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Abstract.
Mark Kac considered a Markov Chain on the n–sphere based on random rotations
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c/n3. This and curvature information are used to bound the rate of convergence to
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1. Introduction.

On Euclidean space Rn consider the rotation

(1.1) gij(θ) =



1 0 . . . 0

0
. . .

c s

...
. . .

...

−s c
. . . 0

0 . . . 0 1


where all the entries on the diagonal are equal to 1 except for the (i, i) and (j, j)
entries that are equal to c = cos(θ), and all the off-diagonal entries are 0 except for
the (i, j) and (j, i) entries that are respectively +s and −s with s = sin(θ), 0 ≤ θ <
2π. This represents a clockwise rotation by θ in the i, j plane, 1 ≤ i < j ≤ n. We
consider the random walk on the orthogonal group SO(n) generated by repeatedly
multiplying by gij(θ) for 1 ≤ i < j ≤ n chosen uniformly and θ chosen uniformly
in [0, 2π). Call this measure Q and let Q∗k be the kth convolution power. Let U
denote the uniform distribution (Haar measure) on SO(n). Our main result shows
that Q∗k is close to U for k of order n5 log n.

Theorem 1. The random rotations measure Q on SO(n) satisfies

|Q∗k(f)− U(f)| ≤ 7
√

n
(
1− 1

60n3

)2k/
(
(n
2)+2

)
for f any bounded Lipschitz function of norm at most 1.

In Section 5, we prove a better though less explicit result showing convergence
after n4 log n steps.

First motivation. The present problem arose as part of Mark Kac’s study of
Boltzmann’s derivation of a basic equation of kinetic theory (1956), (1959, pg.109–
132). Kac simplified the problem to an n-particle system in one dimension. Assum-
ing the positions are in equilibrium, he studied the velocities (v1, v2, . . . , vn). Kac
assumed that only the total energy v2

1 + v2
2 + · · · + v2

n = nσ2 is conserved (hence
the restriction to the sphere).

In Kac’s model, the particles exchange energy as follows: at the times of a
Poisson processes with rate nλ, a pair of indices (i, j) is chosen at random and the
velocities vi, vj are changed by

(vi, vj) → (vi cos(θ) + vj sin(θ),−vi sin(θ) + vj cos(θ))
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with θ chosen uniformly in [0, 2π). This gives rise to the operator Ht = e−nλt(I−Q)

on L2 of the n-sphere with

(1.2) Qf(V ) =
1

2π
(
n
2

) ∑
i<j

∫ 2π

0

f(gij(θ)V )dθ

where V = (v1, . . . , vn) and gij(θ) is the rotation defined at (1.1).
If an initial density φ(V, 0) is assumed on the sphere then the process at time t

has density φ(V, t) = Htφ(V, 0). Differentiating shows that φ(V, t) satisfies Kac’s
master equation

(1.3)
∂φ(V, t)

∂t
= −nλ(I −Q)φ(V, t) =

nλ

2π
(
n
2

) ∑
i<j

∫ 2π

0

[φ(gij(θ)V, t)− φ(V, t)]dθ.

Of course this is linear in φ. To get an analog of the non–linear Boltzmann equation,
Kac studied the marginal distribution of the first coordinate v1, call this fn

1 (v, t),
and of the first two coordinates fn

2 (v, w, t). Assuming the sequence of initial den-
sities φn(V, 0) is symmetric in (v1, . . . , vn) and varies with n so that the marginals
approximately factor:

fn
2 (v, w, 0) ∼ fn

1 (v, 0)fn
1 (w, 0)

Kac proved what has come to be called “propagation of chaos”

fn
2 (v, w, t) ∼ fn

1 (v, t)fn
1 (w, t).

Plugging this in (1.3) gives Kac analog of Boltzmann’s equation

∂f(x, t)
∂t

= C

∫ ∞

−∞

∫ 2π

0

{
f(x cos θ + y sin θ, t)f(−x sin θ + y cos θ, t)

− f(x, t)f(y, t)
}
dθdy.

Kac left many details of the derivation vague. Among these is a bound for the
second eigenvalue of the basic operator n(I−Q) with Q as in (1.2). Kac comments
that it depends on n and conjectures that it is bounded away from zero, uniformly
in n. This corresponds to a bound on the second eigenvalue of Q of the form

1− const
n

.

The argument for Theorem 1 gives the lower bound 1 − 1/(60n3) and the upper
bound 1 − 2/n. Exactly determining the gap would be useful in pushing Kac’s
attempt to justify Boltzmann’s proof of the H-theorem: entropy of the marginal
density f1(v, t) is decreasing in t. Of course we know this for the entropy of the
joint distribution density φ(V, t) and Kac (1956, pg.185-186) shows that if φ(V, t) ∼∏

f1(vi, t) in a suitable sense then the desired result transfers to f1.
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The stochastic dynamics underlying Kac formulation is used as an algorithm for
studying solutions of Boltzmann’s original equation. Indeed, following Kac (1956,
Sec.2), Grunbaum (1971) gave an appropriate stochastic dynamics for the spatially
homogeneous version of Boltzmann’s original equation. This is further developed
by Uchiyama (1988). Méléard (1996) points out that these stochastic processes
are essentially the same as algorithms of Bird (1976) and Nambu (1983) for solving
Boltzmann’s original equation. See Perthame (1994) for more of this. Thus, spectral
gaps and results of the present paper correspond to running time bounds for these
algorithms applied to Kac’s equation. Kac’s paper has given rise to a fair sized
literature on “propagation of chaos”. Useful surveys are in Méléard (1996) and
Sznitman (1991) and the thesis of Gottlieb (1998). There is also some literature on
Kac’s equation (1.3). See McKean (1966), Grünbaum (1972), Desvillettes (1995),
Carlen et al (1997) and Méléard (1996). A good overall survey on Boltzmann’s
equation is Cercignani et al (1994).

Second motivation. The same random walk acting on all of SO(n) was suggested
by Hastings (1970) as a simple way of generating an approximately random rotation.
In his paper, Hastings reports some numerical studies when n = 50. He used the

random walk to estimate the average value of a function f : Jf =
∫

SO(n)

f(m)dm

by J̃f =
1
N

N∑
i=1

f(mi). For example, if f(m) = m2
11 + m2

22 + · · ·+ m2
nn it is known

that Jf = 1. Using N = 1000, starting the walk at the identity, Hastings obtained
J̃f = 3.5 ± 1.5. He supposed this poor estimate was due to the starting place
and showed empirically that if the walk is started more “centrally” (e.g., at a real
version of the discrete Fourier matrix) satisfactory estimates were obtained.

We note that the walk analyzed here is an example of what statisticians call
the Gibbs sampler (See e.g., Smith and Roberts (1993)): to sample from a vector
distribution, pick a few random coordinates, freeze the rest, and sample from the
correct distribution on the chosen coordinates given the frozen coordinates. The
Gibbs sampler is also known as the heat bath or Glauber dynamics. To generate
from the uniform distribution on the sphere these algorithms pick two coordinates
at random and then choose from the conditional distribution given the rest. This
is just Kac’s walk! Our theorem thus gives one of very few available examples of a
rate of convergence result for the Gibbs sampler.

One further motivation for the careful study of the present example is to begin
the extension of the geometric theory of Markov chains developed in [7,8,38] from
finite to continuous state spaces. There has been some previous study of rates of
convergence of random walk on compact groups. Diaconis and Shahshahani (1986),
Rosenthal (1994) and Porod (1995, 1996 a,b) study the walk on O(n) generated by
random reflexions. This walk is constant on conjugacy classes so character theory
can be used to bound convergence.

One difficulty with Kac’s walk is that the convolution Q∗k is not absolutely
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continuous with respect to Haar measure. There is positive probability that all the
gij chosen have the same value (i, j). Thus Q∗k does not converge in L2. This
blocks the usual route used in [7, 8, 38] of bounding total variation convergence by
L2 convergence. We are able to prove total variation convergence (Corollary 2.1)
but the argument only shows convergence after order 4n2

steps.
The arguments developed in the present paper use a factorization of Haar mea-

sure to allow piecewise continuous paths to be chosen between points of SO(n). It
then applies comparison inequalities, much as in [7,8], to prove spectral gap bounds.
The operator Q is far from compact: In Section 3 we find eigenvalues with infinite
multiplicity.

