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Abstract—We present closed-form lower bounds for the perfor-
mance of multihop transmissions with nonregenerative relays over
not necessarily identically distributed Nakagami- fading chan-
nels. The end-to-end signal-to-noise ratio is formulated and upper
bounded by using an inequality between harmonic and geometric
means of positive random variables (RVs). Novel closed-form
expressions are derived for the moment generating function, the
probability density function, and the cumulative distribution func-
tion of the product of rational powers of statistically independent
Gamma RVs. These statistical results are then applied to studying
the outage probability and the average bit-error probability for
phase- and frequency-modulated signaling. Numerical examples
compare analytical and simulation results, verifying the tightness
of the proposed bounds.

Index Terms—Average bit-error probability (ABEP), Gamma
random variables (RVs), multihop relayed communications, Nak-
agami- fading, outage probability.

I. INTRODUCTION

MULTIHOP systems have a number of advantages over
traditional communication networks in the areas of

deployment, connectivity, and capacity, while minimizing
the need for fixed infrastructure. Relaying techniques enable
network connectivity where traditional architectures are im-
practical due to location constraints, and can be applied to
cellular, wireless local area networks (WLANs), and hybrid
networks. In multihop systems, the source terminal communi-
cates with the destination terminal through a number of relay
terminals. Therefore, multihop systems have the advantage
of broadening the coverage without using large transmitting
power [1]–[5]. Recently, the concept of cooperative diversity,
where the mobile users cooperate/collaborate with each other in
order to exploit the benefits of spatial diversity without the need
for using physical antenna arrays, has gained great interest.
In general, cooperative networks are multihop communication
networks, where the destination terminal combines the signals
received from both the source terminal and relays [6]–[9].

The performance analysis of multihop wireless commu-
nication systems operating in fading channels has been an
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important field of research in the past few years. Hasna and
Alouini have presented a useful and semianalytical framework
for the evaluation of the end-to-end outage probability of
multihop wireless systems with nonregenerative channel state
information (CSI)-assisted relays over Nakagami- fading
channels [3]. Moreover, the same authors have studied the
outage and the error performance of dual-hop systems with
regenerative and nonregenerative (CSI-assisted or fixed-gain)
relays over Rayleigh [1], [4] and Nakagami- [2] fading chan-
nels. Recently, Boyer et al. [5] have proposed and characterized
four channel models for multihop wireless communications,
and have also introduced the concept of multihop diversity.
Finally, Karagiannidis has studied the performance bounds
for multihop relayed transmissions with blind (fixed-gain)
relays over Nakagami- (Rice), Nakagami- (Hoyt), and
Nakagami- fading channels [10] using the moments-based
approach [11]. However, to the best of the authors’ knowledge,
the performance of multihop relayed systems has never been
addressed in terms of tabulated functions in Nakagami-
fading.

In this letter, using the well-known inequality between har-
monic and geometric means of positive random variables (RVs),
we present performance bounds for the end-to-end signal-to-
noise ratio (SNR) of multihop wireless communication systems
with CSI-assisted or fixed-gain relays operating in nonidentical
Nakagami- fading channels. Motivated by the fact that the
proposed bounds, in their general form, are products of rational
powers of statistically independent squared Nakagami- RVs
(or equivalently, Gamma RVs), we derive novel closed-form
expressions for their moment generating function (MGF), the
probability density function (PDF), and the cumulative distri-
bution function (CDF). These statistical results are then applied
to the study of important system performance metrics. Closed-
form lower bounds are derived for the outage probability, and
the average bit-error probability (ABEP) for binary phase-shift
keying (BPSK) and binary frequency-shift keying (BFSK) mod-
ulation schemes. Numerical and computer simulation examples
verify the accuracy of the presented mathematical analysis and
show the tightness of the proposed bounds.

The remainder of this letter is organized as follows. In Sec-
tion II, closed-form expressions for the MGF, PDF, and CDF
of the product of rational powers of Gamma RVs are presented.
Next, Section III introduces the multihop system and channel
model under consideration. In the same section, closed-form
upper bound expressions for the statistics of the end-to-end SNR
are proposed both for CSI-assisted and fixed-gain relayed sys-
tems. These results are applied in Section IV to evaluate the
end-to-end performance metrics of multihop wireless commu-
nication systems. Finally, some concluding remarks are given in
Section V.
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II. STATISTICAL BACKGROUND

Theorem 1: (MGF of the product of rational powers of
Gamma RVs) Let be independent, but not neces-
sarily identically distributed (i.n.i.d.), Gamma RVs, with the
PDF given by

(1)

where is the Gamma function [12, eq. (8.310/1)], and ,
are positive real numbers. Then, the MGF of the new RV ,

defined as the product of powers of RVs , i.e.,

(2)

with and being positive integers, can be ex-
pressed in closed form as

(3)

where ,
, with real, and is the Meijer G-function [12, eq.

