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Abstract. A thrackle (resp. generalized thrackle) is a drawing of a graph in which each
pair of edges meets precisely once (resp. an odd number of times). For a graph with
vertices andan edges, we show that, for drawings in the plamex g(n — 1) for thrackles,

while m < 2n — 2 for generalized thrackles. This improves theorems ofdsay Pach,

and Szegedy. The paper also examines thrackles in the more general setting of drawings
on closed surfaces. The main result is: a bipartite g@ptan be drawn as a generalized
thrackle on a closed orientable connected surface if and ofycén be embedded in that
surface.

Introduction

Let G be a finite graph wit vertices andn edges, and suppose thatis simple; that

is, it has no loops or multiple edges.tArackleof G is a drawingZ (G) of G in the

plane, where the edges are represented by Jordan arcs, such that each pair of edges meets
precisely once, either at a vertex or at a proper crossing. (See [LPS] for definitions of
drawing andproper crossing Thrackles are mentioned in [CFG] and [PA].) Conway’s
celebrated thrackle conjecture im:< n (see [Wol], [Wo2], [GR], [PRS], and [Ri]). A

natural generalization of the notion of a thrackle is obtained by relaxing the condition
that each pair of edges meets precisely once, and assuming only that each pair of edges
meets an odd number of times. This gives rise to the notiongefreeralized thrackle

[Wo2]. Lovasz et al. proved:

Theorem 1[LPS].

(a) for thracklesm < 2n — 3,
(b) for generalized thracklesn < 3n — 4,
(c) abipartite graph can be drawn as a generalized thrackle if and only if itis planar
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We give the following improvement:

Theorem 2.

(a) for thracklesm < 3(n — 1),
(b) for generalized thracklesn < 2n — 2.

We give examples below which show that the bound in Theorem 2(b) is sharp. In
fact, our main focus in this paper is the studygeheralized thracklesn surfaces of
arbitrary genus, in the obvious sense. It was proved in [GR] that every finite graph can
be thrackled on some surface. Our main result is:

Theorem 3. A bipartite graph G can be drawn as a generalized thrackle on a closed
orientable connected surfacegdf genus g if and only if G can be embedded ig. M

This has the corollary:
Corollary.  For a bipartite generalized thrackle on jMlone has m< 2n — 4 + 4g.

This bound is sharp: for example, the minimal genus embedding of the complete
bipartite graphKop 2q hasm = 2n — 4 4 4g, by Ringel’'s theorem (see Theorem 4.5.3
of [GT)).
The strategy employed in the proof of our results is toZus@ntersection forms, and
to reduce the problem to that of bipartite generalized thrackles. Thus the arguments are
entirely about generalized thrackles. The additional improvement for thrackles is due
solely to the fact that in the plane, thrackles have no 4-cycles [Wo1l]. The main ideas in
this paper are most easily described for generalized thrackles in the plane; here we show
that Conway doubling on an odd cycle produces a bipartite g&plsee Lemma 2).
FurthermoreG’ can be embedded in the plane so that the even cycle, resulting from the
Conway doubling, bounds a face in the associated cellular decomposition (see Lemma 4).
The paper is organized as follows. In Section 1 we recall some facts about
Z,-intersection forms and the Conway doubling procedure. In Section 2 we prove The-
orem 3, and we give examples which show that Theorem 3 does not extend to arbitrary
graphs. In Section 3 we obtain Theorem 2 and the corollary as special cases of Theo-
rem 4, which is a slightly stronger result, and we give examples which show that the
bound of Theorem 2(b) is sharp. The paper concludes in Section 4 with some remarks.
In what follows,My denotes a closed oriented connected surface of gpandG is
a finite simple graph witim vertices andn edges.