Section 2 gives a careful description of the factorization of Haar measure that
we use. Basically, the Euler angles of a randomly chosen element in SO(n) are
independent beta variates. Section 3 contains the spectral gap estimates. It also
gives results for θ chosen from a non–uniform distribution at each stage and for the
walk driven by uniform rotations in planes corresponding to consecutive coordinates
(i, i + 1), 1 ≤ i ≤ n− 1. Section 4 reviews needed geometric tools (Ricci curvature,
diameter and volume growth) on SO(n). The quantitative bound on the dual
bounded Lipschitz rate of weak convergence using a spectral gap estimate may be
of general interest. Section 5 shows how one can take full advantage of comparison
inequalities to obtain improved rates of convergence for random walk on group,
much as in [7].

It is straightforward to extend the analysis to a parallel walk on the unitary group
U(n). This may be of interest in connection with quantum computing. Randomly
choosing a pair of coordinates and multiplying by a random element of U(2) can
be studied as a model of noisy quantum circuits. See Aharonov and Ben-Or (1997)
and Shor (1996).

In preliminary work, David Maslin (1999) has determined that the spectral gap
of Kac’s walk equals

1
2n

+
3

2n(n− 1)

with multiplicity n(n − 1)(n + 6)(n + 1)/24. His argument makes heavy use of
representation theory of SO(n). E. Janvresse (1999) has also obtained a bound of
the from c/n for the walk on the sphere by a different method.

Acknowledgement. We thank Eric Carlen for telling us about Kac’s work and its
development. We thank David Maslin for keeping us informed about his progress
on Kac’s problem.
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2. A Factorization of Haar Measure.

This section gives a probabilistic interpretation to Hurwitz’ (1897) construction
of Haar measure on SO(n).

Let gi(θ) = gi−1,i(θ), 2 ≤ i ≤ n. These rotations act on a column vector
[x1, . . . , xn]t by

gix = [x1, . . . , cxi−1 + sxi,−sxi−1 + cxi, . . . , xn]t.

Choosing c = ±xi−1√
x2

i
+x2

i−1

, s = ±xi√
x2

i
+x2

i−1

(same sign in each) results in a vector with

ith coordinate zero. A succession of such rotations can be used to bring a given
m ∈ SO(n) to diagonal form. Suppose e.g. that n is 4. Then, with obvious notation

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

g4−−→

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

g3−−→

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

g2−−→

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

g′4−−→

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

g′3−−→

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

g′′4−−−→

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

The final matrix is orthogonal and so all off diagonal entries must be zero and all
diagonal entries must be ±1. By using the free choice of sign in gi, the final matrix
may be taken as the identity. Thus

m = (gt
4g

t
3g

t
2)(g

′t
4 g

′t
3 )(g

′′t
4 ).

Clearly this generalizes so that any element of SO(n) can be represented as

m = (g1
ng1

n−1 . . . g1
2)(g2

n · · · g2
3) · · · (gn−2

n gn−2
n−1)gn−1

n .

Hurwitz discovered that a uniform probability distribution on SO(n) (now called
Haar measure) can be derived by giving an appropriate product measure to the {gi

j}
above. This may be seen by an elementary argument. Recall the gamma density on
[0,∞), γa(x) = Γ(a)−1e−xxa−1. The following facts from a first probability course
are useful.

Lemma 2.1. If X1, X2, . . . , Xn are independent with Xi having a γai
distribution

then

(1)
X1

X1 + X2
,

X1 + X2

X1 + X2 + X3
, . . . ,

X1 + · · ·+ Xn−1

X1 + · · ·+ Xn
, X1+ · · ·+Xn are independent

with
X1 + · · ·+ Xi

X1 + · · ·+ Xi+1
having density β(A,B;x) =

Γ(A)
Γ(A)Γ(B)

xA−1(1 − x)B−1 on

[0, 1] for A = a1 + · · · + ai, B = ai+1 and Sn = X1 + · · · + Xn having density
γa1+···+an .

(2) Sn is independent of the vector
(X1

Sn
, . . . ,

Xn

Sn

)
.
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Lemma 2.2. Let Z1, Z2, . . . , Zn be independent standard Gaussian random vari-
ables. Then

(1)
( Z1√

Z2
1 + · · ·+ Z2

n

, . . . ,
Zn√

Z2
1 + · · ·+ Z2

n

)
is uniformly distributed on the n–

sphere with first coordinate having density

Γ(n
2 )

Γ( 1
2 )Γ(n−1

2 )
(1− x2)

n−3
2 on [−1, 1].

(2) Let W1, . . . , Wn+1 be standard Gaussian variables, independent of each other
and of Z1, . . . , Zn in (1). Let

A =
W1√

W 2
1 + · · ·+ W 2

n+1

, B =

√
W 2

2 + · · ·+ W 2
n+1

W 2
1 + · · ·+ W 2

n+1

=
√

1−A2.

Then
A,B

( Z1√
Z2

1 + · · ·+ Z2
n

, . . . ,
Zn√

Z2
1 + · · ·+ Z2

n

)
is uniformly distributed on the (n + 1)–sphere.

Proof: Property (1) is a classical fact following from the invariance of the Gauss-
ian product density e−

1
2 (z2

1+···+z2
n)/(2π)

n
2 under rotations. For (2), observe that

Z2
1 is a scale multiple of a γ1/2 variables. Squaring A, B, Z1√

Z2
1+···+Z2

n

, the sum

W 2
1 + · · ·+ W 2

n+1 is independent of all the ratios. Multiplying through, we have

W 2
1 , (W 2

2 + · · ·+ W 2
n+1) ·

( Z2
1

Z2
1 + · · ·+ Z2

n

, . . . ,
Z2

n

Z2
1 + · · ·+ Z2

n

)
.

The last n–components are distributed as a vector of independent scaled γ1/2 vari-
ates using Lemma 2.1 (2). So the ratio of the square roots of the entries to the
square root of the sum of all the entries is uniform on the (n+1)–sphere by Lemma
2.1 (1). �

The next result puts the pieces together to give a probabilistic version of Hurwitz
(1897). For 2 ≤ j ≤ n fixed, consider rotations of the form

gj =



1 0 . . .

0
. . .

...
x y
−y x

...
. . . 0

. . . 0 1
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where all diagonal entries are equal to 1 except for the (j−1, j−1) and (j, j) entries
which are equal to x ∈ [0, 1] and all off-diagonal entries are equal to zero except
for the (j − 1, j) and (j, j − 1) which are equal respectively to y =

√
1− x2 and

−y. Let νj be the measure supported by these rotations and such that, under νj ,
x has the distribution of the first coordinate of a point uniformly chosen on the
n + 2− j–sphere.

Proposition 2.1. Let {Gi
j}, 1 ≤ i < j ≤ n, be independent random matrices in

SO(n) with {Gi
j}

j−1
i=1 having common distribution νj. Then

(G1
nG1

n−1 · · ·G1
2) · · · (Gn−2

n Gn−2
n−1)G

n−1
n

is uniformly distributed on SO(n).

Proof: The idea of the proof is simple. First, in R3, if a uniform rotation in the
(x, y) plane is followed by an independent rotation taking the z axis to a uniform
direction, the result is uniform on SO(3). In general, if e1, . . . , en is the standard
basis for Rn and {Ni}n

i=2 are independent random matrices in SO(n) with N2

fixing e1, . . . , en−2 and uniform in the (n− 1, n) plane, . . . , Ni fixing e1, . . . , en−1

and taking en−i+1 to a uniform vector in span en−1+1, . . . , en. Then the product
NnNn−1, . . . , N2 is uniformly distributed on SO(n). This is given a formal proof
in [10].

