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Abstract. A thrackle (resp. generalized thrackle) is a drawing of a graph in which each
pair of edges meets precisely once (resp. an odd number of times). For a graph withn
vertices andm edges, we show that, for drawings in the plane,m≤ 3

2(n− 1) for thrackles,
while m ≤ 2n − 2 for generalized thrackles. This improves theorems of Lov´asz, Pach,
and Szegedy. The paper also examines thrackles in the more general setting of drawings
on closed surfaces. The main result is: a bipartite graphG can be drawn as a generalized
thrackle on a closed orientable connected surface if and only ifG can be embedded in that
surface.

Introduction

Let G be a finite graph withn vertices andm edges, and suppose thatG is simple; that
is, it has no loops or multiple edges. Athrackleof G is a drawingT (G) of G in the
plane, where the edges are represented by Jordan arcs, such that each pair of edges meets
precisely once, either at a vertex or at a proper crossing. (See [LPS] for definitions of
drawingandproper crossing. Thrackles are mentioned in [CFG] and [PA].) Conway’s
celebrated thrackle conjecture is:m ≤ n (see [Wo1], [Wo2], [GR], [PRS], and [Ri]). A
natural generalization of the notion of a thrackle is obtained by relaxing the condition
that each pair of edges meets precisely once, and assuming only that each pair of edges
meets an odd number of times. This gives rise to the notion of ageneralized thrackle
[Wo2]. Lovász et al. proved:

Theorem 1[LPS].

(a) for thrackles, m≤ 2n− 3,
(b) for generalized thrackles, m≤ 3n− 4,
(c) a bipartite graph can be drawn as a generalized thrackle if and only if it is planar.
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We give the following improvement:

Theorem 2.

(a) for thrackles, m≤ 3
2(n− 1),

(b) for generalized thrackles, m≤ 2n− 2.

We give examples below which show that the bound in Theorem 2(b) is sharp. In
fact, our main focus in this paper is the study ofgeneralized thrackleson surfaces of
arbitrary genus, in the obvious sense. It was proved in [GR] that every finite graph can
be thrackled on some surface. Our main result is:

Theorem 3. A bipartite graph G can be drawn as a generalized thrackle on a closed
orientable connected surface Mg of genus g if and only if G can be embedded in Mg.

This has the corollary:

Corollary. For a bipartite generalized thrackle on Mg, one has m≤ 2n− 4+ 4g.

This bound is sharp: for example, the minimal genus embedding of the complete
bipartite graphK2p,2q hasm = 2n− 4+ 4g, by Ringel’s theorem (see Theorem 4.5.3
of [GT]).

The strategy employed in the proof of our results is to useZ2-intersection forms, and
to reduce the problem to that of bipartite generalized thrackles. Thus the arguments are
entirely about generalized thrackles. The additional improvement for thrackles is due
solely to the fact that in the plane, thrackles have no 4-cycles [Wo1]. The main ideas in
this paper are most easily described for generalized thrackles in the plane; here we show
that Conway doubling on an odd cycle produces a bipartite graphG′ (see Lemma 2).
Furthermore,G′ can be embedded in the plane so that the even cycle, resulting from the
Conway doubling, bounds a face in the associated cellular decomposition (see Lemma 4).

The paper is organized as follows. In Section 1 we recall some facts about
Z2-intersection forms and the Conway doubling procedure. In Section 2 we prove The-
orem 3, and we give examples which show that Theorem 3 does not extend to arbitrary
graphs. In Section 3 we obtain Theorem 2 and the corollary as special cases of Theo-
rem 4, which is a slightly stronger result, and we give examples which show that the
bound of Theorem 2(b) is sharp. The paper concludes in Section 4 with some remarks.

In what follows,Mg denotes a closed oriented connected surface of genusg andG is
a finite simple graph withn vertices andm edges.

1. Intersection Homology and Conway Doubling

First recall that theintersection formon Mg is the unique nondegenerate bilinear map

ÄMg : H1(Mg,Z2)× H1(Mg,Z2)→ Z2
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having the following property: ifγ1 andγ2 are closed curves inMg which intersect in
a finite numberk of transverse crossings, thenÄMg(γ1, γ2) = k mod 2. Clearly,ÄMg is
symmetric andÄMg(γ, γ ) = 0 for all closed curvesγ . (See [ST] or [DFN] for further
details. See [Fu] for an introductory account of intersection forms with values inZ.)