1. Intersection Homology and Conway Doubling
First recall that thentersection formon My is the unique nondegenerate bilinear map

Qumy: Hi(Mg, Z2) x Hi(Mg, Z2) — Z>
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having the following property: i1 andy» are closed curves iMg which intersect in
a finite numbek of transverse crossings, th@w, (y1, y2) = kmod 2. ClearlyQy, is
symmetric and2y, (v, ¥) = 0 for all closed curvey . (See [ST] or [DFN] for further
details. See [Fu] for an introductory account of intersection forms with valugés) in

Suppose thaf: G — Mg is a drawing ofG, and thatc; andc, are cycles inG.
Recall that ifv is a vertex ofG, then therotation diagramat 7 (v) is the cyclic order of
the edges ofs incident tov determined byl” and the orientation ofMy. Therotation
systemof 7 is the set of rotation diagrams of the vertices®f(see [GT]). We want
to relateQw, (7 (c1), 7 (C2)) to the rotation system d@f . The following notion depends
only on the rotation system:

Definition 1. Thecrossingnumbero7(cy, C;) is defined as follows: choose an orien-
tation forc; andc,, and consider the s& of vertices in the boundary af N c,. Let
v € S. If visisolated inc; N ¢y, set

o7 (V) = 1 if c; andc;, cross transversally at,
73 =10  otherwise.

If vis notisolated irc; N ¢y, set

if ¢, is positively oriented ab with respect tacy,
if ¢, is negatively oriented at with respect tacy,

or(v) = {

NI NI

where the sign convention is shown in Fig. 1. Tkency, &) = ), o7 (v) mod(2).

Letl denote theZ,-length function on the 1-chain complex@f that is, given a path
cin G, I(c) is the number mod(2) of edgesdnThe following result may be regarded
as a generalization of Lemmas 2.2 and 2.3 of [LPS].

Lemmal. Supposethdl: G — Myis a generalized thrackl@nd that ¢ and ¢ are
cycles in G ThenQy, (7 (c1), 7 (C2)) = o7 (€1, C2) +1(C1) - 1(C2) +1(ciNCz) (Mod 2.

Proof. Divide the edges af; into four disjoint subsets: (&) edges contained iy Ncy,
(b) ko edges which are not incident with N ¢,, (c) ks edges not contained iy N ¢,

Fig. 1. Two +3 crossings and twe-3 crossings.
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Fig. 2. Conway doubling on a 3-cycle: before and after.

which meet; N ¢, at exactly one vertex, and (K) edges not contained @ N ¢c; which
meetc; N ¢, at exactly two vertices. Modulo 2, one has

Qwm, (T (1), T(C2)) = o7(C1,C2) +ki-(I(c2) —3) +ka-1(c)
+ ka(1(C2) — 2) + Ka(I(c2) — 4)
= o7(C1, &) + K + (Ki + k2 + ks + ka) - 1(C2)
= o7(C1, C) +1(c1Ncy) +1(cy) - 1(C),

as required. O

Conway’s doubling procedure allows one to duplicate a thrackled cycle [Wo1]. If the
original cycle is odd, one ends up with a thrackled even cycle which is twice as long,
and if it is even, one obtains a pair of disjoint even cycles of the same length which still
form a (disconnected) thrackle. This procedure can be carried out not only for a separate
cycle, but also for a cycle within a thrackled graph, or within a generalized thrackle, and
the procedure can be made on any surface (see Fig. 2).

Let7: G — Mg be a generalized thrackle.

Lemma 2. Suppose that;ds an odd cycle in G such th&ty, (7 (¢1), 7 (c2)) = Ofor
all cycles ¢. Then Conway doubling on @roduces a bipartite graph

Proof. Letc; be as in the statement of the lemma. Perform the Conway doubling
procedure om;: let G’ be the resulting graph and leit be the even cycle obtained from
c;. We claim thaG’ is bipartite. Suppose th&' has a cycle;. By reversing the Conway
doubling procedure, one sees thatomes from a cycle;, say, inG. Obviously,

I (C/z) — |(Cé|_ n C/Z) =1(c) —l(ci1Ncy). D
By Lemma 1, we have, modulo 2,

o7 (Cy, C2) = l(e)l(c) +1(ciNcy) =1(c) +1(ciNcy)
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and
or(cy, ¢) = 1(EPI(cy) +1(c;N¢cy) =1(c;NCy).

