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Abstract. This paper is concerned with the problem of distributing pieces of infor-
mation to nodes in a network in such a way that any pair of nodes can compute a secure
common key but the amount of information stored at each node is small. It has been
proposed that a special type of finite incidence structure, cakeg distribution pattern
(KDP), might provide a good solution to this problem. We give various lower bounds on
the information storage of KDPs. Our main result shows that in general KDP schemes
necessarily have greater information storage at the nodes than the minimum possible.
This minimum is achieved by a scheme not based on KDPs.
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1. Introduction

Consider a network of nodes, each of which must be able to communicate with each
other node, using a symmetric cryptosystem. Then each pair of nodes requires a crypto-
graphic key available to them but to no other node. To provide sufficient security, each
of these keys has to contain a certain amount of information. Throughout this paper we
usen to denote the number of bits of information required in each key. (It is convenient
from Section 4 onwards to measure information in bits, and so we do so throughout.)

A key distribution schem@&DS) is a method of distributing secret pieces of informa-
tion to nodes in the network in such a way that any pair of nodes can compute a secure
common key. The nodes compute the keys without further secure communication with
the server which initially distributes the secret information.

The obvious ffivial) KDS would be for every node in the network to be provided
with a separate key for use with each other node. This would require each node to store
v — 1 keys, each of bits, and the server to generate, and probably s(@)dx,eys, each
of n bits. The disadvantage of this scheme is the large amount of information storage
required.
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Various KDSs have been proposed which significantly reduce the amount of informa-
tion storage over that required by this trivial scheme, but this can be done only at a cost.
We say that a KDS is-secureif, given any pair of nodes, any set af or fewer other
nodes may pool their information and still have no better chance of correctly guessing the
key of the pair than an outsider of the network. Clearly, the trivial KDS is 2)-secure,
but all the proposed schemes aresecure only for much smaller valueswf

Blom [1] has shown that with any-secure KDS, each node must store atléast1)n
bits of information. This bound is tight: Blom gives a construction for a classsécure
KDSs achieving it. The total amount of secret information generated and stored by the
server in Blom’s scheme i%(w + 1)(w + 2)n bits.

In [7] Mitchell and Piper show how design theory provides a source of KDSs. They
define a certain special type of finite incidence structure, which they kayl distribution
pattern(KDP). Essentially the idea is as follows. The server generates a ground set of
subkeyseach of which consists of independent secret information, and distributes a
different subset of the ground set to each node. Information about which subkeys each
node has is public knowledge, using reference numbers for the subkeys. The key to be
used by a pair of nodes is made up by combining those subkeys which the pair of nodes
have in common. The combining should be done using a publicly known funétion
which takes a number of subkeys as argument and yields a key contairtiitg of
information. The sets of subkeys distributed to the nodes have to be specially chosen to
ensure that the systemiissecure for a specified valuewf and this is what the structure
of a KDP achieves. We give a formal definition of a KDP in Section 2. Several classes of
KDPs are described in [4] and [6]-[9]. In [3] KDPs are constructed using probabilistic
methods.

For our purposes in this paper the nature of the funcfiotloes not matter. If the
subkeys and keys are bit-strings, we can use concatenation, but the resulting long strings
of bits may be unsuitable in some applications. If the subkeys and keys are all bit-strings
of the same length, we can simply add the subkeys in @} to obtain the keys. A
more general, and flexible, approach is the use of so-cadigitient functionsthis is
discussed in [10].

In this paper we are concerned with the question of the extent to which the key storage
requirement of a network can be reduced by the use of a KDP.

Section 2 covers the basic definitions relating to KDPs. In Section 3 we briefly review
some bounds on the number of subkeys at each node and on the total number of subkeys
which other authors have published, and also prove some new bounds.

In order to consider properly the question of the extent to which the key storage
requirement of a network can be reduced by the use of a KDP, we should seek bounds
not only on the number of subkeys, but also on the total information which the subkeys
contain. The definitions relevant to this are introduced in Section 4.

