers assume the GRH, a,nd others
are unconditional.

Serre [B7] introduced the use of the explicit formulas of Guina,nd [15,16]
and Weil [17,110] to discriminant bounds. This enabled him to improve the
author’s GRH bounds. What’s perhaps most important, the resulting for-
mulas provided a much more elegant approa,ch to bounding discriminants,
which made it clear what the requirements and limitations of the method
are. Serre’s approach was extended to provide unconditional bounds by
the author, and further improvements were made by Poitou and the author

The latest results in this area are summarized in Section 2.

Discriminant bounds have numerous a.pplications, and there has been
very substantial work in recent years on this and related topics. The pur-
pose of this note is to present a guide to the recent litera,ture and sta,te some
of the outstanding open problems. The references tha.t are listed appear
to be fairly complete regarding the main topic, but cover only some of the
applications. The comments in this and the succeeding sections are much
less complete, due to the extensive litera.ture in this area.. Several topics,
such as determination of fields of small discriminants (see Section F for
references), the very interesting recent work on relative conductors [E13,
E14, E15], a,nd Mestre’s work on conductors of elliptic curves are not
dealt with in the text at all.

2. Lovver bounds for discriminants.

In this section we state the latest bounds for discrimina.nts obtained by
use of explicit formulas of prime number theory, as well as some of their
applications. We also discuss how close these bounds are to being optimal.

Consider a differentiable function F : R - R, with .F(-x) = F(x),
F(O) = 1, and such tha,t

for some constants c, E &#x3E; 0. Define
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Then the explicit formula for the discriminant states tha,t

For a derivation of this formula, see [B9, B 10~ . The G ui n a.n d [15, 16] and
Weil [17,110] formulas are more general, although less explicit as to some
terms. See Besenfelder [111] for even more general kernels. Many of the
published formulas, including those of Guinand, are derived only for the
Riemann zeta function, but there is no difficulty in extending them to
Dedekind zeta functions.

In the absence of any special knowledge about zeros and prime ideals
(see sections 4 and 6 and later parts of this section for a discussion of
their influence), in order to obtain a lower bound for D from (2.3) one
selects F(x) &#x3E; 0 for and Re(~(s)) &#x3E; 0 for all s in the critical strip,
so that the contributions of the prime ideals a.nd zeros are nonnegative.
The above nonnegativity conditions on F(.x) a,nd 4l(s) are equivalent to
the requirement that

where f (x) &#x3E; 0 and f (x) has nonnegative Fourier transform. The best

currently known unconditional bounds are obtained by selecting f (x) _
g(x/b) for some parameter b (depending on ri and ;2), where g(x) is a
certain function constructed by L. Tartar [BIO,B11]. With this choice one
finds that

No other choice of f(x) can give a lower bound for rd tha.t has a la.rger
main term than Eq. (2.5). Many choices of g(x) other than Tarta.r’s give
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the same estimates as Eq. (2.5), but with larger constants in the remainder
term O( n-2/3). The question of how small the remainder term can be made
is still open. Tartar showed that his g(x) was optimal in a certain class, but
it is possible that better choices exist that do not satisfy his assumptions.
Furthermore, it is not known whether the optimal functions a,re of the
form g(x/b) for a fixed function g(x).

Open Problem 2.1. What functions satisfying f (x) &#x3E; 0 and

having nonnegative Fourier transforms give the best unconditional lower
bounds for discriminants ?

The bound (2.5) was stated above only in a very rough asymptotic form.
There are much more explicit versions with precise estimates of the remain-
der term in Also, there are extensive tables of bounds for all degrees
n  100 (and for some fields of higher degrees) in [Bll]. Some of these
tables are reprinted in [B12].
When one assumes the GRH for (1«8), much better results are possible.

In this case one only reeds F(x) &#x3E; 0 such that the Fourier transform of
F(x) is nonnegative.
Open Problem 2.2. What functions F(x) give the best GRH bounds

for discriminants ?