Notice thato 7 (C1, C2) = o7(Cy, C;) and so
I(co) +1(ciNcy) =1(c;NEy). %))

So (1) and (2) givé(c,) = 0 (mod 2), as required. O

We remark that the hypothesis in Lemma 2 is weaker than the assumpti@n(thpis
zero inZy-homology. In particular, it holds in the plane. One of this paper’s referees has
informed us that in previous personal communicaticgteP Hajnal had independently
obtained Lemma 2 in the planar case, thus improving Theorem 1(a)<tdl.75n.

2. Proof of Theorem 3

Let G be a bipartite graph and I81(G) = V; U V, be a splitting of the set of vertices of
G such that all the edges join elementsvgfwith elements ofv,.

First suppose that there is an embeddingG — Mg. For convenience, we uske
to identify G with f (G), so that we may regar@ as a subset oMg. The following
argument is similar to the one used in Theorem 1.4 of [LPS]. Choose aainthe
complement ofG, and for each poiny € Vi, join x to y by a simple arc such that
the set of arcs thus obtained is mutually disjoint outside.dy deforming these arcs
if necessary, we may assume that they awdidand cross the edges &f in proper
crossings. Take a small closedheighbourhood of the union of these arcs (see Fig. 3).
So D is homeomorphic to a disc, and the boundaryDofs a simple closed curve
which intersects every edge Gf an odd number of times. Let' be a curve orMg\D
which is sufficiently close tg that there are no vertices & betweeny andy’. Cut
out the discD, flip it over, and attach it back to the surface joining the edges in the
annulus betweep andy’ as shown on the Fig. 4. Notice that in the new drawing, any
two non-incident edges (i = 1, 2) intersectingy g times respectively, intersect one
anotheig;q, = 1 (mod 2) times, while every pair of incident edges meet an even number
of times. Now, taking small circles around each of the vertices ahd performing the
above procedure in each of the discs they bound, we obtain a new drawing in which

Fig. 3. Thee-neighbourhood in the vicinity of X.
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Fig. 4. Reattachindd: before and after.

every pair of edges meets an odd number of times. It remains to modify the drawing so
that each edge becomes free of self-intersections. This can be achieved edge by edge:
for each edge, it suffices to choose a Wiener switching at each of the self-intersections
such that the resulting crossing-free curve is connected (see Fig. 5). This is easily done
by induction. The resulting drawing is a generalized thrackle.

Conversely, suppose that we have a generalized thrdcklé — Mg. Proceed as
in the first part of this proof: choose a poixtin the complement o, and joinx to
V1 by a set of arcs. Perform the procedure shown Fig. 4 in a sswradighbourhood
of these arcs, and then choose small discs around each of vertiGearaf repeat the
procedure on each of these discs. One thus obtains a new drawiGg— Mg, which
is aZy-embedding, in the following sense.

Definition 2. A Z,-embeddingf a graph inMy is a drawing of the graph such that
every pair of edges meets an even number of times, outside the vertex set.

It remains to prove the following lemma (notice that we are not assuming here that
G is bipartite).

|
|
_.__}___.__ —> —~—J[———— OR  ——

Fig. 5. Wiener switching: before and after.
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Fig. 6. Eliminating a crossing: before and after.

Lemma 3. A graph G that can b&,-embedded in || can be embedded in Jvwith
the same rotation system

Proof of LemmaB. Suppose that we haveZa-embeddingD: G — Mjy. Obviously,
asD is not a generalized thrackle, Lemma 1 does not apply. Instead one has

Qwm,(D(c1), D(C2)) = op(C1, C2) (mMod 2) 3

for all cyclesc; andc, in G. Now remove all the crossings(G) by attaching a handle

at each crossing point (see Fig. 6), andlee the resulting closed surface. So we have an
embedding (G) of G in S, but in generab has higher genus thavy. Notice that since

the surgery has been conducted in the complement of some neighbourhood of the vertex
set,Z(G) andD(G) have the same rotation systems; in particélar= op. Take a closed
e-neighbourhood) of Z7(G); soU ¢ Sis a compact surface, with boundary, containing
Z(G). SinceZ (G) is adeformation retract &f , we haveH, (U, Z,) = H1(Z(G), Z,) and

Qu = oz. Attach discs to all the boundary componenttiadind letM’ be the resulting
surface. IfG is not connected, theM’ will not be connected; in this case, replace