Suppose thatT : G → Mg is a drawing ofG, and thatc1 andc2 are cycles inG.
Recall that ifv is a vertex ofG, then therotation diagramatT (v) is the cyclic order of
the edges ofG incident tov determined byT and the orientation ofMg. Therotation
systemof T is the set of rotation diagrams of the vertices ofG (see [GT]). We want
to relateÄMg(T (c1), T (c2)) to the rotation system ofT . The following notion depends
only on the rotation system:

Definition 1. ThecrossingnumberσT (c1, c2) is defined as follows: choose an orien-
tation forc1 andc2, and consider the setS of vertices in the boundary ofc1 ∩ c2. Let
v ∈ S. If v is isolated inc1 ∩ c2, set

σT (v) =
{

1 if c1 andc2 cross transversally atv,
0 otherwise.

If v is not isolated inc1 ∩ c2, set

σT (v) =
{

1
2 if c2 is positively oriented atv with respect toc1,

− 1
2 if c2 is negatively oriented atv with respect toc1,

where the sign convention is shown in Fig. 1. ThenσT (c1, c2) =
∑

v∈SσT (v) mod(2).

Let l denote theZ2-length function on the 1-chain complex ofG; that is, given a path
c in G, l (c) is the number mod(2) of edges inc. The following result may be regarded
as a generalization of Lemmas 2.2 and 2.3 of [LPS].

Lemma 1. Suppose thatT : G→ Mg is a generalized thrackle, and that c1 and c2 are
cycles in G. ThenÄMg(T (c1), T (c2)) = σT (c1, c2)+ l (c1) · l (c2)+ l (c1∩ c2) (mod 2).

Proof. Divide the edges ofc1 into four disjoint subsets: (a)k1 edges contained inc1∩c2,
(b) k2 edges which are not incident withc1 ∩ c2, (c) k3 edges not contained inc1 ∩ c2

Fig. 1. Two+ 1
2 crossings and two− 1

2 crossings.
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Fig. 2. Conway doubling on a 3-cycle: before and after.

which meetc1∩c2 at exactly one vertex, and (d)k4 edges not contained inc1∩c2 which
meetc1 ∩ c2 at exactly two vertices. Modulo 2, one has

ÄMg(T (c1), T (c2)) = σT (c1, c2)+ k1 · (l (c2)− 3)+ k2 · l (c2)

+ k3(l (c2)− 2)+ k4(l (c2)− 4)

= σT (c1, c2)+ k1+ (k1+ k2+ k3+ k4) · l (c2)

= σT (c1, c2)+ l (c1 ∩ c2)+ l (c1) · l (c2),

as required.

Conway’s doubling procedure allows one to duplicate a thrackled cycle [Wo1]. If the
original cycle is odd, one ends up with a thrackled even cycle which is twice as long,
and if it is even, one obtains a pair of disjoint even cycles of the same length which still
form a (disconnected) thrackle. This procedure can be carried out not only for a separate
cycle, but also for a cycle within a thrackled graph, or within a generalized thrackle, and
the procedure can be made on any surface (see Fig. 2).

Let T : G→ Mg be a generalized thrackle.

Lemma 2. Suppose that c1 is an odd cycle in G such thatÄMg(T (c1), T (c2)) = 0 for
all cycles c2. Then Conway doubling on c1 produces a bipartite graph.

Proof. Let c1 be as in the statement of the lemma. Perform the Conway doubling
procedure onc1: let G′ be the resulting graph and letc′1 be the even cycle obtained from
c1. We claim thatG′ is bipartite. Suppose thatG′ has a cyclec′2. By reversing the Conway
doubling procedure, one sees thatc′2 comes from a cyclec2 say, inG. Obviously,

l (c′2)− l (c′1 ∩ c′2) = l (c2)− l (c1 ∩ c2). (1)

By Lemma 1, we have, modulo 2,

σT (c1, c2) = l (c1)l (c2)+ l (c1 ∩ c2) = l (c2)+ l (c1 ∩ c2)
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and

σT (c
′
1, c
′
2) = l (c′1)l (c

′
2)+ l (c′1 ∩ c′2) = l (c′1 ∩ c′2).

Notice thatσT (c1, c2) = σT (c′1, c′2) and so

l (c2)+ l (c1 ∩ c2) = l (c′1 ∩ c′2). (2)

So (1) and (2) givel (c′2) = 0 (mod 2), as required.