There are many choices of G(x) such that F(x) = G(xjb) for a proper
choice of the scaling parameter b gives the bound

Just as in the unconditional case, no choice of F(x) can give a better
main term. As was noted in [115], it is possible to show, using some results
of Boas and Kac [14], that the choice of G(x) proposed by the author (see
[B10]) is asymptotically optimal among all possible functions in terms of
minimizing the remainder term O((log n )-2 ). IIowever, it is not known
whether the optimal F(x) have to be of the form F(x) = for a fixed
function G(x).
As in the case of unconditional bounds, there are estimates that a.re much

more precise than (2.6). Fairly extensive tables of bounds for modera.te
degrees have been prepared [B8], and some of them have been reprinted in
(B12~.

Explicit formula bounds can also be obtained for conductors of Artin L-
functions. (This was done in [B6] using logarithmic derivatives.) However,
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it is necessary to assume Artin’s conjecture, as otherwise the poles of the
L-functions might give a contribution that seems hard to control.

A point of view advocated by J.-P. Serre is to ask for lower bounds for
discriminants of global fields Il whose completions at some places give a
prescribed collection of local fields I(j. If the I(j are the reals taken r1 times
and the complex numbers taken 2r2 times, we are in the standard setting
described above. If the Ki are a certain number of copies of a function
field over Fq, and one replaces the discriminant by the genus, one is led
to estimate the minimal genus of a curve over Fq that has at least a given
number of points [114].
One of the main applications of discriminant bounds is to estimate class

numbers. Some of the results give lower bounds for class numbers of totally
complex extensions of totally real fields, for example [B2,B3,D4], that grow
very fast. This is in contrast to the typical situation, where it is expected
on heuristic grounds that class numbers will equal 1 very often [113,117].
So far, though, we do not even know whether there exist infinitely many
number fields of class number one.

Discriminant bounds are often used to show that class numbers of par-
ticular fields are small. The basic tool that is used is the Hilbert class field.
If a field Il has class number h, then there is an extension L of Il with
[L : ~~~ = 1~ such that rdL = rdK- If lower bounds for discriminants imply
that rdL &#x3E; for all fields L with [L : li ~ &#x3E; 2, then we can conclude
that L = Il and h = 1. Most applications (see Section D of References)
are more sophisticated, and use discriminant bounds to get upper bounds
for class numbers, which a,re then lowered by algebraic methods.

For some other a.pplications of discriminant bounds, see [112,116].
For a long time it was conjectured that if dn denotes the minimal root-

discriminant of a number field of degree n, then dn -+ oo as n -- oo. (This
is known to be true for abelian fields.) If true, this would have shown that
all Hilbert class field towers terminate, and so all number fields could be
embedded in fields of class number one. Ilowever, Golod a.nd Shafarevich
showed that infinite Hilbert class field towers do exist. The best current
results are due to Martinet [Bl2,C2] who showed that there is a.n infinite
sequence of totally real number fiels (with degrees equal to powers of 2)
with

and an infinite sequence of totally complex number fields (this time with
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degrees 5 times powers of 2) with

It is thought likely that the field Q((-3-5.7-13)1/’) with

also has an infinite class field tower, but this has not been proved.

Open problem 2.3. What are the minimal discriniiiiants of number
fields of various degrees?

Tables 1-4 present some data on this problem. It is interesting that the
lower bounds (especially those tha,t assume the GRH) are very close to the
smallest values of root-discriminants that are known for totally complex
fields. Even for totally real fields, the discrepancy is not large, except for
n = 7. The anomalous results for n = 7 suggest strongly that the minimal,
root discriminants probably do not increase monotonically with the degree,
especially if one restricts attention to totally real fields.