M’ by the connected sum of its connected components. We now have an embedding
J(G) of G in a connected closed oriented surfadé and it remains to show that the
genusg’ of M’ is not greater than that d¥l,. Notice that by construction, the map
H.(U, Z,) — Hy(M’, Z,) is surjective. Hence

g = 3 rankHy(M’, Zo)

A

rankQy
rankor

rankop
rankQp, by (3)
g,

A

as required. O

Examples. Figure 7 gives an example of a non-planar graph, homeomorph{g,to
which can be drawn as a generalized thrackle in the plane.
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Fig. 7. A generalized thrackle homeomorphicKg.

On the other hand, there are planar graphs witk 2n — 2 which cannot be drawn
as generalized thrackles in the plane. For example, the wheel with four spokes, shown
in Fig. 8, cannot be drawn as a generalized thrackle in the plane. Indeed, if it could be,
then, by [LPS] or Lemma 1, the two 3-cycles to the left and right of the graph would
necessarily cross each other transversally in a small neighbourhood of the vertex in the
centre of the graph. However, the same reasoning applies to the two 3-cycles at the top
and bottom of the graph. This leads to a contradiction. Similarly, the wheel With 2
spokes cannot be drawn as a generalized thrackle in the plane. Curiously, wheels with
an odd number of spokes can be drawn as generalized thrackles in the plane (see Fig. 12
below).

Fig. 8. Not a generalized thrackle in the plane.
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3. Proof of Theorem 2 and the Corollary

Letk denote the number of connected components .of

Theorem 4. Suppose thal: G — Mg is a generalized thrackle

(a) If G is bipartite then m< 2n — 4k + 4g.

(b) If G has an odd cyclejcsuch thaty, (7'(cy), 7 (c2)) = Ofor all cycles g, then
m < 2n — 2k + 4qg.

(c) If G is athrackle in the planghen m< g(n — k).

Proof. Firstsuppose thds is bipartite. By Theorem 35 can be embedded My. So if

G has connected componef@s, . . ., G, then, for each, we have a cellular embedding
of Gj ina surface§ of genusg;, withg; + - - - + gk < g. Thus it suffices to treat the case
whereG is connected and cellularly embeddedNly. In this case, part (a) is a direct
consequence of Euler’s formula, as employed in [LPS]. Indeed?2d = f — m+ n,
where f is the number of faces in the cellular decompositioMyfdetermined by the
embedding ofc. As G has no 2-cycles or 3-cycles, one has 2 4f. Hence

n=2-2g—f+m=>=2-2g—-m/24+m=2-2g+m/2.

That is,m < 2n — 4 + 4g. This proves part (a).

Now suppose thaG has an odd cycle; such thaty, (7 (c1), 7 (cz)) = O for all
cyclesc,. Perform Conway doubling og: let G’ be the resulting bipartite graph and
let ¢; be the even cycle obtained frooa. Let 7: G’ — My be the embedding given
by the construction of Theorem 3. Once again, it suffices to treat the case Ghsre
connected an’ is cellularly embedded iivlg.

Lemma4. J(c;) bounds a face in the cellular decomposition of Netermined by
the embedding of G

Proof of Lemmat.  SinceMy is oriented, it makes sense to talk of the “left” and “right”
sides of aclosed curve, at leastlocally. It suffices to show that the imadgonthe edges

of G’\c; which are incident witte; all lie on the same side @f (¢}). LetC: G’ — My

be the generalized thrackle drawing@fobtained fromZ (G) by Conway doubling on

c;. Notice that the edges @'\c} which are incident witlt; at some given vertex, all

lie on the same side @f(c;), either to the left or to the right (see Fig. 2). Moreover, the
position of the incident edges alternates, left-right-left, etc., as one moves from vertex
to vertex alongC(c)) (see Fig. 2). By Lemma &5’ is bipartite: letV (G) = V1 U V,

be a splitting of the set of vertices & such that all the edges join elementsvafwith
elements of,. Now notice that when one constructs the embeddiiG’), using the
method employed in the proof of Theorem 3, one effectively reverses the orientation in
some neighbourhood 6&f,, while maintaining the orientation in some neighbourhood
of V1. Consequently, as one travels alefi¢c;), the edges incident witr (c;) all lie on