In Section 5 we prove a lower bound on the information storage at each node which can
be achieved using a KDP. This bound shows that KDPs will not in general yield KDSs
with node storage as good as that achieved by Blom’s KDSs. The difference between the
bound and the node storage achieved by Blom’s KDSs is negligibl€tiie number of
colluders protected against) is small compared wifthe number of bits of information
required in each key), but as increases, the difference becomes significant.
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2. Key Distribution Patterns

KDPs may be thought of either as set systems, as in [3], or as incidence structures, as in
[7], the original paper on the subject. The main reason for thinking of them as incidence
structures, which is slightly more complicated, is that design theory provides many
interesting examples of KDPs [6]-[9]. We use the incidence structure representation, for
consistency with earlier work.

All references to designs in this paper are brief and non-central. Definitions of any
design theory terms and notation which we do not define can be found in [5].

An incidence structuréor simplystructurd is a tripleS = (P, B, |), whereP andBB
are non-empty sets of objects, calfgaintsandblocks respectively, andl € P x B. If
P andB are finite, then we say th&tis afiniteincidence structure. We cah the point
setof S andB theblock sef S. We usually denotgP| by v and| 5| by b. If point P and
block x are such thatP, x) € |, then we say thaP andx areincidentwith each other.
The set of blocks incident with a poiftis usually denoted byP), and analogously the
set of points incident with a block is denoted by(x).

A common way to specify an incidence structure is to listlreets in the multiset
{(X) | x € B}. For example, the following list specifies an incidence structure with eight
points 1 2, ..., 8 and sixteen blocks:

{1,3,5,7}, {1,4,5,8}, {1,3,6,8}, {1,4,6,7},
{2,4,6,8}, {2,3,6,7}, {2,457}, (2,35 8},
{1.2}, {3, 4}, {5, 6}, {7, 8},
{1, 2}, {3, 4}, {5, 6}, {7, 8}.

An incidence structure could equally well be specified by listing itheets in the
multiset{(P) | P € P}. Although this is non-standard, it is sometimes a convenient
way to think of incidence structures when considering KDPs. For example, if we label
the blocks of the above structure by?21 ..., 16, respectively, then this same structure
is specified by the following list of subsets of the Set= {1, 2, ..., 16}:

(1,2,3,4,9,13, {5,6,7,8,9,13,
{1,3,6,8 10,14}, {2 4,5,7,10, 14},
{1,2,7,8,11 15}, {3,4,5,6,11 15,
{1,4,6,7,12 16}, {2 3,5,8,12 16}

A w-secure key distribution patterfw-KDP) is a finite incidence structurk =
(P, B, 1) with at leastw + 2 points with the property that

(PN (P2) £ (Q)) U(Q2) U---U(Qu)

for all subsetd Py, P, Q1, Qa, ..., Q,} of w + 2 points of P, wherew > 1. To use
a KDP K to give a KDS, we identify each node of the network with a poinofnd
a subkey with each block d&f. Each nodeP is issued with the subkeys iP). When
discussing KDPs, we use the wordsint and nodeand the words$lock and subkey
interchangeably. The special property which we require ofdDP ensures that the
key of a pair of nodes cannot be compromised by any colluding setasffewer other
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nodes, since no set af other nodes will between them hold all of the subkeys which
the pair have in common. Thus, if every subkey contaibgs of information, the same
as in the keys, then a-secure KDP gives a-secure KDS. Of course,a-KDP is a
w’-KDP for all w” with 1 < w’ < w. Since, in particular, every-KDP is a 1-KDP, a
1-KDP will usually just be called a KDP.

For example, the particular structure with eight points specified earlier in this section
is a 1-KDP. To see this, it is perhaps easiest to look at the second representation of the
structure, the list of the sets {tP) | P € P}: these correspond to the eight sets of
subkeys to be issued to the eight nodes, and it can be verified that no two of the sets listed
have an intersection which is a subset of a third set in the list. This second representation
is essentially the KDP as a set system.

Note that the reason for identifying points with nodes and blocks with subkeys, rather
than the other way round—which might initially seem more natural—is that with this
definition, many designs, and structures derived from designs, are KDPs. In design theory
we specify that two points must have a number of blocks in common, which connects
with our requirement that in a KDP two nodes must have some subkeys in common.