To finish the proof, we argue that

Ni = Gn−(i−1)
n · · ·Gn−(i−1)

n−(i−2), 2 ≤ i ≤ n,

have the required properties. Proceed by induction. Dropping the superscript, Gn

has form 
1

. . .
a′ b′

−b′ a′


with a′, b′ chosen uniformly on the 2–sphere. Gn−1 has form

1
. . .

a b 0
−b a 0
0 0 1


with a distributed as

Z1√
Z2

1 + Z2
2 + Z2

3

and b =
√

1− a2. The product GnGn−1 has

the last three elements of the third column (a,−ba′, bb′). From Lemma 2.2, this is
uniform on the three-sphere. The product GnGn−1Gn−2 has ones on the diagonal
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down to the (n − 5, n − 5) place and the last four entries of column n − 4 uni-
form on the four-sphere. Continuing, GnGn−1 · · ·G2 has its first column uniformly
distributed on the n–sphere. �

Remark: Using standard characterizations of beta and gamma random variables
we can prove a converse: if G ∈ SO(n) is chosen from Haar measure then, almost
surely, the factorization into rotations as above is uniquely defined and the terms
Gi

j are independent with distributions specified by Proposition 2.1.

As a corollary of Proposition 2.1 we show that the random rotation chain of
Theorem 1 satisfies a Döblin condition and thus converges to the uniform distribu-
tion in total variation norm. This gives a remarkably poor bound but, up to minor
improvements, it is the best we know.

Corollary 2.1. The convolution Q∗k of Theorem 1 converges to Haar measure on
SO(n) in total variation. Indeed

‖Q∗k − U‖TV ≤ (1− c)bk/(n
2))c with c = 4−n2

n−n.

Proof: We claim that Q∗(n
2)(A) ≥ cU(A) for all Borel sets A. This Döblin

condition implies the result (see e.g. Kloss (1959)). To prove the claim observe that
the chance that the first

(
n
2

)
steps of the walk pick rotations in the exact coordinates

used for the factorization of Haar measure in Proposition 2.1 is 1/
(
n
2

)(n
2). For this

component of Q∗(n
2) the density of the corresponding random matrix is

Πf i,j
n (xij)

with the product ranging over the chosen coordinates and

fn(x) =
(1− x2)−1/2

π
≥ 1

π
.

Proposition 2.1 gives the density of Haar measure as

Πf i,j
nij

(xij)

for the same coordinates but different densities. There are n− 1 terms of the Haar
density with nij = n. Cancel these from both sides. Bound the remaining density
factors of the component of Q∗(n

2) below by 1/π(n−1
2 ). To bound the remaining

factors of the density of Haar measure above, use Lemma 2.2 (1) for k ≥ 3

fn+2−k(x) =
Γ(k

2 )
Γ( 1

2 )Γ(k−1
2 )

(1− x2)
k−3
2 ≤

Γ(k
2 )

Γ( 1
2 )Γ(k−1

2 )
≤ k

2
√

π
.
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There are n− k +1 terms in the product for a given k, 3 ≤ k ≤ n. This shows that
the remaining factors of the density of Haar measure are bounded above by( 1

2
√

π

)(n−1
2 )

3n−2 · 4n−3 · · ·n.

Combining bounds gives the result with

c >
( 1

2π3/2

)(n−1
2 )

(3n−2 · 4n−3 · · ·n)−1 > 4−n2
n−n. �

The next corollary uses part of the factorization to represent the measure Qθ

on SO(n) which rotates by a fixed angle θ in a randomly chosen two–dimensional

space. Formally, let Rθ be the n× n matrix with the 2× 2 block cos θ sin θ
− sin θ cos θ

in

the upper left hand corner. Let Qθ be the probability distribution corresponding to
MRθM

−1 where M is chosen from Haar measure. Thus Qθ is uniformly distributed
on the conjugacy class containing Rθ. Repeated convolutions of Qθ were studied
by Rosenthal (1994). We will use his results to get bounds on the spectrum of Q
in the next section.

Corollary 2.2. With notation as in Proposition 2.1, the measure Qθ is the prob-
ability distribution of TRθT

−1 where T = [(G1
nG1

n−1 · · ·G1
2))(G

2
nG2

n−1 · · ·G2
3)].

Proof: The argument for Proposition 2.1 shows that (G1
n · · ·G1

2) has columns
V1, V2 · · ·Vn with V1 uniformly distributed. Similarly, (G2

n · · ·G2
3) has form 1 0 · · ·

0 W2 · · · Wn
...


with the column W2 uniformly distributed. The product T of these two has first two
columns V1,W22V2 + W32V3 + · · ·+ Wn2Vn. Now V2, V3, . . . , Vn is an orthonormal
basis for V ⊥

1 and so the second column is uniformly distributed in this space. Thus
the first two columns of the product are uniformly distributed two–plane. By direct
computation, the matrix TRθT

−1 only depends on the first two columns and so
has the same distribution as MRθM

−1. �

Remark: Similar factorizations hold for the unitary and symplectic group. Fac-
torizations also hold for finite groups generated by reflexions (e.g. the symmetric
group). Details and further applications can be found in [6]. These factorizations
can be used exactly as in Section 3 below to give bounds on the eigenvalues of
associated random walks. For example, on the symmetric group, the parallel to
Kac’s walk is the walk generated by random transposition.
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3. Spectral bounds.

3A. Introduction. For 1 ≤ i < j ≤ n, let µij be the push–forward of the measure

f(x) = (1−x2)−1/2

π on [−1, 1] under the map

x 7→



1 0 . . .

0
. . .

...
x y

−y x
...

. . . 0
. . . 0 1


, y =

√
1− x2,

where the x’s are in position (i, i) and (j, j) and y (resp. −y) is in position (i, j),
(resp (j, i)). This corresponds to rotation by a uniform angle in the (i, j) plane.
Let

(3.1) Q =
1(
n
2

) ∑
i<j

µij .

Then Q is a symmetric probability measure on SO(n). It acts on the real vector
space L2(SO(n)) via Qf(x) =

∫
f(xy−1)Q(dy) =

∫
f(xy)Q(dy). Because of sym-

metry, Q is a bounded self-adjoint operator on L2. It has real spectrum contained
in [−1, 1]. In this section we bound the spectral gap, that is, the norm of Q acting
on L2

0 = {f ∈ L2 :
∫

fdx = 0}.
We will show that for all f ∈ L2

0

(3.2) ‖f‖2
2 ≤ A〈(I −Q)f, f〉, ‖f‖2

2 ≤ A〈(I + Q)f, f〉, for A = 60n3.

For f ∈ L2
0 with ‖f‖2

2 = 1, (3.2) implies that

〈Qf, f〉 = 1− 〈(I −Q)f, f〉 ≤ 1− 1
A

, 〈Qf, f〉 = −1 + 〈(I + Q)f, f〉 ≥ −1 +
1
A

.

Now, an elementary argument in Riesz–Nagy ((1960), Sec. 9.2) shows ‖Q‖0,2→2 =
max(−m,M) with m = min

‖f‖0,2=1
〈Qf, f〉, M = max

‖f‖0,2=1
〈Qf, f〉. Thus (3.2) proves

Theorem 3.1. The probability measure Q of (3.1) on SO(n) satisfies

(3.3) ‖Q− U‖2→2 = ‖Q‖0,2→2 ≤ 1− 1
60n3

.
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The argument for (3.2) is by comparison with a measure Q̃ on SO(n). This Q̃
results from rotating by π in a randomly chosen plane. Formally

Q̃ is the distribution of M−1RM on SO(n) where M is Haar
distributed and R is a diagonal matrix with two minus ones and
n− 2 ones on the diagonal.

(3.4)

Another description of Q̃ is given by Corollary 2.2. This Q̃ is uniformly distributed
on the conjugacy class containing R. Its spectral behavior can thus be obtained by
character theory on SO(n). This was done by Rosenthal (1994) whose results are
described in Lemma 3.2. In Section 3B we show that for every f ∈ L2

〈(I − Q̃)f, f〉 ≤ 16n2〈(I −Q)f, f〉, 〈(I + Q̃)f, f〉 ≤ 16n2〈(I + Q)f, f〉.

These comparison inequalities are proved using the factorizations of Section 2. In
Section 3C we show that Q has the eigenvalue 1 − 2

n with infinite multiplicity.
In Section 3D we describe some variants of the measure Q to which the present
techniques apply.