We remark that the hypothesis in Lemma 2 is weaker than the assumption thatT (c1) is
zero inZ2-homology. In particular, it holds in the plane. One of this paper’s referees has
informed us that in previous personal communication, P´eter Hajnal had independently
obtained Lemma 2 in the planar case, thus improving Theorem 1(a) tom≤ 1.75n.

2. Proof of Theorem 3

Let G be a bipartite graph and letV(G) = V1∪ V2 be a splitting of the set of vertices of
G such that all the edges join elements ofV1 with elements ofV2.

First suppose that there is an embeddingf : G → Mg. For convenience, we usef
to identify G with f (G), so that we may regardG as a subset ofMg. The following
argument is similar to the one used in Theorem 1.4 of [LPS]. Choose a pointx in the
complement ofG, and for each pointy ∈ V1, join x to y by a simple arc such that
the set of arcs thus obtained is mutually disjoint outside ofx. By deforming these arcs
if necessary, we may assume that they avoidV2, and cross the edges ofG in proper
crossings. Take a small closedε-neighbourhoodD of the union of these arcs (see Fig. 3).
So D is homeomorphic to a disc, and the boundary ofD is a simple closed curveγ
which intersects every edge ofG an odd number of times. Letγ ′ be a curve onMg\D
which is sufficiently close toγ that there are no vertices ofG betweenγ andγ ′. Cut
out the discD, flip it over, and attach it back to the surface joining the edges in the
annulus betweenγ andγ ′ as shown on the Fig. 4. Notice that in the new drawing, any
two non-incident edgesei (i = 1,2) intersectingγ qi times respectively, intersect one
anotherq1q2 ≡ 1 (mod 2) times, while every pair of incident edges meet an even number
of times. Now, taking small circles around each of the vertices ofG and performing the
above procedure in each of the discs they bound, we obtain a new drawing in which

Fig. 3. Theε-neighbourhoodD in the vicinity of x.
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Fig. 4. ReattachingD: before and after.

every pair of edges meets an odd number of times. It remains to modify the drawing so
that each edge becomes free of self-intersections. This can be achieved edge by edge:
for each edge, it suffices to choose a Wiener switching at each of the self-intersections
such that the resulting crossing-free curve is connected (see Fig. 5). This is easily done
by induction. The resulting drawing is a generalized thrackle.

Conversely, suppose that we have a generalized thrackleT : G → Mg. Proceed as
in the first part of this proof: choose a pointx in the complement ofG, and joinx to
V1 by a set of arcs. Perform the procedure shown Fig. 4 in a smallε-neighbourhood
of these arcs, and then choose small discs around each of vertices ofG and repeat the
procedure on each of these discs. One thus obtains a new drawingD: G→ Mg, which
is aZ2-embedding, in the following sense.

Definition 2. A Z2-embeddingof a graph inMg is a drawing of the graph such that
every pair of edges meets an even number of times, outside the vertex set.

It remains to prove the following lemma (notice that we are not assuming here that
G is bipartite).

Fig. 5. Wiener switching: before and after.
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Fig. 6. Eliminating a crossing: before and after.

Lemma 3. A graph G that can beZ2-embedded in Mg, can be embedded in Mg with
the same rotation system.

Proof of Lemma3. Suppose that we have aZ2-embeddingD: G → Mg. Obviously,
asD is not a generalized thrackle, Lemma 1 does not apply. Instead one has

ÄMg(D(c1),D(c2)) = σD(c1, c2) (mod 2), (3)

for all cyclesc1 andc2 in G. Now remove all the crossings inD(G) by attaching a handle
at each crossing point (see Fig. 6), and letSbe the resulting closed surface. So we have an
embeddingI(G) of G in S, but in generalShas higher genus thanMg. Notice that since
the surgery has been conducted in the complement of some neighbourhood of the vertex
set,I(G)andD(G)have the same rotation systems; in particular,σI = σD. Take a closed
ε-neighbourhoodU of I(G); soU ⊂ S is a compact surface, with boundary, containing
I(G). SinceI(G) is a deformation retract ofU , we haveH1(U,Z2) = H1(I(G),Z2)and
ÄU = σI . Attach discs to all the boundary components ofU and letM ′ be the resulting
surface. IfG is not connected, thenM ′ will not be connected; in this case, replace
M ′ by the connected sum of its connected components. We now have an embedding
J (G) of G in a connected closed oriented surfaceM ′, and it remains to show that the
genusg′ of M ′ is not greater than that ofMg. Notice that by construction, the map
H1(U,Z2)→ H1(M ′,Z2) is surjective. Hence

g′ = 1
2 rankH1(M

′,Z2) ≤ rankÄU

= rankσI
= rankσD
≤ rankÄMg by (3)

= g,

as required.