The trivial KDS forv nodes, in which each node is provided with a separate key for
use with each other node, corresponds to a KDP wiﬂroints,(;) blocks andv — 1
blocks on each point, which we call tiievial KDP on v points. (It is just the trivial
2-(v, 2, 1) design.) For this KDP, subkeys are the same as keys. The trivial KDRywith
points is(v — 2)-secure.

The trivial KDPs provide a yardstick by which we may judge other KDPs. We denote
the number of subkeys of a KDP incident with a nddéy r, and the total number of
subkeys of the KDP by. A KDP which hasr, smaller tharw — 1 for each nodeP
gives a better node storage than the trivial KDP withodes. Similarly, a KDP which
hasb smaller thar(g) gives a better total storage at the server than the trivial KDP with
v nodes.

3. Bounds for the Number of Subkeys in a KDP

In this section we give lower bounds for the valleandr, of a KDP. These can be
compared with the valugg = v —1andb = (;) for the trivial KDP withv nodes. If we
are concerned only with the case in which subkeys consistits (other possibilities
are discussed in Section 4), the lower boundsrfocan be multiplied byn to give a
direct comparison with Blom’s lower bound & + 1)n bits for the node storage in a
KDS. We use Ig to denote lgg

The first few bounds in this section are derived from a result of Sperner, which we
now state. A sef of subsets of a finite ground s@tis called aSperner systerifinone
of the sets inF contains another. Examples of large Sperner systems are easily found:
if |G| = g, then, for anys with 0 < s < g, the set of als-subsets (that is, subsets with
elements) ofG is a Sperner system. Of these, the set of @l2]-subsets ofs contains
the most sets, and the following theorem of Sperner (1928) states that no Sperner system
with ground sets can contain more sets than this. A proof can be found in [2].

Result 3.1. A Sperner system whose ground set contains g elements consists of at most
(ng/’zj) sets
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The following result gives simple lower bounds gnandb. It essentially appears in
[3] and in a slightly different form in Mitchell and Piper’s original paper [7].

Result 3.2. For a KDP withv nodes

- > lgv for any node P

and

b>2lg(v-1).

Proof. LetPbeanodeofaKDR = (P, B, | ) with v nodes. Notice thatP) must have
at least — 1 distinct non-empty subsets, namely, the se{gsf) N (Q) | Q € P\{P}}.
Hencev — 1 < 2 — 1, that isf, >1gv.

For the bound ofb, notice that the(;) sets in{(Py) N (P,) | {P1, P} € P} form a
Sperner system with ground 98t Therefore, by Result 3.1 (Sperner’s theorem),

(th/)2J> - @

It is straightforward to prove by induction that

b—1 b
2z (Lb/2J>

for all positive integerd, so we may deduce thatZ2 > %(v — 1)?, that is,b >
2lg(v — 1). O

(Lb?2J> - @

of the above proof is used in [3] to derive the bound 2 Igv, which is slightly better
than the bound we give. However, it appears that a less straightforward derivation is
required for a marginal improvement in the bound.

In [3], Dyer et al. use probabilistic methods to construct 1-KDPs witlodes which
haveb = [13Igv], and which have a mean value foy of approximately%6 Igv.
Non-probabilistic constructions have not yielded KDPs with values afidr , of this
order. Amongst the best of the deterministically constructed families of 1-KDPs are the
following. It is easy to show that the biplanes (symmetric 2-designs) are KDPs which
achieveb = v andr, ~ V/2v for each nodeP, but note that the largest known biplane
hasv = 79. An infinite family of 1-KDPs constructed from finite projective planes in
[9] hasb = 2v andr, ~ 2,/v for each nodeP.

Result 3.2 above gives bounds fy andb for KDPs in general. We would expect
to find stronger bounds for KDPs which aresecure forw > 1. In [3] Dyer et al. use
Sperner’s theorem to derive a boundtofor w-KDPs, as follows.

Note that the inequality
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Result 3.3. [3] For a w-KDP with v nodes
b>wlgv—Igw —1).

We see from this that we must halsegrowing at least linearly with the number of
potential colluders.

