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Abstract. This paper is concerned with the problem of distributing pieces of infor-
mation to nodes in a network in such a way that any pair of nodes can compute a secure
common key but the amount of information stored at each node is small. It has been
proposed that a special type of finite incidence structure, called akey distribution pattern
(KDP), might provide a good solution to this problem. We give various lower bounds on
the information storage of KDPs. Our main result shows that in general KDP schemes
necessarily have greater information storage at the nodes than the minimum possible.
This minimum is achieved by a scheme not based on KDPs.
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1. Introduction

Consider a network ofv nodes, each of which must be able to communicate with each
other node, using a symmetric cryptosystem. Then each pair of nodes requires a crypto-
graphic key available to them but to no other node. To provide sufficient security, each
of these keys has to contain a certain amount of information. Throughout this paper we
usen to denote the number of bits of information required in each key. (It is convenient
from Section 4 onwards to measure information in bits, and so we do so throughout.)

A key distribution scheme(KDS) is a method of distributing secret pieces of informa-
tion to nodes in the network in such a way that any pair of nodes can compute a secure
common key. The nodes compute the keys without further secure communication with
the server which initially distributes the secret information.

The obvious (trivial ) KDS would be for every node in the network to be provided
with a separate key for use with each other node. This would require each node to store
v − 1 keys, each ofn bits, and the server to generate, and probably store,

(
v

2

)
keys, each

of n bits. The disadvantage of this scheme is the large amount of information storage
required.
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Various KDSs have been proposed which significantly reduce the amount of informa-
tion storage over that required by this trivial scheme, but this can be done only at a cost.
We say that a KDS isw-secureif, given any pair of nodes, any set ofw or fewer other
nodes may pool their information and still have no better chance of correctly guessing the
key of the pair than an outsider of the network. Clearly, the trivial KDS is(v−2)-secure,
but all the proposed schemes arew-secure only for much smaller values ofw.

Blom [1] has shown that with anyw-secure KDS, each node must store at least(w+1)n
bits of information. This bound is tight: Blom gives a construction for a class ofw-secure
KDSs achieving it. The total amount of secret information generated and stored by the
server in Blom’s scheme is12(w + 1)(w + 2)n bits.

In [7] Mitchell and Piper show how design theory provides a source of KDSs. They
define a certain special type of finite incidence structure, which they call akey distribution
pattern(KDP). Essentially the idea is as follows. The server generates a ground set of
subkeys, each of which consists of independent secret information, and distributes a
different subset of the ground set to each node. Information about which subkeys each
node has is public knowledge, using reference numbers for the subkeys. The key to be
used by a pair of nodes is made up by combining those subkeys which the pair of nodes
have in common. The combining should be done using a publicly known functionf ,
which takes a number of subkeys as argument and yields a key containingn bits of
information. The sets of subkeys distributed to the nodes have to be specially chosen to
ensure that the system isw-secure for a specified value ofw, and this is what the structure
of a KDP achieves. We give a formal definition of a KDP in Section 2. Several classes of
KDPs are described in [4] and [6]–[9]. In [3] KDPs are constructed using probabilistic
methods.

For our purposes in this paper the nature of the functionf does not matter. If the
subkeys and keys are bit-strings, we can use concatenation, but the resulting long strings
of bits may be unsuitable in some applications. If the subkeys and keys are all bit-strings
of the same lengthn, we can simply add the subkeys in GF(2)n to obtain the keys. A
more general, and flexible, approach is the use of so-calledresilient functions; this is
discussed in [10].

In this paper we are concerned with the question of the extent to which the key storage
requirement of a network can be reduced by the use of a KDP.

Section 2 covers the basic definitions relating to KDPs. In Section 3 we briefly review
some bounds on the number of subkeys at each node and on the total number of subkeys
which other authors have published, and also prove some new bounds.

In order to consider properly the question of the extent to which the key storage
requirement of a network can be reduced by the use of a KDP, we should seek bounds
not only on the number of subkeys, but also on the total information which the subkeys
contain. The definitions relevant to this are introduced in Section 4.