Examples. Figure 7 gives an example of a non-planar graph, homeomorphic toK5,
which can be drawn as a generalized thrackle in the plane.
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Fig. 7. A generalized thrackle homeomorphic toK5.

On the other hand, there are planar graphs withm ≤ 2n− 2 which cannot be drawn
as generalized thrackles in the plane. For example, the wheel with four spokes, shown
in Fig. 8, cannot be drawn as a generalized thrackle in the plane. Indeed, if it could be,
then, by [LPS] or Lemma 1, the two 3-cycles to the left and right of the graph would
necessarily cross each other transversally in a small neighbourhood of the vertex in the
centre of the graph. However, the same reasoning applies to the two 3-cycles at the top
and bottom of the graph. This leads to a contradiction. Similarly, the wheel with 2k
spokes cannot be drawn as a generalized thrackle in the plane. Curiously, wheels with
an odd number of spokes can be drawn as generalized thrackles in the plane (see Fig. 12
below).

Fig. 8. Not a generalized thrackle in the plane.
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3. Proof of Theorem 2 and the Corollary

Let k denote the number of connected components ofG.

Theorem 4. Suppose thatT : G→ Mg is a generalized thrackle.

(a) If G is bipartite, then m≤ 2n− 4k+ 4g.
(b) If G has an odd cycle c1 such thatÄMg(T (c1), T (c2)) = 0 for all cycles c2, then

m≤ 2n− 2k+ 4g.
(c) If G is a thrackle in the plane, then m≤ 3

2(n− k).

Proof. First suppose thatG is bipartite. By Theorem 3,G can be embedded inMg. So if
G has connected componentsG1, . . . ,Gk, then, for eachi , we have a cellular embedding
of Gi in a surfaceSi of genusgi , with g1+· · ·+gk ≤ g. Thus it suffices to treat the case
whereG is connected and cellularly embedded inMg. In this case, part (a) is a direct
consequence of Euler’s formula, as employed in [LPS]. Indeed, 2− 2g = f −m+ n,
where f is the number of faces in the cellular decomposition ofMg determined by the
embedding ofG. As G has no 2-cycles or 3-cycles, one has 2m≥ 4 f . Hence

n = 2− 2g− f +m≥ 2− 2g−m/2+m= 2− 2g+m/2.

That is,m≤ 2n− 4+ 4g. This proves part (a).
Now suppose thatG has an odd cyclec1 such thatÄMg(T (c1), T (c2)) = 0 for all

cyclesc2. Perform Conway doubling onc1: let G′ be the resulting bipartite graph and
let c′1 be the even cycle obtained fromc1. Let J : G′ → Mg be the embedding given
by the construction of Theorem 3. Once again, it suffices to treat the case whereG is
connected andG′ is cellularly embedded inMg.

Lemma 4. J (c′1) bounds a face in the cellular decomposition of Mg determined by
the embedding of G′.

Proof of Lemma4. SinceMg is oriented, it makes sense to talk of the “left” and “right”
sides of a closed curve, at least locally. It suffices to show that the image inMg of the edges
of G′\c′1 which are incident withc′1 all lie on the same side ofJ (c′1). Let C: G′ → Mg

be the generalized thrackle drawing ofG′ obtained fromT (G) by Conway doubling on
c1. Notice that the edges ofG′\c′1 which are incident withc′1 at some given vertexv, all
lie on the same side ofC(c′1), either to the left or to the right (see Fig. 2). Moreover, the
position of the incident edges alternates, left-right-left, etc., as one moves from vertex
to vertex alongC(c′1) (see Fig. 2). By Lemma 2,G′ is bipartite: letV(G) = V1 ∪ V2