The GRH bounds presented in Tables 3 and 4 ca.n be improved somewhat.
For example, as was noted in [B8], from which these bounds are ta,ken,
one can show that all fields of degree 8 satisfy 5.743, and not just
rd &#x3E; 5.734.

The entry for n = 9 in Table 4 comes from the field generated by a root of
the polynomial ~-2~-7~~+14~+15~~-30~-10~+19~~+2~-1, which
was discovered recently by Leutbecher (unpublished). The discriminant of
the polynomial (and thus of the field) is 9,685,993,193, a prime, but it is
not known yet whether it is minimal.

Known constructions for infinite Hilbert class field towers rely on x5,orking
with the 2-part or 3-part of the class group, a,nd so produce fields with
degrees that are powers of a small number of primes. Essentia,lly nothing is
known about fields of prime degree, which lea.ds to the following problem.
Open Problem 2.4. Is dp bounded as p 2013~ oo ivith » prime?
Sor far we have been discussing discriminants of number fields. IIow-

ever, another relevant question, asked by J.-P. Serre a.nd others, concerns
discriminants of polynomials. Let denote the smallest absolute value
of the discriminant of an irreducible monic polynomial with integral coeffi-
cients and degree n.

Open Problem 2.5. Is there an infinite subset S of positive integers
such that is bounded for n E S ?
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Nothing is known on this topic. The analytic methods discussed in this
paper do not apply to this situation. When one examines known fields with
minimal discriminants, they tend to have algebraic integers a that generate
them over Q and such that the discriminant of the minimal polynomial of
a equals the discriminant of the field. (This means that if n is the degree
of a, then 1, a, c~2, ..., an-l forms a basis of the a1gebraic integers of the
field over the rational integers, or what is called a power basis.) However,
it is generally thought that this phenomenon does not persist for higher
degree fields. Already in the case of the field with (n, r2) = (8, 2) that has
the smallest known discriminant for all such fields, no power basis has been
found so far.

3. Elkies’ GRH bound for discriminants

Noam Elkies has observed that a form of the GRH bound (2.6) can be
obtained without invoking the Guinand-Weil explicit formulas, by relying
on the Landau-Stark formula (1.2) along the lines of the estimates of [B3,
B4, B5]. The remainder term in Elkies’ estimate appears to be much worse
than in the explicit formula estimates, so it is not of practical significance,
but it is interesting that tlus can be done at all. With Elkies’ permission,
we present a sketch of the proof here.

From (1.1), we see that and its delivatives of even order
with respect to s are positive for s &#x3E; 1, and the deriva.tives of odd order
negative; thus by differentiating (1.1) m times (m =0,1,2,...) we find (with
p = 1/2 + i-y for real under the assumption of the GRH)

Elkies’’ idea is that for fixed s &#x3E; 1 and large m the term in (s - 
is negligible, and so by dividing the rest of (3.1) by and summing
over m we obtain (1.2) with s replaced by s - 1/2 (Taylor expansion about
s); since 1 -- iy)) is still positive, we then find by bringing s
arbitrarily close to 1 that
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and thus obtain the bound from the known special values

To make this rigorous, we argue as follows: for any small E &#x3E; 0, take
so = 1-f-E, and pick an integer M so large that (i) the values at s = so -1/2
of the M-th partial sums of the Taylor expansions of 0(s) and v(s /2) about
s = so are within E of v(so - 1/2) and 1/4) respectively (this is
possible because both functions are analytic in a circle of radius 1 &#x3E; 1/2
about so); (ii) the value at s = so - 1/2 of the A1-th pa.rtial sum of the
Taylor expansion of 1/2 - i7)) about s = so is positive for all
y &#x3E; 0 (note that since Re(1/(s - 1 - iy)) = E/(E’ + ¡2), and the value of
the M-th partial sum of the Taylor expansion differs from this by

it’s clear that the positive value E/(E2 + ,2) dominates the error
(1 + C2 + -y2)-~t~2 for all -y once Al is sufficiently large). Now divide (3.1)
by 2’nm!, sum from m = 0 to 1, and set s = so to obtain

since c was arbitrarily small and so arbitrarily close to 1, ,ve’re don. N

4. Prime ideals of small norms

It is not known how much of a contribution is ma.de by prime ideals of
small norm to the minimal discriminants when one applies the identy (2.3).
(See Section 6 for further discussion and numerical evidence on this point.)
In some situations some prime ideals of small norm are known, a.nd tllis

can be exploited by computing their contributions to the explicit formula.