In Section 5 we prove a lower bound on the information storage at each node which can
be achieved using a KDP. This bound shows that KDPs will not in general yield KDSs
with node storage as good as that achieved by Blom’s KDSs. The difference between the
bound and the node storage achieved by Blom’s KDSs is negligible ifw (the number of
colluders protected against) is small compared withn (the number of bits of information
required in each key), but asw increases, the difference becomes significant.
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2. Key Distribution Patterns

KDPs may be thought of either as set systems, as in [3], or as incidence structures, as in
[7], the original paper on the subject. The main reason for thinking of them as incidence
structures, which is slightly more complicated, is that design theory provides many
interesting examples of KDPs [6]–[9]. We use the incidence structure representation, for
consistency with earlier work.

All references to designs in this paper are brief and non-central. Definitions of any
design theory terms and notation which we do not define can be found in [5].

An incidence structure(or simplystructure) is a tripleS = (P,B, I ), whereP andB
are non-empty sets of objects, calledpointsandblocks, respectively, andI ⊆ P × B. If
P andB are finite, then we say thatS is afinite incidence structure. We callP thepoint
setof S andB theblock setof S. We usually denote|P| byv and|B| by b. If point P and
block x are such that(P, x) ∈ I , then we say thatP andx areincidentwith each other.
The set of blocks incident with a pointP is usually denoted by(P), and analogously the
set of points incident with a blockx is denoted by(x).

A common way to specify an incidence structure is to list theb sets in the multiset
{(x) | x ∈ B}. For example, the following list specifies an incidence structure with eight
points 1,2, . . . ,8 and sixteen blocks:

{1,3,5,7}, {1,4,5,8}, {1,3,6,8}, {1,4,6,7},
{2,4,6,8}, {2,3,6,7}, {2,4,5,7}, {2,3,5,8},
{1,2}, {3,4}, {5,6}, {7,8},
{1,2}, {3,4}, {5,6}, {7,8}.

An incidence structure could equally well be specified by listing thev sets in the
multiset{(P) | P ∈ P}. Although this is non-standard, it is sometimes a convenient
way to think of incidence structures when considering KDPs. For example, if we label
the blocks of the above structure by 1,2, . . . ,16, respectively, then this same structure
is specified by the following list of subsets of the setB = {1,2, . . . ,16}:

{1,2,3,4,9,13}, {5,6,7,8,9,13},
{1,3,6,8,10,14}, {2,4,5,7,10,14},
{1,2,7,8,11,15}, {3,4,5,6,11,15},
{1,4,6,7,12,16}, {2,3,5,8,12,16}.

A w-secure key distribution pattern(w-KDP) is a finite incidence structureK =
(P,B, I ) with at leastw + 2 points with the property that

(P1) ∩ (P2) 6⊆ (Q1) ∪ (Q2) ∪ · · · ∪ (Qw)

for all subsets{P1, P2, Q1, Q2, . . . , Qw} of w + 2 points ofP, wherew ≥ 1. To use
a KDPK to give a KDS, we identify each node of the network with a point ofK and
a subkey with each block ofK. Each nodeP is issued with the subkeys in(P). When
discussing KDPs, we use the wordspoint andnodeand the wordsblock andsubkey
interchangeably. The special property which we require of aw-KDP ensures that the
key of a pair of nodes cannot be compromised by any colluding set ofw or fewer other
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nodes, since no set ofw other nodes will between them hold all of the subkeys which
the pair have in common. Thus, if every subkey containsn bits of information, the same
as in the keys, then aw-secure KDP gives aw-secure KDS. Of course, aw-KDP is a
w′-KDP for all w′ with 1 ≤ w′ ≤ w. Since, in particular, everyw-KDP is a 1-KDP, a
1-KDP will usually just be called a KDP.

For example, the particular structure with eight points specified earlier in this section
is a 1-KDP. To see this, it is perhaps easiest to look at the second representation of the
structure, the list of the sets in{(P) | P ∈ P}: these correspond to the eight sets of
subkeys to be issued to the eight nodes, and it can be verified that no two of the sets listed
have an intersection which is a subset of a third set in the list. This second representation
is essentially the KDP as a set system.

Note that the reason for identifying points with nodes and blocks with subkeys, rather
than the other way round—which might initially seem more natural—is that with this
definition, many designs, and structures derived from designs, are KDPs. In design theory
we specify that two points must have a number of blocks in common, which connects
with our requirement that in a KDP two nodes must have some subkeys in common.