be a splitting of the set of vertices ofG such that all the edges join elements ofV1 with
elements ofV2. Now notice that when one constructs the embeddingJ (G′), using the
method employed in the proof of Theorem 3, one effectively reverses the orientation in
some neighbourhood ofV2, while maintaining the orientation in some neighbourhood
of V1. Consequently, as one travels alongJ (c′1), the edges incident withJ (c′1) all lie on
the same side ofJ (c′1).
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It remains to see how the above lemma gives the required result. Letf,m′,n′ be
respectively the number of faces, edges and vertices in the cellular decomposition of
Mg determined by the embedding ofG′. Suppose thatc1 is a p-cycle. Soc′1 is a 2p-
cycle, n′ = n + p and m′ = m + p. As G has no 2-cycles or 3-cycles, one has
2m′ ≥ 4( f − 1)+ 2p. Hence

n′ = 2− 2g− f +m′ ≥ 1− 2g+ m′ + p

2
.

That is,m= m′ − p ≤ 2n′ −2p−2+4g = 2n−2+4g. This proves part (b). To prove
part (c), just repeat the calculation using the additional fact thatG has no 4-cycles. This
completes the proof of Theorem 4.

Notice that Theorem 2 follows immediately from Theorem 4, since in the plane every
cycle isZ2-null homologous. The corollary follows immediately from Theorem 4(a).

Examples. We first describe a useful construction. LetT : G→ Mg be a generalized
thrackle. We say that two edgese1 ande2 of G areneighbouringif they share a common
vertexv and if e1 ande2 are consecutive in the cyclic order of edges ofT (G) atT (v).
Figure 9 shows how one can add a 2-path joining the endpoints of neighbouring edges
so that the resulting drawing is still a generalized thrackle. Notice that Fig. 7 is obtained
by adding five 2-paths to the standard pentagonal musquash [Wo1].

Figure 10 gives a drawing ofK4 as a generalized thrackle in the plane. Figure 11 shows
that by adding 2-paths, one can construct a generalized thrackle in the plane havingn
vertices and 2n − 4 edges, for any numbern ≥ 4. Another example showing that the
bound in Theorem 2(b) is sharp is given by the wheel with(2k + 1) spokes. Figure 12
shows the wheel with five spokes and its representation as a generalized thrackle; this
diagram is to be understood as follows: five edges meet at a vertex at infinity, and
each pair of these edges cross precisely once in a small neighbourhood of infinity. This
example is built on the standard pentagonal musquash [Wo1]. This same construction
can be effected using the standard(2k+ 1)-gonal musquash, for anyk ≥ 1. Notice that
Figure 10 is the casek = 1.

Fig. 9. Attaching a 2-path to a pair of neighbouring edges.
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Fig. 10. Generalized thrackle ofK4 in the plane.

Fig. 11. Planar generalized thrackle withm= 2n− 2.
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Fig. 12. Another planar generalized thrackle withm= 2n− 2.

4. Remarks

As we have seen above, Theorem 4 provides sharp bounds for generalized thrackles
on Mg whereG has no odd cycles, and where there is an odd cycle which is zero in
Z2-homology. For arbitrary generalized thrackles, one hasm≤ 4n−8+8g, since every
graph can be made bipartite by removing no more than half of its edges. However, this
bound seems unduly coarse. We have found no counterexample to the following:

Conjecture 1. If T : G→ Mg is a generalized thrackle, thenm≤ 2n− 2+ 4g.

In fact, it does not seem unreasonable to hope to obtain a complete classification of
those graphs which can be drawn as generalized thrackles in the plane.

Our final remarks concern thrackles, as opposed to generalized thrackles. In [CFG],
the authors remark: “We may consider analogous constructions on other surfaces, and
presumably expect (with obvious notation) the appropriate conjecture to be that max(m−
n) depends on the genus of the surface.” The following conjecture seems to be the obvious
one, although as far as we are aware, it has not previously appeared explicitly in the
literature:

Conjecture 2. If T : G→ Mg is a thrackle, thenm≤ n+ 2g.

Observe that, for any given genusg, there exists an example for which the bound
m = n+ 2g is attained. This can be done inductively using a procedure similar to that
employed in Fig. 14 of [Wo1]; one chooses an example for which the bound is attained
on a surface of genusg− 1, and then adds a handle to the surface and replaces an edge
by the system of five edges shown in Fig. 13. This increases the number of vertices by
two and the number of edges by four.