The kernels F(x) that are used to obtain the best known discriminant
bounds in the absence of any knowledge a.bout prime ideals ha.ve the prop-
erty that F(x) decreases very rapidly as z --+ oo, and in some cases they do
not decrease monotonically. This often makes it difficult to employ them
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to take advantage of prime ideals whose norms are not too small. In such
cases, the author’s older bounds [B3,B4,B5] have occasionally been used.
However, in most cases one can obtain stronger a.nd more elegant bounds
by using explicit formulas. For example (see [118] for an application), if one
takes 1  c~  2,

then one finds that 0 for 0  Re(s)  1, and that

On the other hand,

by a term-by-term comparison of the series, and so one finds, for exa.mple,
that 

’

for all w e ( 1,1 + 6 ) for some b &#x3E; 0 and n &#x3E; no . With more effort one
can obtain more precise estimates. Further, if there are no prime ideals of
norm 2, for example, the 8/3 in (4.4) can be replaced by 3, and so on. One
can also devise other kernels F(x~ tha.t will emphasize the contributions of
particular ideals.

5. Minkowski constants and regulators

The analytic bounds for discriminants that were discussed a.bove are
substantially better than earlier ones that came from geometry of numbers.
On the other hand, the analytic bounds have the disadvantage that they
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apply only to discriminants. Geometry of numbers bounds are derived
from results that say, typically, that if L, (x),~ ~ ~ , L~ (x) are linear forms
in xl, ... , xn with x= (x1, ~ ~ ~ , then there are integer values of the
xi, not all of them zero, such that the product rj Lj(x) is small. These
bounds imply Minkowski-type estimates for norms of ideals; typically they
state that each ideal class of Ii contains an ideal 2t of small norm, say with

where CI and C2 are some constants independent of K. (BVe will refer to
C‘1 and C2 as Afinkowski constants.) Since N2t 1, Eq. (.5.1) immediately
implies a discriminant bound

Bounds of the form (5.1) contain more information than (5.2), though, and
are useful in other problems.

Zimmert [E4] has discovered a.n ingenious analytical method that uses
zeta functions of ideal classes to obtain improved h4inkowski constants.
(See Oesterl6’s paper [E6] for an elegant reformulation of the method.) In
particular, he showed that (5.1) holds with

which is considerably better than the known geometry of numbers
bounds. Furthermore, Zimmert showed tha,t for every cla,ss T~, there is
always an ideal 2l either in TZ or in VR-1 (where D denotes the different
of K) for which (5.1) holds with

This last estimate implies the unconditional bound (2.5) for discrimi-
nants, although with a worse error term.

Open Problem 5.1.What are the best possible AIinkowski consta.nts ?

It would be interesting to find out whether one can obtain estimates such
as those of (5.4) that would hold for every ideal class. It would be very
striking if one could prove results that would let one ta,ke 215,
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C2 z 44, since these would give bounds for discriminants that currently
can be obtained only under the assumption of the GRH. There does not
seem to be any clear way to bring the GRH into Zimmert’s method, since
he works with zeta functions of ideal classes, which do not have an Euler
product, and for which the GRH is in general false.

Open Problem 5.2.Obtain improved bounds for minima of products
of several linear forms by analytic methods.