The trivial KDS forv nodes, in which each node is provided with a separate key for
use with each other node, corresponds to a KDP withv points,

(
v

2

)
blocks andv − 1

blocks on each point, which we call thetrivial KDP on v points. (It is just the trivial
2-(v,2,1) design.) For this KDP, subkeys are the same as keys. The trivial KDP withv

points is(v − 2)-secure.
The trivial KDPs provide a yardstick by which we may judge other KDPs. We denote

the number of subkeys of a KDP incident with a nodeP by r
P

and the total number of
subkeys of the KDP byb. A KDP which hasr

P
smaller thanv − 1 for each nodeP

gives a better node storage than the trivial KDP withv nodes. Similarly, a KDP which
hasb smaller than

(
v

2

)
gives a better total storage at the server than the trivial KDP with

v nodes.

3. Bounds for the Number of Subkeys in a KDP

In this section we give lower bounds for the valuesb andr
P

of a KDP. These can be
compared with the valuesr

P
= v−1 andb = (v2) for the trivial KDP withv nodes. If we

are concerned only with the case in which subkeys consist ofn bits (other possibilities
are discussed in Section 4), the lower bounds forr

P
can be multiplied byn to give a

direct comparison with Blom’s lower bound of(w + 1)n bits for the node storage in a
KDS. We use lg to denote log2.

The first few bounds in this section are derived from a result of Sperner, which we
now state. A setF of subsets of a finite ground setG is called aSperner systemif none
of the sets inF contains another. Examples of large Sperner systems are easily found:
if |G| = g, then, for anys with 0≤ s ≤ g, the set of alls-subsets (that is, subsets withs
elements) ofG is a Sperner system. Of these, the set of allbg/2c-subsets ofG contains
the most sets, and the following theorem of Sperner (1928) states that no Sperner system
with ground setG can contain more sets than this. A proof can be found in [2].

Result 3.1. A Sperner system whose ground set contains g elements consists of at most( g
bg/2c

)
sets.
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The following result gives simple lower bounds onr
P

andb. It essentially appears in
[3] and in a slightly different form in Mitchell and Piper’s original paper [7].

Result 3.2. For a KDP withv nodes,

r
P
≥ lg v for any node P,

and

b ≥ 2 lg(v − 1).

Proof. Let P be a node of a KDPK = (P,B, I )withv nodes. Notice that(P)must have
at leastv− 1 distinct non-empty subsets, namely, the sets in{(P)∩ (Q) | Q ∈ P\{P}}.
Hencev − 1≤ 2r

P − 1, that is,r
P
≥ lg v.

For the bound onb, notice that the
(
v

2

)
sets in{(P1) ∩ (P2) | {P1, P2} ⊆ P} form a

Sperner system with ground setB. Therefore, by Result 3.1 (Sperner’s theorem),(
b

bb/2c
)
≥
(
v

2

)
.

It is straightforward to prove by induction that

2b−1 ≥
(

b

bb/2c
)

for all positive integersb, so we may deduce that 2b−1 ≥ 1
2(v − 1)2, that is,b ≥

2 lg(v − 1).

Note that the inequality (
b

bb/2c
)
≥
(
v

2

)
of the above proof is used in [3] to derive the boundb ≥ 2 lgv, which is slightly better
than the bound we give. However, it appears that a less straightforward derivation is
required for a marginal improvement in the bound.

In [3], Dyer et al. use probabilistic methods to construct 1-KDPs withv nodes which
haveb = d13 lgve, and which have a mean value forr

P
of approximately26

3 lg v.
Non-probabilistic constructions have not yielded KDPs with values ofb andr

P
of this

order. Amongst the best of the deterministically constructed families of 1-KDPs are the
following. It is easy to show that the biplanes (symmetric 2-designs) are KDPs which
achieveb = v andr

P
≈ √2v for each nodeP, but note that the largest known biplane

hasv = 79. An infinite family of 1-KDPs constructed from finite projective planes in
[9] hasb = 2v andr

P
≈ 2
√
v for each nodeP.