Dyer et al., in [3], use probabilistic methods to construekKDPs onv nodes which
haveb < [2(w +2)%In v]. The multimap scheme of [4] gives an infinite family of KDPs
with v nodes andh = (w + 1)v.

In [3], which is primarily concerned with finding KDPs with a small valueboino
bound better than the simple bound of Result 3.2 is givem fon a w-KDP. Here we
give two improved bounds.

First, we use the technique of Dyer et al.'s proof of the boundfior Result 3.3 to
derive an analogous bound fgy.

Theorem 3.4. For any node P of av-KDP with v nodes
e = w(lg(v —1) —lgw).

Proof. Let P be a node of a-KDP with v nodes. Consider the— 1 sets in

{(P)YN(Q) | Q e P\{P}}.

We claim that the{”;l) possible unions ol of the elements of this set form a Sperner
system (with ground s€tP)). For suppose not. Then for some nodes we would have

[(P)YN(QV]U---ULP)N(Qu] S [(P)N(RY]U---UL(P)N (R,

where there is a nod®; on the left which is not one of the nod&, ..., R, on the
right. For this node we obtain

(PYN(Qi) € (RYU---U(Ry),

which contradicts the assumption thais aw-KDP.
Applying Sperner’s theorem gives

(1) = (")
> )
re/2)) =\ w
()
= \lrp/2]

2(7121:[‘”_1'_'.
: w —

It is easy to see that the factors on the right increase ivgih we may deduce that
2°71 > ((v — 1)/w)”, from which it follows that, — 1> w(lg(v — 1) — lgw). The
result follows. O

Using the fact that

we obtain
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We see from this that, too must grow at least linearly with the numheof potential
colluders, and also with the logarithm of the number of nodes in the network.

Dyer et al. in [3], use probabilistic methods to constrweKDPs onv nodes which
haver, < [4(w + 2)?Inv]. In [9] finite affine planes are used to construckKDPs on
v nodes withr, ~ (w + 2)/v, forw < /v — 1.

In the next theorem (Theorem 3.6) we give a second bound,farich shows that
r, must grow at least with the square of the numieof potential colluders, until,
reaches the value fo, found in the trivial KDP. We begin by establishing a lemma.

Lemma 3.5. Let P, and R be two nodes of a-KDP K = (P, B, | ) such that every
subkey in(P;) N (P,) is held by at least one other nad€hen for any subset S of
P\{P1, P2} with0 < [§] < w,

(P N (P\ [ J (@

QeS

>w+1-|9.

Proof. Suppose not. LeB be a maximal subset @\{P;, P,} with 0 < |S] < w such
that

(P NP\ (@

QeS

<w-—|9.

SinceK is aw-KDP we know that

(PyN P\ J(@Q] =1,

QeS

It follows from these two inequalities thg®| < w — 1. Also, from the second of these
two inequalities and the fact that every subkey(i®) N (P.) is held by at least one
other node, we can deduce that some nQde P\(SU {P;, P,}) must hold a subkey
in (P N (P,). Therefore

PoNP\ | @
QeSu{Q’}

<w-—|9 -1

We see from this that the s&U {Q’} has the necessary properties to contradict the
maximality of S. This completes the proof. O

Before we prove the next theorem, we point out that it is an immediate corollary of
Lemma 3.5 that every pair of nodes ofuaKDP must either have a common subkey
which is held by no other node (as they would in the trivial KDP), or must combine at
leastw + 1 subkeys to form their key.

Theorem 3.6. For any node P of av-KDP with v nodes

rp = minfv — 1, 3(w + LH(w + 2)}.
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Proof. Let P be a node of av-KDP K = (P, B, |) with v nodes. Suppose that
r,o<v—1
PLet Sbe the set of all nodes iR\{P} which are such that every subkey held by the
node and byP is also held by a third node. L& consist of all other nodes iR\ {P},
that is, those which hold a subkey held Bywhich is held by no third node. Then
IS|=v—-1—19
We now show thatS| > w + 2. SinceP has a different subkey in common with every
node inS,r, > v —1— 9. Hence, since, < v — 1, Sis non-empty. LeQ € S. By
Lemma 3.5/(P)N(Q)| > w+ 1. Also P has at least one distinct subkey not held®y
in common with every node i§. Hencer, > (w+ 1)+ (v —1—1[8) =w+v—|S.
Howeverr, < v — 1, soitfollows that — 1 > w + v — [§], thatis,|§ > w + 2.
Let{Q1, Q2, ..., Qu+1} C S.ByLemma3.5,for0< j < w, (P)N(Qj41) contains
atleastw + 1 — j subkeys not i J!_,(Qi). So