the same side qf/ (¢}). O
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It remains to see how the above lemma gives the required resultf, &t n’ be
respectively the number of faces, edges and vertices in the cellular decomposition of
My determined by the embedding G&f. Suppose that; is a p-cycle. Soc] is a 2p-
cycle,n = n+ pandm = m+ p. As G has no 2-cycles or 3-cycles, one has
2m' > 4(f — 1) + 2p. Hence

m+p

nn=2-2g—f+m>1-2g+ 5

Thatism=m'— p < 2n' —2p—2+4g = 2n — 2+ 4g. This proves part (b). To prove
part (c), just repeat the calculation using the additional fact@laas no 4-cycles. This
completes the proof of Theorem 4. O

Notice that Theorem 2 follows immediately from Theorem 4, since in the plane every
cycle isZ,-null homologous. The corollary follows immediately from Theorem 4(a).

Examples. We first describe a useful construction. 7t G — M, be a generalized
thrackle. We say that two edgesande, of G areneighbouringf they share a common
vertexv and if e, ande, are consecutive in the cyclic order of edgesafG) at7 (v).

Figure 9 shows how one can add a 2-path joining the endpoints of neighbouring edges
so that the resulting drawing is still a generalized thrackle. Notice that Fig. 7 is obtained
by adding five 2-paths to the standard pentagonal musquash [Wo1].

Figure 10 gives adrawing &€, as a generalized thrackle in the plane. Figure 11 shows
that by adding 2-paths, one can construct a generalized thrackle in the plane ihaving
vertices and 2 — 4 edges, for any number > 4. Another example showing that the
bound in Theorem 2(b) is sharp is given by the wheel w2+ 1) spokes. Figure 12
shows the wheel with five spokes and its representation as a generalized thrackle; this
diagram is to be understood as follows: five edges meet at a vertex at infinity, and
each pair of these edges cross precisely once in a small neighbourhood of infinity. This
example is built on the standard pentagonal musquash [Wo1]. This same construction
can be effected using the stand@2& + 1)-gonal musquash, for arky> 1. Notice that
Figure 10 is the cade= 1.

Fig. 9. Attaching a 2-path to a pair of neighbouring edges.
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Fig. 10. Generalized thrackle df4 in the plane.

Fig. 11. Planar generalized thrackle with= 2n — 2.
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Fig. 12. Another planar generalized thrackle with= 2n — 2.

4, Remarks

As we have seen above, Theorem 4 provides sharp bounds for generalized thrackles
on My whereG has no odd cycles, and where there is an odd cycle which is zero in
Z,-homology. For arbitrary generalized thrackles, onerhas 4n — 8+ 8g, since every

graph can be made bipartite by removing no more than half of its edges. However, this
bound seems unduly coarse. We have found no counterexample to the following:

Conjecture 1. If 7: G — My is a generalized thrackle, them< 2n — 2 4 4g.

In fact, it does not seem unreasonable to hope to obtain a complete classification of
those graphs which can be drawn as generalized thrackles in the plane.

Our final remarks concern thrackles, as opposed to generalized thrackles. In [CFG],
the authors remark: “We may consider analogous constructions on other surfaces, and
presumably expect (with obvious notation) the appropriate conjecture to be thabmax(

n) depends on the genus of the surface.” The following conjecture seems to be the obvious
one, although as far as we are aware, it has not previously appeared explicitly in the
literature:

Conjecture 2. If 7: G — Mg is a thrackle, them < n + 2g.

Observe that, for any given gengsthere exists an example for which the bound
m = n + 2g is attained. This can be done inductively using a procedure similar to that
employed in Fig. 14 of [Wo1]; one chooses an example for which the bound is attained
on a surface of genug— 1, and then adds a handle to the surface and replaces an edge
by the system of five edges shown in Fig. 13. This increases the number of vertices by
two and the number of edges by four.