Result 3.2 above gives bounds forr
P

andb for KDPs in general. We would expect
to find stronger bounds for KDPs which arew-secure forw > 1. In [3] Dyer et al. use
Sperner’s theorem to derive a bound onb for w-KDPs, as follows.
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Result 3.3. [3] For aw-KDP withv nodes,

b ≥ w(2 lgv − lgw − 1).

We see from this that we must haveb growing at least linearly with the number of
potential colluders.

Dyer et al., in [3], use probabilistic methods to constructw-KDPs onv nodes which
haveb < d2(w+2)3 ln ve. The multimap scheme of [4] gives an infinite family of KDPs
with v nodes andb = (w + 1)v.

In [3], which is primarily concerned with finding KDPs with a small value ofb, no
bound better than the simple bound of Result 3.2 is given forr

P
in aw-KDP. Here we

give two improved bounds.
First, we use the technique of Dyer et al.’s proof of the bound forb in Result 3.3 to

derive an analogous bound forr
P
.

Theorem 3.4. For any node P of aw-KDP withv nodes,

r
P
≥ w(lg(v − 1)− lgw).

Proof. Let P be a node of aw-KDP with v nodes. Consider thev − 1 sets in

{(P) ∩ (Q) | Q ∈ P\{P}}.
We claim that the

(
v−1
w

)
possible unions ofw of the elements of this set form a Sperner

system (with ground set(P)). For suppose not. Then for some nodes we would have

[(P) ∩ (Q1)] ∪ · · · ∪ [(P) ∩ (Qw)] ⊆ [(P) ∩ (R1)] ∪ · · · ∪ [(P) ∩ (Rw)],
where there is a nodeQi on the left which is not one of the nodesR1, . . . , Rw on the
right. For this node we obtain

(P) ∩ (Qi ) ⊆ (R1) ∪ · · · ∪ (Rw),
which contradicts the assumption thatK is aw-KDP.

Applying Sperner’s theorem gives(
r

P

br
P
/2c

)
≥
(
v − 1

w

)
.

Using the fact that

2r
P
−1 ≥

(
r

P

br
P
/2c

)
we obtain

2r
P
−1 ≥

w−1∏
i=0

v − 1− i

w − i
.

It is easy to see that the factors on the right increase withi so we may deduce that
2r

P
−1 ≥ ((v − 1)/w)w, from which it follows thatr

P
− 1 ≥ w(lg(v − 1) − lgw). The

result follows.
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We see from this thatr
P

too must grow at least linearly with the numberw of potential
colluders, and also with the logarithm of the number of nodes in the network.

Dyer et al. in [3], use probabilistic methods to constructw-KDPs onv nodes which
haver

P
< d4(w + 2)2 ln ve. In [9] finite affine planes are used to constructw-KDPs on

v nodes withr
P
≈ (w + 2)

√
v, for w ≤ √v − 1.

In the next theorem (Theorem 3.6) we give a second bound forr
P

which shows that
r

P
must grow at least with the square of the numberw of potential colluders, untilr

P
reaches the value forr

P
found in the trivial KDP. We begin by establishing a lemma.

Lemma 3.5. Let P1 and P2 be two nodes of aw-KDPK = (P,B, I ) such that every
subkey in(P1) ∩ (P2) is held by at least one other node. Then, for any subset S of
P\{P1, P2} with 0≤ |S| ≤ w,∣∣∣∣∣(P1) ∩ (P2)\

⋃
Q∈S

(Q)

∣∣∣∣∣ ≥ w + 1− |S|.

Proof. Suppose not. LetSbe a maximal subset ofP\{P1, P2} with 0≤ |S| ≤ w such
that ∣∣∣∣∣(P1) ∩ (P2)\

⋃
Q∈S

(Q)

∣∣∣∣∣ ≤ w − |S|.
SinceK is aw-KDP we know that∣∣∣∣∣(P1) ∩ (P2)\

⋃
Q∈S

(Q)

∣∣∣∣∣ ≥ 1.

It follows from these two inequalities that|S| ≤ w − 1. Also, from the second of these
two inequalities and the fact that every subkey in(P1) ∩ (P2) is held by at least one
other node, we can deduce that some nodeQ′ ∈ P\(S∪ {P1, P2}) must hold a subkey
in (P1) ∩ (P2). Therefore∣∣∣∣∣(P1) ∩ (P2)\

⋃
Q∈S∪{Q′}

(Q)

∣∣∣∣∣ ≤ w − |S| − 1.