(9.301)].
Note that Meijer’s G-function is a standard built-in function

in most of the well-known mathematical software packages,
such as MAPLE, MATHEMATICA, and MATLAB. In addition,
using [13, eq. (18)], Meijer’s G-function can be written in terms
of the more familiar generalized hypergeometric functions [12,
eq. (9.14.1)].

Proof: See Appendix I.
Corollary 1: (PDF of the product of rational powers of

Gamma RVs) The PDF of is given by

(4)

where .
Proof: The PDF of can be derived as

, where denotes the inverse
Laplace transform. Using the formula for the inverse Laplace
transform of the Meijer G-function [14, eq. (3.38.1)], we obtain
(4).

It must be mentioned here that represents a valid PDF,
since it is a nonnegative function, and using [13, eq. (24)] and
[15, eq. (6.1.20)], it can be easily verified that

. Moreover, in Fig. 1, Monte Carlo simulations are performed
to show the accuracy of (4). From this figure, an exact match is
evident between simulations and analytical results. For the case

Fig. 1. Comparison between analytical results and Monte Carlo simulations
for the PDF formulated by (4) (k = 3, ` = i, m = i, � = 10, � = � =

1:05, � = 0:25, and 200 000 iterations).

of , the PDF of the product of i.n.i.d.
Gamma RVs, , can be written as

(5)
Corollary 2: (CDF of the product of rational powers of

Gamma RVs) The CDF of is given by

(6)

Proof: Following the definition,
and using [13, eq. (26)] yields (6).

For the case of , the CDF of is given by

(7)

III. AN UPPER BOUND FOR THE END-TO-END SNR

In this section, we derive upper bounds for the distributions
of the end-to-end SNR for the CSI-assisted and fixed-gain relay
implementations of a multihop communication system.

A. System and Channel Model

We consider an -hop wireless communication system
which operates over i.n.i.d. Nakagami- fading channels. The
source terminal S communicates with the destination terminal
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D through nodes terminals . These
terminals relay the signal only from one hop to the next, acting
as nonregenerative relays. It is also assumed that all node relays
can simultaneously receive and transmit (in the same frequency
band), and no delay is incurred in the whole chain of transmis-
sions. Assume that terminal S is transmitting a signal with an
average power normalized to unity. Then the end-to-end SNR,
i.e., the SNR at D, can be written as [3]

(8)

where is the fading amplitude of the th hop, is the one-
sided power spectral density at the input of the th relay, and
is the gain of the th relay with .

Due to the fact that is Nakagami- distributed, the cor-
responding instantaneous SNR , defined as , is
Gamma distributed, with the PDF given by [16]

(9)

where is a parameter describing the fading severity of
the th hop, and is the average SNR, i.e., ,
with denoting expectation. It is obvious that setting

and in (1) yields (9).

B. CSI-Assisted Relays

One choice for the gain is proposed in [9, eq. (9)] to be

(10)

This gain aims to invert the fading state of the preceding
channel, while limiting the instantaneous output power of the
relay if the fading amplitude of the preceding hop, , is low. By
substituting (10) in (8), the derived equivalent SNR at terminal
D can given by [3, eq. (2)], which is not easily tractable due
to the complexity in finding the statistics. However, another
choice of relay gain is set to

(11)

where the relay just amplifies the incoming signal with the in-
verse of the channel of the previous hop, regardless of the noise
of that hop. As mentioned in [3], such a relay serves as a bench-
mark for all practical multihop systems employing nonregenera-
tive relays. Additionally, a comparison of the outage probability
between multihop systems with the two relay gains of (10) and
(11) showed a similar performance in the high-SNR region.

By applying (11) to (8), the end-to-end SNR becomes

(12)

In order to study important performance metrics of the
end-to-end SNR, (12) should be expressed in a more mathemat-
ically tractable form. To achieve it, we propose an upper bound
for (12) using the well-known inequality between geometric
and harmonic means for , given by

(13)

where and are
the harmonic and geometric means, respectively. In (13), the
equality holds only when . Using (12) and
(13), an upper bound for the end-to-end SNR, , for multihop
systems with CSI-assisted relays can be obtained as

(14)

By applying (4) and (6) in (14), the PDF and CDF of can be
written in closed form as

(15)
and

(16)
respectively.