We conclude this section by proving two needed lemmas. The first is for functions
on the circle S1.

Lemma 3.1. For any h ∈ L2(S1), and any probability measure ν on S1

(a) 〈(I − ν)h, h〉 ≤
∫∫

(h(x)− h(xy))2dxdy

(b) 〈(I + ν)h, h〉 ≤
∫∫

(h(x) + h(xy))2dxdy.

Proof: Acting by convolution on S1, ν has spectrum in [−1, 1]. Thus
0 ≤ 〈(I − ν)h, h〉 ≤ 2‖h‖2

2. Further, if h =
∫

h(x)dx,

〈(I − ν)(h− h), h〉 = 〈(I − ν)h, h〉

and 〈(I − ν)(h− h), h〉 = 0. Hence

〈(I − ν)h, h〉 = 〈(I − ν)(h− h), h− h〉 ≤ 2‖h− h‖2
2 =

∫∫
(h(x)− h(xy))2dxdy.

The proof of (b) is similar. �

The second lemma gives a sharp bound on the spectral gap for the measure Q̃.
This leans heavily on work of Rosenthal (1994).



BOUNDS FOR KAC’S MASTER EQUATION 13

Lemma 3.2. For n ≥ 2, Q̃ defined at (3.4) and any f ∈ L2
0

‖f‖2
2 ≤ a〈(I − Q̃)f, f〉, ‖f‖2

2 ≤ a〈(I + Q̃)f, f〉 with a =
4n

15
.

Proof: Rosenthal (1994) determined all the eigenvalues of Q̃ by character theory.
The different eigenvalues are indexed by n–tuples a1 < a2 < · · · < am with ai

integers or half integers. For definiteness, we treat the case where n = 2m + 1
is odd, so ai − 1

2 ∈ {0, 1, 2, . . . }. These ai index the irreducible representations.
For example, the trivial representation corresponds to 1

2 , 3
2 , . . . , m− 1

2 and the n–
dimensional representation corresponds to a∗ =

(
1
2 , 3

2 , . . . , m− 3
2 ,m+ 1

2

)
. Rosenthal

shows there is an eigenvalue β(a) of Q̃ for each such m–tuple given by

(3.5) β(a) =
(2m− 1)!

22m−1

m∑
j=1

(−1)aj−j+ 1
2

aj

∏j−1
i=1 (a2

j − a2
i )
∏m

i=j+1(a
2
i − a2

j )
.

These eigenvalues have multiplicity the square of the dimension of the corresponding
irreducible representation which is given by a similar formula. We do not need to
consider these multiplicities. As a varies, these are all the eigenvalues of Q̃.

The eigenvalues can be bounded by

(3.6) |β(a)| ≤ r(a) =
(2m− 1)!

22m−1

m∑
j=1

1

aj

∏j−1
i=1 (a2

j − a2
i )
∏m

i=j+1(a
2
i − a2

j )
.

Obviously, for a corresponding to any non–trivial representation, r(a) is largest
when a = a∗ defined above. This a∗ corresponds to the n–dimensional represen-
tation for which the eigenvalue is β(a∗) = 1

nTr (R) = 1− 4
n . Comparing (3.5) and

(3.6) we have

r(a∗) = 1− 4
n

+
4

4n(n + 1
2 )

≤ 1− 15
4n

.

This r(a∗) bounds the absolute value of the largest and smallest eigenvalues β+,
β−. The claimed bounds for I ± Q̃ follow since these operators have largest and
smallest eigenvalues 1− β+, 1− β−. �

3B. Comparison Inequalities. This Section proves (3.2) and so Theorem 3.1.

Proposition 3.1. For the probabilities Q, Q̃ on SO(n) defined in (3.1), (3.4) and
any f ∈ L2

0(SO(n))

〈(I − Q̃)f, f〉 ≤ 16n2〈(I −Q)f, f〉.
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Proof: The argument uses the factorization of Haar measure derived in Section
2. In the calculation below, squared differences are bounded by writing y = y1 · · · yk

so

[f(x)− f(xy)]2 = [f(x)− f(xy1 . . . yk)]2

= [(f(x)− f(xy1)) + (f(x)− f(xy1y2)) + · · ·
+ (f(xy1 . . . yk−1)− f(xy1 . . . yk))]2

≤ k[(f(x)− f(xy1))2 + · · ·+ (f(xy1 . . . yk−1)− f(xy1 . . . yk))2].

Integrating over x in SO(n) gives∫
(f(x)− f(xy))2dx ≤ k

k∑
i=1

∫
(f(x)− f(xyi))2dx.

The factorization of Section 2 depends on an ordering of {1, 2, . . . , n} and only
involves rotations Gi using pairwise adjacent coordinates. The measure Q uses all
pairs of coordinates. We symmetrize by conjugating by the permutation matrix
corresponding to σ in Sn. Write gi,σ(θ) = gσ(i−1),σ(i)(θ) and Gi,σ for the corre-
sponding random element of SO(n). Thus for any fixed σ

(3.7) (G1
n,σ · · ·G1

2,σ) · · · (Gn−2
n,σ Gn−2

n−1,σ)Gn−1
n,σ

is a uniformly distributed element of SO(n). Further, with

Tσ = (G1
n,σ · · ·G1

2,σ)(G2
n,σ · · ·G2

3,σ), Rσ = σ−1


−1

−1
1

. . .
1

σ

(3.8) TσRσT−1
σ

has distribution Q̃. See Corollary 2.2.
Write νj

k,σ for the distribution of Gj
k,σ (this distribution actually does not depend

on j) and µk,σ for the distribution corresponding to a uniform rotation in coordinate
plane σ(k − 1), σ(k).

For any f ∈ L2
0,

2〈(I − Q̃)f, f〉 =
∫∫

(f(x)− f(xy))2dxQ̃(dy)

=
1
n!

∑
σ∈Sn

∫
· · ·
∫

(f(x)− f(xg1
n,σ · · · g2

3,σRσ(g2
3,σ)−1

· · · (g1
n,σ)−1)2dxν1

n,σ(dg1
n,σ) · · · ν2

3,σ(dg2
3,σ).



BOUNDS FOR KAC’S MASTER EQUATION 15

Using the Cauchy–Schwarz inequality on the differences as above, 2〈(I − Q̃)f, f〉 is
bounded above by

(4n− 5)
n!

∑
σ∈Sn

∫
(f(x)− f(xRσ)2dx + 2

2∑
k=1

n∑
`=k+1

∫
(f(x)− f(xg))2dxνk

`,σ(dg).

To complete the argument we show that in each term above the measure ν can
be replaced by the measure µ corresponding to a uniform rotation in the chosen
coordinate plane. To see this, fix a term∫

|f(x)− f(xg)|2dxdνk
`,σ(g)

in the sum above. Factor dx into appropriate pieces in the order τ as in (3.7) where
the permutation τ is chosen so that the right-most factor Gn−1n, τ is a (uniform)
rotation in the desired coordinate plane (σ(`− 1), σ(`)) (this is achieved by any τ
such that (τ(n − 1), τ(n)) = (σ(` − 1), σ(`))). Fixing the other coordinates define
a function f̃ on S1 as f̃(z) = f(g1

n,τ · · · gn−2
n,τ gn−2

n−1,τg(z)) with g(z) in SO(n) having
z,
√

1− z2 installed in the appropriate places. Using Lemma 3.1, the integral over
z with any measure ν is smaller than the integral with z uniform. This also holds
for the terms Rσ (where ν is point mass). Thus 2〈(I − Q̃)f, f〉 is bounded above
by

(4n− 5)
n!

∑
σ∈Sn

∫
(f(x)−f(xg)2dxµ2,σ(dg)+2

2∑
k=1

n∑
`=k+1

∫
(f(x)−f(xg))2dxµ`,σ(dg).

As µ`,σ = µij with i = σ(`− 1), j = σ(`), we see that a given term∫
(f(x)− f(xg)2dxµij(dg)

appears at most 2(n−2)!+2×2(2n−3)(n−2)! ≤ 8(n−1)! times in the sum above.
Finally, this yields the bound

〈(I − Q̃)f, f〉 ≤ α〈(I −Q)f, f〉

with

α =
(4n− 5)8(n− 1)!