We see from this that the setS∪ {Q′} has the necessary properties to contradict the
maximality ofS. This completes the proof.

Before we prove the next theorem, we point out that it is an immediate corollary of
Lemma 3.5 that every pair of nodes of aw-KDP must either have a common subkey
which is held by no other node (as they would in the trivial KDP), or must combine at
leastw + 1 subkeys to form their key.

Theorem 3.6. For any node P of aw-KDP withv nodes,

r
P
≥ min{v − 1, 1

2(w + 1)(w + 2)}.
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Proof. Let P be a node of aw-KDP K = (P,B, I ) with v nodes. Suppose that
r

P
< v − 1.
Let S be the set of all nodes inP\{P} which are such that every subkey held by the

node and byP is also held by a third node. LetS′ consist of all other nodes inP\{P},
that is, those which hold a subkey held byP which is held by no third node. Then
|S′| = v − 1− |S|.

We now show that|S| ≥ w+2. SinceP has a different subkey in common with every
node inS′, r

P
≥ v − 1− |S|. Hence, sincer

P
< v − 1, S is non-empty. LetQ ∈ S. By

Lemma 3.5,|(P)∩ (Q)| ≥ w+1. Also P has at least one distinct subkey not held byQ
in common with every node inS′. Hencer

P
≥ (w+ 1)+ (v − 1− |S|) = w+ v − |S|.

However,r
P
< v − 1, so it follows thatv − 1> w + v − |S|, that is,|S| ≥ w + 2.

Let {Q1, Q2, . . . , Qw+1} ⊂ S. By Lemma 3.5, for 0≤ j ≤ w, (P)∩ (Qj+1) contains
at leastw + 1− j subkeys not in

⋃ j
i=1(Qi ). So

r
P
≥ (w + 1)+ w + (w − 1)+ · · · + 1

= 1
2(w + 1)(w + 2)

as stated.

Unless aw-KDP is known to have further properties of the type discussed in the
next section, in an implementation of the KDP the subkeys would have to contain the
same numbern of bits of information as the keys. Theorem 3.6 tells us that in such an
implementation of aw-KDP onv nodes, the information storage at any nodeP must
either be at least(v − 1)n bits, that is, at least what it would be if the trivial KDS were
used, or else it must be at least1

2(w + 1)(w + 2)n bits. This compares badly with the
optimal value of(w + 1)n bits achieved by Blom’s KDSs.

4. KDP Systems in Which Subkeys Can Contain Less Information than Keys

Having fewer subkeys is one way in which a KDP can improve on the information
storage of the trivial KDP, but there is another way. Some KDPs have properties which
permit the subkeys to contain less information than the keys. This was first pointed out
by Mitchell in [6]. We consider this next, but first we take note of an assumption which
applies throughout the remainder of this paper and upon which the results in Section 5
are strongly dependent.

In all the published work on KDPs, it is assumed that the subkeys are strings of binary
digits, randomly generated by the server. In this paper we are essentially still concerned
with this same situation. However, for precision we make a more minimal assumption,
namely, that the subkeys each contain at least one bit of information. We assume that
this is true of the keys also. Recall that we also assume that the subkeys are independent
of each other.

LetK = (P,B, I ) be a KDP. For each subkeyx ofK, let l (x) denote the information
content ofx in bits, so thatl is a mapping from the setB of subkeys to the real numbers
greater than or equal to one. We call any mappingl :B → [1,∞) an information map
for K.
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We write(K, l ) for the system consisting of a KDPK together with an information map
l for K . If X is a set of subkeys of a system(K, l ), then we denote the total information
content in bits of the subkeys inX by ‖X‖, that is,‖X‖ =∑x∈X l (x).