C. Fixed-Gain Relays

The fixed-gain relays provide reduced implementation com-
plexity in the CSI part, at the expense of the requirements for
high-transmission-power amplifiers, which may be very costly
in practice. Nonregenerative relays introduce fixed gains to the
received signal given by

(17)

where is a positive constant ( ). Following the same
procedure as in [3] and using (17), the end-to-end SNR can be
expressed as [10]

(18)

and by using (13) in (18), an upper bound for the can be
derived as

(19)

Moreover, taking into account Corollaries 1 and 2 and after
some algebra, the PDF and CDF of can be obtained as

(20)

and
(21)

respectively, where



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 1, JANUARY 2006 21

Fig. 2. Outage probability bounds for a multihop system with fixed-gain relays
(
 = 
, C = 1:7, and m = m = 2:7).

(22)

IV. PERFORMANCE METRICS

A. Outage Probability

The probability of outage is defined as the probability that
the instantaneous SNR falls below a specified threshold .
This threshold is a protection value of the SNR, above which
the quality of service is satisfactory. In the case of the multihop
system under consideration, the use of upper bounds or
leads to lower bounds for the outage probability in the destina-
tion terminal D, expressed as for CSI-assisted
relays, and for fixed-gain relays.

As an indicative example for the proposed bounds, assuming
fixed-gain relays and equal average SNRs per hop (for all hops,

), lower bounds for the outage probability are plotted in
Fig. 2 as a function of the inverse normalized to outage threshold

. The obtained results clearly show that the outage perfor-
mance degrades with an increase of the number of hops. Ad-
ditionally, the lower the value of , the tighter the proposed
bounds, even for high SNR values.

B. Average Bit-Error Probability

For coherent binary signal constellations, the ABEP can
be formulated as [16]

(23)

where is the complementary error function [12, eq.
(8.250.4)], and , being the correlation coeffi-
cient between the two signaling waveforms. Thus, for ,

for coherent BPSK, and for , for coherent
orthogonal BFSK.

1) CSI-Assisted Relays: Using (15), (23), the Meijer
G-function representation of the function [13, eq. (12)],
and [13, eq. (21)], a lower bound for the ABEP of CSI-assisted

Fig. 3. BPSK error bounds for a multihop system with CSI-assisted relays in
i.i.d. Nakagami-m fading channels (
 = 
 and m = m = 2:7).

relays over Nakagami- fading channels can be expressed in
closed form as

(24)
In Fig. 3, lower bounds for the ABEP of a multihop system

with CSI-assisted relays are plotted only for and
to avoid entanglement. Again here, it is evident that the pro-
posed bounds are tight and, as expected, the ABEP deteriorates
with an increase in the number of hops. The same results are also
observed in Fig. 4, where the error performance is studied for
i.n.i.d. Nakagami- fading channels. However, in this case, it
is observed that the proposed bounds lose their tightness in the
high SNR region ( dB), compared with the independent
and identically distributed (i.i.d.) case. This happens due to the
fact that the sharpness of the used harmonic-geometric mean in-
equality increases when are close to each other
as much as possible. Therefore, the i.i.d. case is the best one in
terms of the tightness of the bound.

2) Fixed-Gain Relays: For the case of fixed-gain relays, a
lower bound for ABEP can be found using (20) and (23) as

(25)

V. CONCLUSION

Performance bounds for multihop transmissions with CSI-as-
sisted or fixed-gain relays operating over i.n.i.d. Nakagami-
fading channels have been presented. The end-to-end SNR is
formulated and upper bounded by using the harmonic-geometric
mean inequality ofpositive RVs for both types of relays. Since the
proposed bounds are in the form of the product of rational powers
of statistically independent Gamma RVs, novel closed-form ex-
pressions for the MGF, PDF, and CDF of this product have been
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Fig. 4. BPSK error bounds for a multihop system with CSI-assisted relays in
i.n.i.d. Nakagami-m fading chanels (
 = 
=i, m = m = 5, m = m =

2:5, and m = 1:5).

derived. Additionally, lower bounds for the outage probability
and the average error probability have been presented. Finally,
this letter may contribute to a number of open issues for future
investigation, such as the variation of the performance loss due to
an increase of the number of hops, and the existence of an optimal
number of hops when path loss between nodes is considered.

APPENDIX

PROOF OF THEOREM I

The MGF of in (3) is defined as

(26)

The first integration in (26), i.e., the one on , is of the form

(27)

where . Using [13], (27) can be
written in terms of the Meijer -function as

(28)
Using [13, eq. (21)], can be solved as

(29)

The second integration in (26), i.e., the one on , can be now
written as

(30)

Again, using [13, eq. (21)], the integral can be solved as

(31)

Following the same procedure, the -fold integral in (26) can
be expressed in closed form as in (3).
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