(
n
2

)
n!

≤ 16n2.

�

The next result yields a lower bound for negative eigenvalues.
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Proposition 3.2. For the probabilities Q, Q̃ on SO(n) defined in (3.1), (3.4) and
any f ∈ L2

0(SO(n))

〈(I + Q̃)f, f〉 ≤ 16n2〈(I + Q)f, f〉.

Proof: The argument parallels the proof of Proposition 3.1 using a factorization
of odd length k for y = y1 · · · yk so that

[f(x) + f(xy)]2 = [(f(x) + f(xy1))− (f(xy1) + f(xy1y2)) + · · ·
+ (f(xy1 · · · yk−1) + f(xy1 · · · yk))]2

≤ k[(f(x) + f(xy1))2 + · · ·+ (f(xy1 · · · yk−1) + f(xy1 · · · yk))2].

The factorization (3.8) always has odd length. Now, proceed as in Proposition
(3.1), using Lemma 3.1 b). �

3C. Examples. Section 3B gives upper bounds on the eigenvalues of Q defined in
(3.1) of form βi ≤ 1− 1

60n3 . For the n–dimensional representation ρ(m) we have

(3.9) Q̂(ρ) =
1(
n
2

) ∑
i<j

µ̂ij(ρ) =
(
1− 2

n

)
I

where the last equality comes from computing µ̂ij(ρ) =
∫

ρ(m)µij(dm). This is
a diagonal matrix with zero entries at (i, i), (j, j) and ones elsewhere. Summing
over i, j gives (3.9). Since the n–dimensional representation appears n times in the
decomposition of L2

0,
(
1 − 2

n

)
appears as an eigenvalue with multiplicity at least

n2. The next result shows that it appears with infinite multiplicity.

Proposition 3.3. On SO(n), let f(m) = mk
1,1 for k odd. Then

Qf(m) =
(
1− 2

n

)
f(m) for all k = 1, 3, 5, . . . .

Proof:

Qf(m) =
1(
n
2

) ∑
i<j

µijf(m) =

(
n−1

2

)(
n
2

) f(m) +
1(
n
2

) n∑
j=2

µ1jf(m) =
(
1− 2

n

)
f(m).

Indeed, µij with 2 < i < n doesn’t move the first coordinate and

µ1jf(m) =
∫ 2π

0

(m11 cos θ −m1j sin θ)kdθ = 0.

�

By similar fooling around with test functions we can find eigenvalues of form(
1− c

n

)
with infinite multiplicity and c smaller than 2. Marc Kac conjectured and

it has now been proved by D. Maslin (1999) and, independently, by E. Janvresse
(1999), that all eigenvalues are smaller than 1 − c

n for some universal c. Maslin’s
result applies to the walk on SO(n) whereas Jeanvresse’s is restricted to the sphere.
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3D. Variations and Remarks. The methods of this section are fairly robust and
give similar results for a variety of measures Q on SO(n).

Variation 1. For 1 ≤ i < j ≤ n, let λij be a measure on SO(n) with the property
that for some k and c ≥ 0, λ∗kij ≥ cµij with µij from (3.1). For example, λij may
correspond to rotation in the (i, j) plane through an angle uniformly chosen in
[−π

4 , π
4 ]. Let

(3.10) Qλ =
1(
n
2

) ∑
i<j

λij .

Theorem 3.2. The probability measure Qλ of (3.10) satisfies

‖Qλ − U‖2→2 ≤ 1− c

60k2n3
.

Proof: We may compare Qλ with Q of (3.1) using the domination and Cauchy
Schwarz∫∫

(f(x)± f(xy))2dxµij(dy) ≤ 1
c

∫∫
(f(x)± f(xy1y2 · · · yk))2dxλij(dy1) · · ·λij(dyk)

≤ k2

c

∫
(f(x)± f(xy))2.

This gives

〈(I ±Q)f, f〉 ≤ k2

c
〈(I ±Qλ)f, f〉. �

Variation 2. For 2 ≤ i < n, let µi correspond to uniform rotation in coordinates
(i− 1, i). Let

(3.11) Q =
1

n− 1

n∑
i=2

µi.

Thus Q corresponds to uniform rotation in pairwise adjacent coordinates. This
might be an appropriate model for energy exchange of n particles confined to a
line. The following theorem gets a bound on the spectral gap of Q.

Theorem 3.3. The probability measure Q of (3.11) satisfies

‖Q− U‖2→2 ≤ 1− 16
3n3

.
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Proof: Use the factorization of Corollary 2.2 without further symmetrization to
compare with the measure Q̃ of (3.4). The argument for Proposition 3.1 gives

〈(I − Q̃)f, f〉 ≤ (4n− 5)
[ ∫

(f(x)− f(xR)2dx + 4
n∑

i=2

∫
(f(x)− f(xg))2dxνi(dg)

]
≤ 5(4n− 5)(n− 1)〈(I −Q)f, f〉

where νi is as in Proposition 2.1. Thus

(3.12) 〈(I − Q̃)f, f〉 ≤ 20n2〈(I −Q)f, f〉.

Now, Lemma 3.2 yields, for any f ∈ L2
0,

‖f‖2
2 ≤

16
3

n3〈(I −Q)f, f〉.

�

An argument similar to that used in Proposition 3.2 shows

‖f‖2
2 ≤

16
3

n3〈(I + Q)f, f〉.

These results combine to prove the claim. �

Remarks: (1) We believe that the gap estimate c/n3 from Theorem 3.3 is sharp:
Kac’s walk is somewhat analogous to random transposition on the symmetric group
Sn whereas the variant of Theorem 3.3 is analogous to random adjacent transpo-
sition. The spectral gap of random transposition is of order 1/n whereas that of
random adjacent transposition is of order 1/n3 (See [7] and the references therein).

(2) In the arguments for Theorems 3.1–3.3 it is possible to avoid the use of
character theory but get a slightly worse bound. For example, consider Q defined
at (3.1). Use the factorization of Proposition 2.1 to represent a uniform rotation
as a product of

(
n
2

)
rotations. Using Cauchy–Schwarz and then Lemma 3.1 along

with symmetrization gives a bound of the form

‖f‖2
2 ≤ 2

(
n

2

)2

〈(I −Q)f, f〉.

The comparison with Q̃ and Rosenthal’s sharp bounds on the eigenvalues of Q̃
improve this by a factor of n.
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4. Rates of Weak Convergence.

4A. Introduction. This section develops bounds for the rate of convergence of
a random walk generated by a probability Q on a compact group G to stationar-
ity. The bounds use the second eigenvalue and some geometric information about
volume growth. Section B gives bounds for the dual bounded Lipschitz metric on
probabilities. Section C gives bounds for discrepancy. Section D specializes the
bounds to SO(n) and the n–sphere. The main results are summarized in Corollary
4.1 and Theorems 4.2, 4.3. We hope that this material may be more generally
useful. In the remainder of this introduction we set out our notation.

Let G be a compact metrizable group with normalized Haar measure dg. Let H
be a closed subgroup and X = G/H = {gH : g ∈ G} be the associated homogeneous
space (G acts on the left of X ). For example, if G = SO(n + 1), H = {id} (resp.
H = SO(n)). Then X = SO(n + 1) (resp. X = Sn the sphere in Rn+1).

Consider a symmetric measure Q on G (so Q(A) = Q(A−1) for Borel sets A).
Define

Qf(g) = Q ∗ f(g) =
∫

G

f(v−1g)Q(dv).

Hence Q is a Markov operator on G which is self–adjoint on L2(G) and commutes
with right translations.

Define a Markov kernel on X by setting

K(x, A) = Q(AHu−1) if x = uH, A = AH.

Let K`(x, dy) = K`
x(dy) denote the distribution after ` steps.

Recall that there exists on X a unique G–invariant probability measure m(dx) =
dx such that ∫

G

f(g)dg =
∫
X

∫
H

f(gh)dhdx

for any continuous function f (dh denotes the normalized Haar measure on H). It
follows that, if x = gH and f(u) = f(uH), we have

Qf(g) = Kf(x) =
∫

G

f(v−1x)Q(dv)

for any bounded measurable function f : X → R. The symmetry assumption on Q
implies that K is reversible with respect to m. We will work on L2 = L2(X ,m) on
which K is self–adjoint.