The Zimmert bounds apply only to products of li near forms comi ng from
an integral basis of a number field. It is not known whether these linear
forms are extremal in the sense that their minimal nonzero values at integet
points are the largest among all linear forms.
Zimmert has also found an analytic method for proving lower bounds for

regulators of number fields [E4]. His methods show that the regulator R of
~1 satisfies

which significantly improves on the results of Remak [13,18,19]. (Inequality
(5.5) is stronger than the asymptotic result stated by Zimmert in [E4], but
E. Friedman has pointed out that it follows easily from Satz 3 of [E4].)
Friedman [E10] has found another, related method for obtaining analytic
bounds for regulators that is very effective for small degrees, and has proved,
for example, that the smallest regulator of any number field is 0.2052. Very
recently, Friedman and Skoruppa [E16] have found a generaliza.tion and
a much clearer formulation of Zimmert’s method for obtaining regulator
bounds, which will hopefully lead to substa.ntial improvements on (5.5).

Open Problem 5.3. What are the best possible lomer bounds for the
regulator R of a number field a.s functions of r1 a.nd r2 ? are the best
bounds in terms and D?

E. Friedman has suggested that the following regulator bound might be
vali d:
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6. Low zeros of Dedekind zeta functions

The Landau-Stark formula (1.2) as well as the Guinand-Weil explicit
formula (2.6) are identities, and so when D is larger than the bound we
obtain for it by the method sketched earlier, this must be due either to the
contribution of prime ideals or of zeros of (I(s). The kernels used in the
explicit formula bounds are such that the contribution of prime ideals of
large norm is neglipble, as is the contribution of zeros of (j (s) that are far
from the real axis. Therefore it is primarily the prime ideals of small norms
and the low zeros that determine the sizes of the minimal discriminants.
If we fix the degree and let the discriminant grow, then we can select a
kernel F(x) with bounded support, so that the contribution of the prime
ideals will be bounded, and so it will be the zeros that will dominate. The
interesting question is to ask what happens when we choose the optimal
kernel F(x) without any knowledge of zeros or prime ideals, and then ask
which contribution is larger for the small discriminants.

Currently no methods are known for efficiently computing high zeros of
Dedekind zeta functions of general nonabelian fields. For low zeros there is
a very nice method of Friedman [H3]. However, this method has not been
implemented yet, and in any case it requires one to compute small norms
of ideals. Therefore it seemed much easier to compute the small norms of

prime ideals (by factoring the minimal polynomial of a generator modulo
rational primes), evaluate their contribution to the explicit formula (2.3),
and obtain the contribution of the zeros by subtraction.

Table 5 presents the results of the computation that wa.s carried out for
six fields, those with the smallest discriminants for (71, r2) = (7,0), (8, 0),
(8,4), and the next smallest for (n, r2) = (8, 0) a,nd (8,4) a.nd the one
with the smallest known discriminant for (n, r2) = (9, 0). In ea.ch case
the kernel F(x) that gives the GRH bounds of Tables 3 and 4 was used,
so that in the notation of [B8], b = 1.9 for (n, r2) = (?, 0), b - 1.6 for

(n, r2 ) = (8, 4), b = 2.05 for (n, r2 ) = (8, 0), and b = 2.2 for (n, r2 ) = (9,0).
The column labelled "deficiency" denotes the difference between n-1 log rd
for each field and the GRH lower bound. The "ideals" column denotes
the value of the sum over prime ideals in (2.3), and the "zeros" column
the value of the sum over the zeros (obtained by subtracting the "ideals"
column from the "deficiency" column). Finally, the "norms" collimn gives
the norms of prime ideals that contributed to the sum.

Open Problem 6.1. What are the relative contributions of prime ideals
and zeros to the explicit formula for minimal discriminants?

Table 5 suggests that ’these contributions are of comparable ma.gnitude,
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but it would be nice to obtain data for higher degree fields. (This should
not be too difficult, SlIlCe the fields of small discriminant found by Martinet
in [C3] are given quite explicitly as ray class fields.) It is worth noting that
if we use the kernel that gives the best unconditional bound, then the
contribution of zeros becomes considerably larger relative to that of the
prime ideals.