Conjecture 2 can be verified for graphs with very few vertices. First, recall that
thrackles in the plane have no 4-cycles [Wo1]. Moreover, they have at most one 3-cycle;
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Fig. 13. Before and after.

indeed, if a thrackle in the plane had two 3-cycles,c1 andc2 say, thenc1 andc2 must
have nontrivial intersection (by [LPS]), but they cannot share a common edge (since
otherwise there would be a 4-cycle) and it is easy to see that the case of a single common
vertex is also impossible. In higher genus, one has:

Lemma 5. Suppose thatT : G→ Mg is a thrackle.

(a) If c ⊂ G is a4-cycle, thenT (c) is nontrivial inZ2-homology.
(b) If c1, c2 ⊂ G are3-cycles, thenT (c1) andT (c2) are notZ2-homologous.

Proof. (a) Letc = {1234} be a thrackled 4-cycle onMg. Leta = 12∩34, b = 23∩14.
Then the triangles 12band 34bhave exactly one point of the transversal crossing (namely,
the pointa). They cannot represent the same class inH1(Mg,Z2) and therefore their
sum is nontrivial.

(b) Suppose thatG consists of two 3-cyclesc1 andc2, and thatT (c1) andT (c2) are
Z2-homologous. SinceG is simple,c1 andc2 are either disjoint, share a single common
edge, or share a single common vertex. First notice that ifc1 andc2 shared a single
common edge, then their sum would be a 4-cycle whose image inMg would be trivial in
Z2-homology. This would contradict part (a). Soc1 andc2 are either disjoint, or share a
single common vertex. AsT (c1) andT (c2) areZ2-homologous,T (c1) andT (c2)must
have zero intersection number. So Lemma 1 gives

0= ÄMg(T (c1), T (c2)) = σT (c1, c2)+ 1+ l (c1 ∩ c2). (4)

If c1 andc2 were disjoint, then one would haveσT (c1, c2) = 0 andl (c1 ∩ c2) = 0,
which contradicts (4). Soc1 and c2 share a single common vertex. Hence (4) gives
σT (c1, c2) = 1. Label the vertices ofT (c1) andT (c2) respectively 123 and 145. As
σT (c1, c2) = 1,T (c1) andT (c2) cross transversally at the vertex 1. Leta = 23∩14. By
relabelling the vertices if necessary, one may assume that the arc 2a contains no crossing
points. The curves 1a3 = 123+ 12a and 12a45= 145+ 12a are stillZ2-homologous
and so they must have zero intersection number. However, they touch at the points 1 and
a, and intersect transversally three times, which is impossible.
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Proposition. Conjecture 2 is true for all graphsG with n ≤ 5 andm≤ 9.

Proof. The casesn ≤ 4 are given directly by Theorem 2(a). Suppose thatT : G→ Mg

is a thrackle withn = 5. SinceG is simple,G is a subgraph ofK5. Without loss of
generality, we may assume thatG has no vertices of index 1. We are required to show
that:

(a) if m≥ 6, thenG cannot be thrackled in the plane,
(b) if m≥ 8, thenG cannot be thrackled on the torus,

To treat case (a), it suffices to note that ifm ≥ 6, thenG either has a 4-cycle or at
least two 3-cycles. To deal with case (b), note that on the torus,H1(T2,Z2) = Z2

2, and
so there are precisely four distinctZ2-homology classes:(

0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)
.

So by Lemma 5, a thrackle on the torus can have at most four 3-cycles. Suppose that
m= 8. SoG is obtained fromK5 by deleting two edges. There are only two such graphs,
according to whether or not the deleted edges share a common vertex. In the first case,

Fig. 14. Thrackles on the torus.



Bounds for Generalized Thrackles 205

Fig. 15. K5\{one edge} thrackled on the 2-torus.

G has five 3-cycles, and soG cannot be thrackled on the torus. In the second case,G has
four 3-cycles whose sum is a 4-cycle. Suppose thatG can be thrackled on the torus. By
Lemma 5,G must have precisely one 3-cycle of each of the fourZ2-homology types.
So the sum of the 3-cycles is a 4-cycle which is zero inZ2-homology. This contradicts
Lemma 5(a).

Remark. In support of Conjecture 2, we remark that all graphs with five vertices and
seven edges can be thrackled on the torus (see Fig. 14) and the connected graph with five
vertices and nine edges,K5\{one edge}, can be thrackled on the 2-torus (see Fig. 15). It
would be interesting to show thatK5 cannot be thrackled on the 2-torus.
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