Let m : f → mf denote the operator that sends any function f to the constant
function mf(x) =

∫
f(y)dy and set

β = sup
f∈L2

{‖(K −m)f‖2

‖f‖2

}
where ‖f‖2

2 =
∫
X |f(y)|2dy.

Assume that X carries a G left–invariant distance d = dX . Let B(x, r) ⊂ X
denote the corresponding balls. Let ρ be the diameter of X .
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4B. Bounded Lipschitz Functions. Define the bounded–Lipschitz norm of a
function f by

‖f‖BL = ‖f‖∞ + L(f) with L(f) = sup
x6=y

|f(x)− f(y)|
d(x, y)

.

The functions with ‖f‖BL < ∞ form a Banach algebra carefully discussed in
Dudley (1976).

Consider the volume growth function s → V (s) = m(B(e, s)) where e is a base
point on X . By invariance of d and of the measure m, the volume V (r) does not
depend on the choice of e. The volume growth functions for SO(n) and Sn are
determined in Section 4C below.

Theorem 4.1. Assume that there are positive c and n such that V (r) ≥ c(r/ρ)n

for 0 < r ≤ ρ. Then, the Markov chain K` on X defined in Section 4A satisfies

‖(K` −m)f‖∞ ≤ 3ρc−1/(2+n)β2`/(n+2)L(f).

This theorem is proved by a sequence of lemmas. First observe that

‖(K` −m)f‖∞ = ‖(K` −m)(f − a)‖∞
for any constant a. It follows that we may assume that f changes sign on X . Now,
if f changes sign,

‖f‖∞ ≤ ρL(f).

Set χr(x, y) = V (r)−11B(x,r)(y) and

fr(x) = χrf(x) =
∫
X

f(y)χr(x, y)dy = V (r)−1

∫
B(x,r)

f(y)dy.

Lemma 4.1. For any Lipschitz function f ,

‖f − fr‖∞ ≤ rL(f).

Proof:∣∣∣f(x)−
∫

χr(x, y)f(y)dy
∣∣∣ ≤ ∫ |f(x)− f(y)|χr(x, y)dy ≤ rL(f).

�

Let Tg : f → Tgf be defined by Tgf(x) = f(gx) for any function f . Since the
distance d is invariant under the left action of G, we have gB(x, r) = B(gx, r) and

Tgfr(x) = fr(gx) = V (r)−1

∫
B(gx,r)

f(y)dy = V (r)−1

∫
gB(x,r)

f(y)dy

= V (r)−1

∫
B(x,r)

f(gy)dy = V (r)−1

∫
B(x,r)

Tgf(y)dy.

Hence Tgχr = χrTg for all r > 0 and g ∈ G. It follows that

(4.1) Kχr = χrK,

that is χr and K commute.
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Lemma 4.2. For any bounded function f ,

‖(K −m)`fr‖∞ ≤ β`V (r)−1/2‖f‖∞.

Proof: We have

(K −m)`fr(x) = (K −m)`χrf(x)

= χr(K −m)`f(x)

=
∫
X

∫
X

χr(x, z)(K`(z, y)− 1)f(y)dydz

≤
(∫

|χr(x, z)|2dz
)1/2

‖(K −m)`f‖2

≤ V (r)−1/2β`‖f‖2 ≤ V (r)−1/2β`‖f‖∞.

�

We return to the proof of the Theorem. Fix f , and assume that f changes sign
on X . Hence, ‖f‖∞ ≤ ρL(f). Write, for any r > 0,

‖(K` −m)f‖∞ ≤ ‖(K −m)`fr‖∞ + ‖(K` −m)(f − fr)‖∞
≤ V (r)−1/2β`‖f‖∞ + 2‖f − fr‖∞
≤ (V (r)−1/2β`ρ + 2r)L(f).

Observe also that ‖(K` − m)f‖∞ ≤ 2‖f‖∞ ≤ 2ρL(f). Thus, if we assume that
V (r) ≥ c(r/ρ)n for 0 < r ≤ ρ, it follows that

‖(K` −m)f‖∞ ≤ ρ[(c(r/ρ)n)−1/2β` + 2r/ρ]L(f)

for all r > 0. Picking r so that

(r/ρ)(2+n)/2 = c−1/2β`

yields
‖(K` −m)f‖∞ ≤ 3ρc−1/(2+n)β2`/(n+2)L(f).

�

We end this section by stating a version of Theorem 4.1 in terms of the dual
bounded Lipschitz distance. Following Dudley (1966), define the dual bounded
Lipschitz distance D∗(µ, ν) between two probability measures µ and ν by

D∗(µ, ν) = sup
‖f‖∞+L(f)≤1

|µ(f)− ν(f)|.
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Dudley [11,12,13,14] shows that D∗ metrizes weak ∗ convergence of probability
measures on X . Further, if the Prohorov metric on probability measures is defined
by

R(µ, ν) = inf
ε
{µ(A) ≤ ν(Aε)+ε, all Borel A}, Aε = {y ∈ G : ∃ x ∈ A : d(x, y) < ε}.

Then R(µ, ν) ≤ 2D∗(µ, ν).
Corollary 4.1 gives a bound for the rate of convergence in D∗ and R distance in

the presence of a bound on the spectral gap β.

Corollary 4.1. Assume that V (r) ≥ c(r/ρ)n for 0 < r ≤ ρ. Then, for every x,
and `, the Markov chain K` on X defined in Section 4A satisfies

D∗(K`
x,m) ≤ 3ρc−1/(2+n)β2`/(n+2).

4C. Discrepancy. Consider now the discrepancy distance associated to the metric
d defined by

D(µ, ν) = sup
x∈X ,r>0

{|µ(B(x, r))− ν(B(x, r))|}.

Discrepancy is a standard measure of the rate of convergence in the metric theory
of numbers. Kuipers and Nederiter (1974) is a book length treatment of techniques
to bound discrepancy. Phillips–Lubotzky–Sarnak (1986) give discrepancy bounds
for a random walk on the sphere. Su (1995) gives discrepancy rates for a variety
of random walks on compact spaces. Some remarks comparing these results to our
results appear at the end of this section.

Theorem 4.2. Assume that V (r) ≥ c(r/ρ)n for 0 < r ≤ ρ and that for some
C > 0

V (r + ε)− V (r − ε) ≤ Cε/ρ

for all r, ε > 0. Then, for every x and ` the Markov chain K` defined in Section
4A satisfies

D(K`
x,m) ≤ 2Cn/(n+2)c−1/(n+2)β2`/(n+2).

Proof: Fix ε, r > 0 and y ∈ X . Set B = B(y, r), ϕ(z) = 1B and ϕ1(z) =
1B(y,r−ε), ϕ2(z) = 1B(y,r+ε). Recall that χε,z(w) = V (ε)−11B(z,ε)(w). Viewing χε

has a Markov operator, we have

χεϕ1 ≤ ϕ ≤ χεϕ2.

Furthermore
m(|ϕ− χεϕi|) ≤ V (r − ε)− V (r + ε) ≤ Cε/ρ.

We consider two cases, depending on whether K`
x(B) ≥ m(B) or not.
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If K`
x(B) ≥ m(B), then

|K`
x(B)−m(B)| = K`ϕ(x)−m(B)

≤ K`χεϕ2(x)−m(B)

≤ m(|ϕ− χεϕ2|) + |(K` −m)χεϕ2(x)|

≤ Cε/ρ + c−1/2(ε/ρ)−n/2β`.

The last inequality uses the volume hypotheses and Lemma 4.2.
In the case where K`

x(B) < m(B) the same inequality is obtained by using ϕ1

instead of ϕ2 in the argument. Hence

|K`
x(B)−m(B)| ≤ Cε/ρ + c−1/2(ε/ρ)−n/2β`.

For (ε/ρ)(n+2)/2 = C−1c−1/2β` this yields

D(K`
x,m) ≤ 2Cn/(n+2)c−1/(n+2)β2`/(n+2).