Suppose thatK is aw-KDP for somew ≥ 1. Bearing in mind that we want aw-
secure KDS, we consider the property which we would require an information mapl of
K to possess. Let{P1, P2, Q1, Q2, . . . , Qw} be any set ofw + 2 distinct nodes ofK.
Since we must ensure that, even ifQ1, Q2, . . . , Qw pool their subkey sets, their chance
of guessing then-bit key of the pairP1, P2 is no greater than that of an outsider who
knows none of the subkeys in(P1) ∩ (P2), we must ensure that at leastn bits of infor-
mation not from the subkeys in

⋃w
i=1 Qi contribute to the key of the pairP1, P2. That is,

we require

∥∥∥∥∥(P1) ∩ (P2)\
w⋃

i=1

(Qi )

∥∥∥∥∥ ≥ n. (1)

We require this to hold for all sets{P1, P2, Q1, Q2, . . . , Qw} of w+ 2 distinct nodes of
(K, l ). We thus make the following definition.

LetK = (P,B, I ) be a KDP. We calll :B→ N aw-secure information mapfor K if
(K, l ) satisfies (1) for every set{P1, P2, Q1, Q2, . . . , Qw} of w + 2 nodes ofK. Notice
thatK must be aw-KDP for such a mappingl to exist, and that ifl is w-secure forK,
thenl is w′-secure forK for everyw′ with 1 ≤ w′ ≤ w. Clearly, ifK is anyw-KDP,
the information map which sets the information content of every subkey to ben bits, the
same as the information content of the keys, is aw-secure information map forK . We
call this mapLn. However, manyw-KDPs admit a better information map.

As an example of this consider the following. There is a particular KDPK = (P,B, I )
with 10 nodes and 30 subkeys which isw-secure forw ≤ 3 and has the property
that any three nodes have exactly one subkey in common and any two nodes have
exactly four subkeys in common. (A 3-(10,4,1) inversive plane is such a KDP.) This
means that, consideringK as a 1-KDP, if we take any set{P1, P2, Q} of three nodes,
then(P1) ∩ (P2)\(Q) will contain exactly three subkeys. Therefore subkeys need only
containn/3 bits of information. Similarly, considering it as a 2-KDP, if we take any set
{P1, P2, Q1, Q2} of four nodes, then(P1) ∩ (P2)\(Q1) ∪ (Q2) will contain at least (in
fact, exactly) two subkeys. Therefore subkeys need only containn/2 bits of information.
If we consider it as a 3-KDP, then subkeys have to containn bits of information.

This particular KDP is of course too small to be of any practical use but larger inversive
planes are useful KDPs with similar properties. A fuller discussion of the inversive planes
in this context can be found in [6].

LetK be a KDP and letl be an information map forK. We writeβ for ‖B‖ and, for
any nodeP of K, we writeρ

P
for ‖(P)‖. Soρ

P
represents the total number of bits of

information contained in the subkeys in(P), andβ represents the total number of bits
of information generated, and perhaps stored, by the server.

A good KDP is one which allowsρ
P
, for each nodeP, to be reduced to significantly

less than the corresponding value for the trivial KDP on the same numberv of nodes, that
is, to significantly less than(v − 1)n, or which allowsβ to be reduced to significantly
less than the corresponding value for the trivial KDP on the same number of nodes, that
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is, to significantly less than
(
v

2

)
n. Whether we are interested in a small value ofρ

P
, or a

small value ofβ, or both, will depend on the application. Usually we are interested in a
small information storage at the nodes, soρ

P
is likely to be important.

As we have seen, there are two ways in which aw-KDP can achieve a small information
storage at the nodes: by having a small value ofr

P
for each nodeP, or by admitting a

“good” w-secure information map. The biplanes have only the first of these properties,
and the inversive planes have only the second, but some KDPs have both properties: for
example, a family of such KDPs is constructed in [9].

Similarly, aw-KDP can achieve a small total information storage by having a small
value ofb or by admitting a goodw-secure information map.

Of course, allowing the subkeys to contain less information than the keys can reduce
the information storage at the nodes and the total information storage of a KDP to at
best 1/n times what these values would be otherwise, and this would involve a large
number of subkeys each containing only a small amount of information (just one bit for
maximum effect), which may in itself have disadvantages.