e =2 w+th+w+w-10+---+1
= f(w+DHw+2

as stated. O

Unless aw-KDP is known to have further properties of the type discussed in the
next section, in an implementation of the KDP the subkeys would have to contain the
same numben of bits of information as the keys. Theorem 3.6 tells us that in such an
implementation of av-KDP onwv nodes, the information storage at any ndélenust
either be at leagtv — 1)n bits, that is, at least what it would be if the trivial KDS were
used, or else it must be at Iea}{tw + 1)(w + 2)n bits. This compares badly with the
optimal value of(w + 1)n bits achieved by Blom's KDSs.

4. KDP Systems in Which Subkeys Can Contain Less Information than Keys

Having fewer subkeys is one way in which a KDP can improve on the information
storage of the trivial KDP, but there is another way. Some KDPs have properties which
permit the subkeys to contain less information than the keys. This was first pointed out
by Mitchell in [6]. We consider this next, but first we take note of an assumption which
applies throughout the remainder of this paper and upon which the results in Section 5
are strongly dependent.

In all the published work on KDPs, it is assumed that the subkeys are strings of binary
digits, randomly generated by the server. In this paper we are essentially still concerned
with this same situation. However, for precision we make a more minimal assumption,
namely, that the subkeys each contain at least one bit of information. We assume that
this is true of the keys also. Recall that we also assume that the subkeys are independent
of each other.

Let = (P, B, |) be a KDP. For each subkeyof I, letl (x) denote the information
content ofx in bits, so that is a mapping from the sét of subkeys to the real numbers
greater than or equal to one. We call any mappirg) — [1, co) aninformation map
for KC.
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We write(KC, |) for the system consisting of a KD®Ptogether with an information map
| for K. If X is a set of subkeys of a systdifd, |), then we denote the total information
content in bits of the subkeys i by || X[, that is,|| X[l = >, .x [ (X).

Suppose thakC is a w-KDP for somew > 1. Bearing in mind that we want @-
secure KDS, we consider the property which we would require an information ofap
KC to possess. LetPy, Py, Q1, Qa, ..., Q,} be any set ofv + 2 distinct nodes ofC.
Since we must ensure that, everf, Q,, ..., Q, pool their subkey sets, their chance
of guessing tha-bit key of the pairP;, P, is no greater than that of an outsider who
knows none of the subkeys {if?;) N (P,), we must ensure that at leasbits of infor-
mation not from the subkeys [n){”_; Q; contribute to the key of the pal?;, P,. Thatis,
we require

w

(P NP\ J@)| =n. 6
i=1

We require this to hold for all se{$;, P>, Q1, Qa, ..., Q,} of w + 2 distinct nodes of
(KC, ). We thus make the following definition.

LetK = (P, B, 1) be a KDP. We call: B — N aw-secure information mafor K if
(IC, 1) satisfies (1) for every s¢Py, P,, Q1, Qz, ..., Q,} of w + 2 nodes ofC. Notice
that C must be aw-KDP for such a mappingto exist, and that if is w-secure forkC,
thenl is w’-secure forC for everyw’ with 1 < w’ < w. Clearly, if K is any w-KDP,
the information map which sets the information content of every subkeyrdiis, the
same as the information content of the keys, is-aecure information map fdf. We
call this mapL ,. However, manyw-KDPs admit a better information map.