�

Remark: Su (1995) analyzes simple random walk on the circle S1 taking steps ±α
for irrational α. He bounds the rate of convergence to stationarity giving results
that depend on the degree of irrationality of α. The bounds use standard tools from
uniform distribution mod(1): Leveque’s inequality and the Erdös–Turan bound [25].
In the notation of this section, Leveque’s inequality on S1 gives D(K`

x,m) ≤ Cβ2`/3

for a universal constant C. This also follows from Theorem 4.2. The Erdös–Turan
bound gives D(K`

x,m) ≤ C( 1
h + β` log h) for any positive integer h. Optimizing in

h gives as a slight improvement the bound C1`β`. On the sphere S2, Lubotzky–
Phillips–Sarnak (1986) show that discrepancy satisfies D(K`

x,m) ≤ Cβ2`/3 for a
universal C. Theorem 4.2 yields D(K`

x,m) ≤ Cβ`/2. Their improved estimate
leans heavily on special features available for dimension 2.

4D. Examples. To treat examples we will use the following results on volume
growth for Riemannian manifolds. Gallot, Hulin, and LaFontaine (1990) is a useful
reference for this material.

Lemma 4.3. (Bishop, Gromov; [15], p.133) Let M be a compact Riemannian
manifold of dimension n endowed with its distance function and its canonical Rie-
mannian measure. Let V(x, r) denote the volume of the ball of radius r > 0 around
x ∈ M . Let ρ be the diameter of M . Assume that the Ricci curvature of M is
nonnegative. Then

V(x, r)
V(x, t)

≤ rn

tn
and

V(x, r)− V(x, s)
V(x, t)

≤ rn − sn

tn
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for all 0 < t ≤ s ≤ r < +∞.
In particular, if V = V(ρ) is the volume of M , and V (x, r) = V(x, r)/V,

V (x, r) ≥ (r/ρ)n for all 0 < r ≤ ρ.

Furthermore,

V (x, r + ε)− V (x, r − ε) ≤ ωnnρn

V
(ε/ρ)

for all r, ε > 0 where ωn is the volume of the unit ball in Rn.

Example 1: G = SO(n + 1), H = SO(n), X = Sn ⊂ Rn+1 equipped with its
canonical Riemannian distance. Let

σn = Vol(Sn) =
2π(n+1)/2

Γ((n + 1)/2)

be the volume of the unit sphere in Rn+1. Recall that

ωn =
σn−1

n
=

2πn/2

nΓ(n/2)
.

The diameter of Sn is ρ = π. Corollary 4.1 and Theorem 4.2 yield

Theorem 4.3. For the sphere Sn, the bounded Lipschitz distance D∗ satisfies

D∗(K`
x,m) ≤ 3πβ2`/(n+2)

whereas the discrepancy D satisfies

D(K`
x,m) ≤ 2πnΓ((n + 1)/2)

Γ(n/2)
β2`/(n+2).

Example 2: X = G = SO(n), H = {id}. We need to fix an invariant metric
on SO(n) and compute the corresponding Riemannian volume V and diameter ρ.
The dimension of SO(n) is N =

(
n
2

)
. Up to scaling, there exists a unique bi–

invariant metric. Because of bi–invariance, we need only specify the distance to
the identity and d(m, id) only depends on the eigenvalues θi of m. For θ ∈ [0, 2π],
let |θ|1 = min(|θ|, |θ − 2π|). Then d2(m, id) is proportional to

∑
|θi|21. The Ricci

curvature of any bi-invariant metric on a compact Lie group is non-negative (in fact
the sectional curvature is non-negative). See, e.g., Proposition 3.17 in [15]. To fix
the scaling constant, recall that the Lie Algebra L of G = SO(n) can be identified
with the space of real skew symmetric matrices with the exponential map given by

exp : L → G, M → exp(M) = eM .
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Let {Ei,j : 1 ≤ i < j ≤ n} be the natural basis of L. Here Ei,j denote the matrix
with all entries equal to zero except the (i, j) and (j, i) entries which are respectively
equal to 1 and −1. The usual Euclidean structure

〈M,N〉 =
∑
i<j

Mi,jNi,j

for which the above basis is orthonormal give rise to a bi–invariant Riemannian
structure on G. For this Riemannian structure the volume form is given by

dg =
∣∣∣∧
i<j

gt
jdgi

∣∣∣
where g = (gi,j)1≤i,j≤n and gi is the column vector gi = (g`,i)1≤`≤n. The volume
Vn of SO(n) is then equal to (recall σi from Example 1)

Vn =
n−1∏

1

σi =
2n−1πN/2

Γ(n/2)Γ((n− 1)/2) · · ·Γ(3/2)Γ(1)
.

The diameter is equal to the diameter of a maximal torus which is

ρn = πk1/2 where n = 2k or n = 2k + 1.

More generally, in terms of eigenvalues the distance to the identity is exactly
d2(m, id)=

∑
|θi|21 for this normalization.

There is a more canonical choice of bi-invariant Riemannian metric which is
induced by the notion of Killing form. With the above notation the metric induced
by the Killing form on L is

B(M,N) = 2(n− 2)
∑
i<j

Mi,jNi,j = (n− 2)Tr(MN).

The Ricci curvature of the Killing form is 1
4B (see, e.g. Rothaus (1981) or [15]).

Here the constants c, C in Theorems 4.1, 4.2 and Corollary 4.1 are given by
c = 1 and

C =
4πN [n/2]N/2Γ(n/2)Γ((n− 1)/2) · · ·Γ(3/2)Γ(1)

2nΓ(N/2)
.

Recall that, for t ≥ 2,
√

2π(t− 1)t−1/2e−t+1e(12(t−1)+1)−1
≤ Γ(t) ≤

√
2π(t− 1)t−1/2e−t+1e(12(t−1))−1

.

Hence

Γ(n/2)Γ((n− 1)/2) · · ·Γ(3/2)Γ(1) ≤ n(2π)n/2[(n− 2)/2]N/2e(−N+n)/2,

Γ(n/2)Γ((n− 1)/2) · · ·Γ(3/2)Γ(1)
Γ(N/2)

≤ n(N/2)1/2e1+n/2(2π)(n−1)/2

(n/2)N/2
.

It follows that C ≤ 10N+1 if n ≥ 3. Applying these estimates we have
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Theorem 4.4. For the special orthogonal group SO(n), n ≥ 3, the bounded Lip-
schitz distance D∗ satisfies

D∗(K`
x,m) ≤ 3π(n/2)1/2β2`/(N+2)

whereas the discrepancy D satisfies

D(K`
x,m) ≤ 2× 10N+1β2`/(N+2)

where N = n(n− 1)/2.

5. Improved bounds for compact groups.

This last section shows how to take full advantage of the comparison with a
known random walk in controlling the bounded Lipschitz distance or discrepancy
on a compact group. In the case of Kac’s walk on SO(n), the bounds obtained
below improve by a factor of n those of Theorem 4.4. The trick is to refine the
comparison technique used in Section 4 to give bounds on all the eigenvalues (not
just the spectral gap) and then use this additional information. Some care is needed.
In our main example, the measure Q has eigenvalues of infinite multiplicity while
Q̃ has all eigenvalues of finite multiplicity.

Let G be a compact metrizable group equipped with its normalized Haar mea-
sure. Let Q be a symmetric probability measure. As in Section 4A, we also view
Q as a convolution operator. Q is then a self-adjoint operator on L2(G). Given a
finite dimensional subspace H of L2(G), define

β(H) = inf{〈Qf, f〉 : f ∈ H, ‖f‖2 = 1}

and set
βi = sup{β(H) : dimH = i + 1}, i = 0, 1, 2, . . . .

The βi’s form a non-increasing sequence, β0 = 1 and limi→∞ = β is the top of the
essential spectrum of Q. Note that this limit exists because the βi’s are bounded
below by −1.

We now repeat this construction for the negative eigenvalues by starting from
the opposite end of the spectrum. Namely, define

α(H) = sup{〈Qf, f〉 : f ∈ H, ‖f‖2 = 1}

and set
αi = inf{α(H) : dimH = i}, i = 1, 2, . . . .