Finally, in this section, it is possibly worth pointing out that Theorem 3.6 gives us
some insight into the maximum number of nodes whose collusion a KDP can protect
against. Consider a network ofv nodes. First suppose that we use a KDP onv nodes in
which the number of subkeys at a nodeP is at least the same as the number of subkeys at
P in the trivial KDP, that is, at leastv− 1. Then the information storage atP must be at
leastv−1 bits, that is, at least 1/n times the node storage of the trivial KDP. (We assume
throughout that we use the information mapLn for the trivial KDP: clearly, it does not
admit a better information map.) Suppose on the other hand that we use a KDP in which
the number of subkeys at a nodeP is less than the number atP in the trivial KDP, that
is, less thanv − 1. Then, by Theorem 3.6, we must have1

2(w + 1)(w + 2) < v − 1,
showing that the maximum number of colluders that the KDP can protect against is at
most approximately

√
2v.

5. Bounds for the Information Storage in a KDP System in Which Subkeys
Can Contain Less Information than Keys

Note first that each of the bounds forr
P

andb in Section 3 immediately gives a corre-
sponding bound forρ

P
or β. Under the assumptions at the beginning of Section 4, for

any KDP with any 1-secure information map, we have thatρ
P
≥ r

P
for any nodeP,

andβ ≥ b. Therefore we may replacer
P

by ρ
P

andb by β in all the lower bounds of
Section 3 to yield valid bounds forρ

P
andβ.

However, in this section we adapt the proofs of Lemma 3.5 and Theorem 3.6, under
these same assumptions, to yield a better lower bound forρ

P
. This lower bound gives

the comparison with Blom’s optimal schemes to which we referred in the introduction.
We begin with the adaptation of Lemma 3.5.

Lemma 5.1. LetK be aw-KDP and let l be aw-secure information map forK. Let P1

and P2 be any two nodes of(K, l ) such that the total amount of information contained in
subkeys held by only P1 and P2 is less than n bits. Then, for any subset S ofP\{P1, P2}
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such that0≤ |S| ≤ w, ∥∥∥∥∥(P1) ∩ (P2)\
⋃
Q∈S

(Q)

∥∥∥∥∥ ≥ w + n− |S|.

Proof. Suppose not. LetSbe a maximal subset ofP\{P1, P2} with 0≤ |S| ≤ w such
that ∥∥∥∥∥(P1) ∩ (P2)\

⋃
Q∈S

(Q)

∥∥∥∥∥ < w + n− |S|.

Sincel isw-secure forK we know that∥∥∥∥∥(P1) ∩ (P2)\
⋃
Q∈S

(Q)

∥∥∥∥∥ ≥ n.

It follows from these two inequalities that|S| < w. Also, from the second of these two
inequalities and the fact that the total amount of information contained in subkeys held
only byP1 andP2 is less thann bits, we can deduce that some nodeQ′ ∈ P\(S∪{P1, P2})
must hold a subkey in(P1) ∩ (P2). This subkey contains at least one bit of information
and therefore ∥∥∥∥∥(P1) ∩ (P2)\

⋃
Q∈S∪{Q′}

(Q)

∥∥∥∥∥ < w + n− |S| − 1.

We see from this that the setS∪ {Q′} has the necessary properties to contradict the
maximality ofS. This completes the proof.

The next theorem states the main result.

Theorem 5.2. LetK be aw-KDP and let l be anyw-secure information map forK.
Then, for any node P of(K, l ),

ρ
P
≥ min

{
v − 1, (w + 1)

(
n+ w

2

)}
.

Proof. Let P be a node ofK. Suppose thatρ
P
< v − 1. Let S be the set consisting

of all nodes inP\{P} which are such that the total amount of information contained in
subkeys which are held by the node and byP but by no third node is less thann bits.
Let S′ consist of all other nodes inP\{P}, that is, those which are such that the the total
amount of information contained in subkeys which are held by them and byP but by no
third node is at leastn bits. Then|S′| = v − 1− |S|. We now show that|S| ≥ w + 2.
SinceP must have a different subkey in common with every node inS′, r

P
≥ v−1−|S|,

and hence since subkeys must contain at least one bit of information,ρ
P
≥ v− 1− |S|.