Open Problem 6.2. Do the zeros of(¡«s) in the critical strip approach
the real axis as n -~ oo, and if they do, how fast do they do so, and how
many of them are there?

There does not seem to be any hope of proving algebraically that fields
with small discriminant must have prime ideals of small norm. If we fix the
degree n, then we can find fields of that degree in which the smallest norm
of a prime ideal will be 2n, although this usually seems to require a large
discriminant. On the other hand, if we let D --~ oo while keeping n fixed,
then one can show that there will be zeros of (J«8) arbitrarily close to the
real axis (roughly c(b) log D zeros in 0  Im(s)  6 for some c(b) &#x3E; 0). One
might hope that one could prove that there are many zeros near the real
axis even for minimal discriminants. If one could obtain enough such zeros,
one could prove improved discriminant bounds. Unfortunately the known
bounds are far too weak for this. The best results appear to be due to,the
author [G5], and show that on the GRII, ~’~,~ (s) has a zero on the critical
line at height O((log n)-1 ) as n ---1- oo. Unconditionally, it has only been
shown [G5] that there is a zero at height  0.54 + o( 1 ) as n --~ oo, a.nd that
for every Il with n &#x3E; 2, there is a zero at height 14. (The first zero of
the Riemann zeta function is at height 14.1347..., so this result shows that
the zeta function is extremal in terms of having its lowest zero a.s high aas

possible.)

Open Problem 6.3. Are the GRH bounds for discrimina,nts valid even
without the assumption of the GRH ?

The unconditional bounds are weaker than the GRH ones beca.use of the

requirement that 0 throughout the critical strip. Ilowei,er, if we
consider any one of the kernels used in obtaining the GRII bounds (which
are required only to satisfy 0 on the critical line Re s = 1/2),
they will usually have Re 0 in large sectors of the critica.l strip. In
particular, all these kernels are &#x3E; 0 for s real, so if the only viola.tions of
the GRH were on the real a.xis, the GRH bounds for discriminants would
be valid ! t As an illustration, consider the kernel (s) = 2(rb)1 exp(b(s -
1/2)2 ) that was first suggested by Serre. For this kernel, lLe (.s ) &#x3E; 0 for s
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real, as well as for many other regions of the critical strip. In
IIm( s)1 &#x3E; .Re(s - 1/2)1, is very small, (b is taken large for large n),
so by taking a linear combination (1 - 6)4J(s) + 6111*(s), where

is a carefully chosen kernel of the type used for the unconditional
bounds, and 6 &#x3E; 0 is small, we can ensure that Re &#x3E; 0 in IIn1( s)1 &#x3E;

1/2)1 + 1/100 for large b, say. The discriminant bound given by
4li (s) would be only slightly inferior to that of It would take a very
unusual combination of zeros violating the GRII to make the sum over the
zeros be very negative for all possible choices of b. Unfortunately, as far as
we know, such unusual distributions might occur.

Acknowledgements. The author tha.nks A.-M. Bergé, E. Triedman, J.
Martinet, and J.-P. Serre for their detailed comments on an earlier version
of this manuscript.

Table 1. Minimal absolute values of discriminants of number fields of

degree n with 2r2 complex conjugate fields.

Table 2. Minimal root-discriminants of number fields of degree n with
2r2 complex conjugate fields.
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Table 3. Small root-discriminants of totally complex fields and the best
known lower bounds. (For n  8, the root-discriminants are known to be
minimal for each degree.)

Table 4. Small root-discriminants of totally real fields and the best
known lower bounds. 8, the root-discriminants are known to be
minimal for each degree.)

Table 5. Contributions of prime ideals a.nd zeros to discriminant bounds
for some fields. (See Section 6 for detailed explanation.)
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