This time the αi’s form a non-decreasing sequence and we set limi→∞ αi = α. This
is the bottom of the essential spectrum of Q. Note that

α ≤ β
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and that α = β = 0 if Q is a compact operator (e.g., when the measure Q has an
L2 density).

Set

(5.1) γ = max{−α, β}.

For any small ε ≥ 0, set

(5.2) Σε(`) =
∑
i: i>0

βi>γ+ε

|βi|2` +
∑

i:αi<−γ−ε

|αi|2`.

In words, Σε(`) is the sum of the power of the eigenvalues lying outside the
interval [−γ − ε, γ + ε] (excluding β0 = 1).

Remark: For ε > 0, Σε(`) is always finite: it is a finite sum. The quantity Σ0(`) is
infinite unless one of two cases arise:

(1) α = β = 0 and Q∗` has a density in L2(G), i.e., Q2` is trace class, in which
case

Σ0(`)1/2 = ‖Q`‖2→∞

is also the L2-norm of the density of Q∗` w.r.t. Haar measure.
(2) γ 6= 0 and there are only finitely many eigenvalues lying outside the interval

[−γ, γ]. In this second case, Σ0(`) is a finite sum and if γ = β (resp. −γ = α), β
(resp α) is an eigenvalue of infinite multiplicity (if β = −α = γ at least one of them
is an eigenvalue of infinite multiplicity, possibly both).

Keeping the notation of Section 4.B, we now can state a variant of Lemma 4.2.

Lemma 5.1. For any ε ≥ 0 and for any bounded function f ,

‖(Q−m)`fr‖∞ ≤
(
Σε(`)1/2 + (γ + ε)`V (r)−1/2

)
‖f‖∞.

Proof: It suffices to prove the result for ε > 0. The case ε = 0 then follows by
passing to the limit (if Σ0(`) is infinite, the limit inequality is trivial).

Fix ε > 0. Let Q =
∫ 1

−1
λdEλ be the spectral decomposition of Q. Define

Q2 =
∫

[−γ−ε,γ+ε]

λdEλ

and Q1 = Q − Q2. Observe that Q1 has density in L2(G) and that Q1, Q2 are
bounded operators on L2(G) with ‖Q2‖2→2 = γ + ε. Observe also that Q1Q2 = 0.
It follows that

(Q−m)` = (Q1 −m)` + Q`
2
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for any ` = 1, 2, . . . . Moreover,

‖(Q1 −m)`‖2→∞ = Σε(`)1/2.

Thus, we have

(Q−m)`fr(x) = (Q1 −m)`fr(x) + Q`
2χrf(x)

= (Q1 −m)`fr(x) + χrQ
`
2f(x)

≤ ‖(Q1 −m)`fr‖∞ + ‖χr‖2‖Q`
2f‖2

≤ ‖(Q1 −m)`‖2→∞‖fr‖2 + V (r)−1/2‖Q`
2‖2→2‖f‖2

≤
(
Σε(`)1/2 + V (r)−1/2(γ + ε)`

)
‖f‖∞.

Here we have used the obvious fact that ‖fr‖2 ≤ ‖f‖∞.
Using this Lemma, we obtain some improved versions of Theorem 4.1, 4.2.

Theorem 5.1. Under the assumptions of Theorem 4.1, the bounded Lipschitz dis-
tance is bounded by

D∗(Q`,m) ≤ Σε(`)1/2 + 3ρc−1/(2+n)(γ + ε)2`/(n+2),

for all ε ≥ 0.
Similarly, under the assumptions of Theorem 4.2, the discrepancy distance is

bounded by

D(K`
x,m) ≤ Σε(`)1/2 + 2Cn/(n+2)c−1/(n+2)(γ + ε)2`/(n+2),

for all ε ≥ 0.

Let us now illustrate how these results can be used for Kac’s walk on SO(n).
Keep the notation of Section 3.2. Let Q, Q̃ be the two probability measures on
SO(n) defined at (3.1), (3.4).

¿From the results of [36], all the eigenvalue of Q̃ have finite multiplicity and the
only accumulation point in the spectrum of Q̃ is 0. In fact, Q̃∗` has a bounded
density for ` large enough. Moreover, it is proved in [36] that there exist B and
b > 0 such that

(5.3) Σ̃0(`) ≤ Be−bt

for all t > 0 and ` such that

` ≥ 1
8
n log n + tn.
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By Proposition 3.1 and the minimax principle we have, with obvious notation,

(5.4) βi ≤ 1− 1− β̃i

16n2

for i = 0, 1, . . . ,. ¿From the definition of β and this inequality, it follows that

β ≤ 1− 1
16n2

.

Similarly, Proposition 3.2 yields

(5.5) αi ≥ −1 +
1 + α̃i

16n2

for i = 1, 2, . . . , and

α ≥ −1 +
1

16n2
.

This yields the following lemma.

Lemma 5.2. Referring to the measures Q, Q̃ on SO(n) defined at (3.1), (3.4), we
have

γ ≤ 1− 1
16n2

, γ̃ = 0.

Moreover
Σδ(`) ≤ Σ̃0([`/32n2])

for

δ = 1− 1
32n2

− γ.

Proof: Only the second inequality need a further argument. The sum Σδ(`) only
involves eigenvalues that fall outside [−1 + (1/32n2), 1− (1/32n2)]. By (5.4)-(5.5),
the corresponding eigenvalues of Q̃ must be outside [−1/2, 1/2]. Thus,

Σδ(`) ≤
∑

i:β̃i≥1/2

(
1− 1− β̃i

16n2

)2`

+
∑

i:α̃i≤−1/2

(
1−

1− |̃αi|
16n2

)2`

.

By the elementary inequalities ∀x ∈ (0,∞), 1−x ≤ e−x and ∀x ∈ (1, 1/2), e−2x ≤
1− x, we get

Σδ(`) ≤ Σ̃1/2([`/32n2]).

�
Now, for the bounded Lipschitz distance D∗, Lemma 5.2, (5.3) and Theorem 5.1

yield (in applying Theorem 5.1, recall that SO(n) has dimension N = n(n + 1)/2,
not n)

D∗(Q`,m) ≤ Be−bt + 3π(n/2)1/2e−`/(8n3(n+1))

for all t > 0 and ` such that

` ≥ 2n3 log n + 16n3t.

It is easy to check that the dominant term is the last term and this gives convergence
for ` of order n4 log n.
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Theorem 5.2. For Kac’s walk on SO(n) there exists a constant B such that

D∗(Q`,m) ≤ Be−t

for all `, t > 0 such that
` ≥ 4n4 log n + 8n4t

whereas the discrepancy distance satisfy

D(Q`,m) ≤ B′e−t

for all `, t > 0 such that
` ≥ 4n6 + 8n4t.

Thanks to (3.12), the same result holds also for the walk Q defined at (3.11) with
slightly different numerical constants. This is worth mentioning because it seems
it would be hard to improve upon this result in the case of Q.
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21. Janvresse E. (1999), Bounds on random rotations on the sphere, Preprint.
22. Kac, M. (1956), Foundations of Kinetic Theory, Proc. 3rd Berkeley Sympos. (J. Neymann,

ed.) Vol. 3, pp. 171–197.

23. Kac, M. (1959), Probability and Related Topics in Physical Science, Wiley Interscience, N.Y.
24. Kloss, B. (1959), Limiting distributions on bicompact topological groups, Th. Prob. Appl. 4,

237–270.
25. Kuipers, L. and Niederreiter, H. (1974), Uniform Distribution of Sequences, Wiley, N.Y.

26. Lubotzky, A., Phillips, R. and Sarnak, P. (1986), Hecke operators and distributing points on

the sphere I, Comm. Pure Appl. Math. 39, Supplement 1, S149–S186.
27. Maslin, D. (1999), The eigenvalues of Kac’s master equation, Preprint, Department of Math-

ematics, Dartmouth..

28. McKean, H. (1966), Speed of approach to equilibrium for Kac’s caricature of a Maxwellian
gas, Arch. Rational Mech. Anal 2, 343–367.
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