As an example of this consider the following. There is a particular KDR (P, B, I)
with 10 nodes and 30 subkeys whichissecure forw < 3 and has the property
that any three nodes have exactly one subkey in common and any two nodes have
exactly four subkeys in common. (A@:0, 4, 1) inversive plane is such a KDP.) This
means that, considering as a 1-KDP, if we take any s¢P;, P,, Q} of three nodes,
then(Py) N (P2)\(Q) will contain exactly three subkeys. Therefore subkeys need only
containn/3 bits of information. Similarly, considering it as a 2-KDP, if we take any set
{P1, P2, Q1, Q2} of four nodes, theriP;) N (P2)\(Q1) U (Q2) will contain at least (in
fact, exactly) two subkeys. Therefore subkeys need only conf&ibits of information.

If we consider it as a 3-KDP, then subkeys have to contdiits of information.

This particular KDP is of course too small to be of any practical use but larger inversive
planes are useful KDPs with similar properties. A fuller discussion of the inversive planes
in this context can be found in [6].

Let X be a KDP and let be an information map folC. We write 8 for || 8] and, for
any nodeP of K, we write p, for [|(P)]|. Sop, represents the total number of bits of
information contained in the subkeys(R), andg represents the total number of bits
of information generated, and perhaps stored, by the server.

A good KDP is one which allowp ,, for each nodé>, to be reduced to significantly
less than the corresponding value for the trivial KDP on the same nundf@odes, that
is, to significantly less thatw — 1)n, or which allowsg to be reduced to significantly
less than the corresponding value for the trivial KDP on the same number of nodes, that
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is, to significantly less tha@)n. Whether we are interested in a small valugpf or a
small value of, or both, will depend on the application. Usually we are interested in a
small information storage at the nodes gpis likely to be important.

Aswe have seen, there are two ways in whiah EDP can achieve a small information
storage at the nodes: by having a small valug,dfor each nodeP, or by admitting a
“good” w-secure information map. The biplanes have only the first of these properties,
and the inversive planes have only the second, but some KDPs have both properties: for
example, a family of such KDPs is constructed in [9].

Similarly, aw-KDP can achieve a small total information storage by having a small
value ofb or by admitting a goodv-secure information map.

Of course, allowing the subkeys to contain less information than the keys can reduce
the information storage at the nodes and the total information storage of a KDP to at
best ¥n times what these values would be otherwise, and this would involve a large
number of subkeys each containing only a small amount of information (just one bit for
maximum effect), which may in itself have disadvantages.

Finally, in this section, it is possibly worth pointing out that Theorem 3.6 gives us
some insight into the maximum number of nodes whose collusion a KDP can protect
against. Consider a network ofnodes. First suppose that we use a KDRyavodes in
which the number of subkeys at a ndéés at least the same as the number of subkeys at
P in the trivial KDP, that is, at least— 1. Then the information storage Btmust be at
leastv — 1 bits, that is, at least/h times the node storage of the trivial KDP. (We assume
throughout that we use the information miapfor the trivial KDP: clearly, it does not
admit a better information map.) Suppose on the other hand that we use a KDP in which
the number of subkeys at a noBeis less than the number Btin the trivial KDP, that
is, less tharv — 1. Then, by Theorem 3.6, we must hayfaw + D)(w +2) < v — 1,
showing that the maximum number of colluders that the KDP can protect against is at
most approximately/2v.

5. Bounds for the Information Storage in a KDP System in Which Subkeys
Can Contain Less Information than Keys

Note first that each of the bounds fiy andb in Section 3 immediately gives a corre-
sponding bound fop, or g. Under the assumptions at the beginning of Section 4, for
any KDP with any 1-secure information map, we have hat> r, for any nodeP,
andp > b. Therefore we may replagg by o, andb by g in all the lower bounds of
Section 3 to yield valid bounds for, ands.

However, in this section we adapt the proofs of Lemma 3.5 and Theorem 3.6, under
these same assumptions, to yield a better lower boung fof his lower bound gives
the comparison with Blom’s optimal schemes to which we referred in the introduction.
We begin with the adaptation of Lemma 3.5.

Lemmab5.1. LetK be aw-KDP and let| be av-secure information map fd€. Let P,
and B be any two nodes @fC, |) such that the total amount of information contained in
subkeys held by only;Rnd R is less than n bitsThen for any subset S @\{P;, P,}
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such thatd < |G| < w,

(P NP\ [ J (@

QeSS

>w+n—|S.