Conjecture 2 can be verified for graphs with very few vertices. First, recall that
thrackles in the plane have no 4-cycles [Wo1]. Moreover, they have at most one 3-cycle;
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Fig. 13. Before and after.

indeed, if a thrackle in the plane had two 3-cyclesandc, say, thenc; andc, must

have nontrivial intersection (by [LPS]), but they cannot share a common edge (since
otherwise there would be a 4-cycle) and it is easy to see that the case of a single common
vertex is also impossible. In higher genus, one has:

Lemma5. Supposethal: G — My is a thrackle

(a) If c c G is a4-cycle then7 (c) is nontrivial in Z,-homology
(b) If cq, c; C G are3-cyclesthen7 (c;) and7 (cy) are notZ,-homologous

Proof. (a) Letc = {1234 be a thrackled 4-cycle ody. Leta = 12N34, b = 23N 14.
Thenthe triangles 2and 34 have exactly one point of the transversal crossing (namely,
the pointa). They cannot represent the same classiitMy, Z,) and therefore their
sum is nontrivial.

(b) Suppose thab consists of two 3-cycles; andc,, and that7 (c;) and7 (c;,) are
Z,-homologous. Sinc& is simple,c; andc; are either disjoint, share a single common
edge, or share a single common vertex. First notice thet &ndc, shared a single
common edge, then their sum would be a 4-cycle whose imalylg inould be trivial in
Z,-homology. This would contradict part (a). pandc; are either disjoint, or share a
single common vertex. A% (c;) and7 (c;) areZ,-homologousy (¢;) and7 (cz) must
have zero intersection number. So Lemma 1 gives

0= Qm,(7(c1),7(c2) = 07(C1,C) +1+1(c1NCy). 4

If ¢; andc, were disjoint, then one would hawe-(c;, ¢;) = 0 andl(c; N ¢c) = 0,
which contradicts (4). S@; and ¢, share a single common vertex. Hence (4) gives
or(C1, C2) = 1. Label the vertices of (c;) and7 (cy) respectively 123 and 145. As
or(C1, C2) = 1,7 (c1) and7 (cp) cross transversally at the vertex 1. leet 23N 14. By
relabelling the vertices if necessary, one may assume that tha aonfains no crossing
points. The curvesd = 123+ 12a and 1245 = 145+ 12a are stillZ,-homologous
and so they must have zero intersection number. However, they touch at the points 1 and
a, and intersect transversally three times, which is impossible. O
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Proposition. Conjecture 2 is true for all grapta withn <5 andm < 9.

Proof. The casesn < 4 are given directly by Theorem 2(a). Suppose thaG — My

is a thrackle withn = 5. SinceG is simple,G is a subgraph oKs. Without loss of
generality, we may assume thathas no vertices of index 1. We are required to show
that:

(a) if m > 6, thenG cannot be thrackled in the plane,
(b) if m > 8, thenG cannot be thrackled on the torus,

To treat case (a), it suffices to note thatrif> 6, thenG either has a 4-cycle or at
least two 3-cycles. To deal with case (b), note that on the t#w&l?, Z,) = 73, and
so there are precisely four distir€s-homology classes:

(o) (5)(2)-(3)

So by Lemma 5, a thrackle on the torus can have at most four 3-cycles. Suppose that
m = 8. SoG is obtained fronKs by deleting two edges. There are only two such graphs,
according to whether or not the deleted edges share a common vertex. In the first case,

Fig. 14. Thrackles on the torus.
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Fig. 15. Ks\{one edggthrackled on the 2-torus.

G has five 3-cycles, and 8 cannot be thrackled on the torus. In the second casas
four 3-cycles whose sum is a 4-cycle. Suppose @&aan be thrackled on the torus. By
Lemma 5,G must have precisely one 3-cycle of each of the fdgthomology types.
So the sum of the 3-cycles is a 4-cycle which is zer@jrhomology. This contradicts
Lemma 5(a). O

Remark. In support of Conjecture 2, we remark that all graphs with five vertices and
seven edges can be thrackled on the torus (see Fig. 14) and the connected graph with five
vertices and nine edgels\ {one edgg can be thrackled on the 2-torus (see Fig. 15). It
would be interesting to show th&t; cannot be thrackled on the 2-torus.
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