However,ρ
P
< v − 1 sov − 1 > v − 1− |S|, that is,|S| ≥ 1. Let Q ∈ S. By Lemma

5.1,‖(P)∩ (Q)‖ ≥ w+ n ≥ w+ 1. Also P has at least one distinct subkey not held by
Q in common with every node inS′, and each of these must contain at least one bit of
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information. Henceρ
P
≥ (w+1)+ (v−1−|S|) = w+ v−|S|. However,ρ

P
< v−1

so it follows thatv − 1> w + v − |S|, that is,|S| ≥ w + 2.
Let {Q1, Q2, . . . , Qw+1} ⊂ S. By Lemma 5.1, for 0≤ j ≤ w, the subkeys in

(P)∩ (Qj+1) contain at leastw+ n− j bits of information not contained in subkeys in⋃ j
i=1(Qi ). So

ρ
P
≥ (w + n)+ (w + n− 1)+ (w + n− 2)+ · · · + n

= (w + 1)
(
n+ w

2

)
as stated.

The first bound in Theorem 5.2 above says thatρ
P

is greater than or equal to 1/n times
the node storage(v − 1)n of the trivial KDP: this is poor in comparison with the value
ρP = (w+1)n attained by Blom’s KDSs. The second possibilityρ

P
≥ (w+1)(n+w/2)

is also inferior to the value ofρP attained by Blom’s KDSs. If the value ofw (the number
of colluders protected against) is relatively small compared withn (the number of bits
of information required in each key), the difference between(w + 1)(n + w/2) and
(w + 1)n is neglible, but asw increases, the difference becomes significant. Note also
that in order to approach the boundρ

P
≥ (w + 1)(n + w/2) we would have to use a

KDP system involving a large number of subkeys each containing only a small amount
of information (approaching one bit), which may in itself have disadvantages.

There is an infinite family of KDPs, with node storage better than that of the corre-
sponding trivial KDP, attaining the first boundρ

P
≥ v − 1, as follows. Letq be any

prime power. Taking an external structure of a 3-(q2+1,q+1,1) inversive plane yields
a 2-design. This design is a KDP onq2 nodes, and forw satisfying 1≤ w ≤ q − 1,
the information map which assignsdn/(q − w)e bits of information to each subkey is
w-secure forK. With this information map,ρ

P
= (q2 − 1)dn/(q − w)e for each node

P. If n andw are chosen appropriately, thendn/(q−w)e becomes equal to one and the
bound is met.

It seems reasonable to conjecture that the second boundρ
P
≥ (w + 1)(n+ w/2) of

Theorem 5.2 could be improved upon: however, it is good enough to show that in general
the node storage of a KDP will be inferior to that of the KDSs constructed by Blom,
under the assumptions at the beginning of Section 4.

References

[1] R. Blom, An optimal class of symmetric key generation systems, inAdvances in Cryptology: Proceed-
ings of Eurocrypt84, vol. 209 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1985,
pp. 335–338.

[2] B. Bollobás,Combinatorics, Cambridge University Press, Cambridge, 1986.
[3] M. Dyer, T. Fenner, A. Frieze, and A. Thomason, On key storage in secure networks,Journal of

Cryptology, vol. 8 (1995), pp. 189–200.
[4] L. Gong and D.J. Wheeler, A matrix key distribution scheme,Journal of Cryptology, vol. 2 (1990),

pp. 51–59.
[5] D.R. Hughes and F.C. Piper,Design Theory, Cambridge University Press, Cambridge, 1988.
[6] C.J. Mitchell, Combinatorial techniques for key storage reduction in secure networks, Technical memo,

Hewlett Packard Laboratories, Bristol, 1988.



Bounds for Key Distribution Patterns 239

[7] C.J. Mitchell and F.C. Piper, Key storage in secure networks,Discrete Applied Mathematics, vol. 21
(1988), pp. 215–228.

[8] C.M. O’Keefe, Key distribution patterns using Minkowski planes,Designs, Codes and Cryptography,
vol. 5 (1995), pp. 261–267.

[9] K.A.S. Quinn, Some constructions for key distribution patterns,Designs, Codes and Cryptography,
vol. 4 (1994), pp. 177–191.

[10] D.R. Stinson, On some methods for unconditionally secure key distribution and broadcast encryption,
Designs, Codes and Cryptography, vol. 12, no. 3 (1997), pp. 215–243.