Proof. Suppose not. LeS be a maximal subset #\{Py, P,} with 0 < |S| < w such
that

Py NP\ [ J(@

QeS

<w+n-—|3.

Sincel is w-secure forkC we know that

>n.

(P NP\ [ J (@

QeS

It follows from these two inequalities th#8| < w. Also, from the second of these two
inequalities and the fact that the total amount of information contained in subkeys held
only by P; andP; is less tham bits, we can deduce that some n@@les P\ (SU{P1, P»})

must hold a subkey i0P;) N (P»). This subkey contains at least one bit of information
and therefore

PoNP\ |J @
Qesu{Q’}

<w+n-—|§ -1

We see from this that the s&U {Q’} has the necessary properties to contradict the
maximality of S. This completes the proof. O

The next theorem states the main result.

Theorem 5.2. LetK be aw-KDP and let | be anyw-secure information map fort.
Then for any node P ofC, 1),

ppzmin{v—l, (w+1)(n~|—%>}.

Proof. Let P be a node ofC. Suppose thap, < v — 1. Let S be the set consisting
of all nodes inP\{P} which are such that the total amount of information contained in
subkeys which are held by the node and®yut by no third node is less thanbits.

Let S consist of all other nodes iR\{P}, that is, those which are such that the the total
amount of information contained in subkeys which are held by them aftiitayt by no
third node is at leagt bits. Then|S| = v — 1 — |S|. We now show thatS| > w + 2.
SinceP must have a different subkey in common with every nodg,n, > v—1—[§|,

and hence since subkeys must contain at least one bit of information,v — 1 —|S].
However,p, <v—-1sov—1>v—-1-|§, thatis,|S| > 1. LetQ € S. By Lemma
51, I(P)N(Q)|| = w+n > w+ 1. Also P has at least one distinct subkey not held by
Q in common with every node i&, and each of these must contain at least one bit of
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information. Hencg, > (w +1)+ (v—1—[S|) = w+v —[S|. However,p, <v-1
so it follows thatv — 1 > w + v — |§], that is,|S| > w + 2.

Let {Q1, Q2,..., Qus1} € S By Lemma 5.1, for 0< j < w, the subkeys in
(P) N (Qj+1) contain at leasi + n — j bits of information not contained in subkeys in

Ul1(Qi. So
pp = w+nM+w+n-—DD+w+Nn=2)+---+n
w
= (w+1)(n-|-5>

as stated. O

The first bound in Theorem 5.2 above says fhats greater than or equal tg'th times

the node storage — 1)n of the trivial KDP: this is poor in comparison with the value

pp = (w+1)nattained by Blom’s KDSs. The second possibifity > (w+1)(n+w/2)

is also inferior to the value gf attained by Blom'’s KDSs. If the value af (the number

of colluders protected against) is relatively small compared wifthe number of bits

of information required in each key), the difference betwéent+ 1)(n + w/2) and

(w 4+ 1)n is neglible, but asv increases, the difference becomes significant. Note also
that in order to approach the boupd > (w + 1)(n + w/2) we would have to use a
KDP system involving a large number of subkeys each containing only a small amount
of information (approaching one bit), which may in itself have disadvantages.

There is an infinite family of KDPs, with node storage better than that of the corre-
sponding trivial KDP, attaining the first bountg, > v — 1, as follows. Lety be any
prime power. Taking an external structure of &8+ 1, q + 1, 1) inversive plane yields
a 2-design. This design is a KDP gd nodes, and fow satisfying 1< w < q — 1,
the information map which assigfin/(q — w)] bits of information to each subkey is
w-secure forkC. With this information mapp, = (9% — 1[n/(g — w)] for each node
P. If nandw are chosen appropriately, thém/(q — w)] becomes equal to one and the
bound is met.

It seems reasonable to conjecture that the second hoynd (w + 1)(n + w/2) of
Theorem 5.2 could be improved upon: however, it is good enough to show that in general
the node storage of a KDP will be inferior to that of the KDSs constructed by Blom,
under the assumptions at the beginning of Section 4.
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