
SIAM J. COMPUT.
Vol. 4, No. 2, June 1975

BOUNDS FOR MULTIPROCESSOR SCHEDULING WITH
RESOURCE CONSTRAINTS*

M. R. GAREY AND R. L. GRAHAMS"

Abstract. One well-studied model ofa multiprocessing system involves a fixed number n of identical
abstract processors, a finite set of tasks to be executed, each requiring a specified amount of computation
time, and a partial ordering on the tasks which requires certain tasks to be completed before certain
others can be initiated. The nonpreemptive operation of the system is guided by an ordered list L of
the tasks, according to the rule that whenever a processor becomes idle, it selects for processing the
first unexecuted task on L which may validly be executed. We introduce an additional element of
realism into this model by postulating the existence of a set of "resources" with the property that for
each resource, the total usage of that resource at any instant of time may not exceed its total availability.
For this augmented model, we determine upper bounds on the ratio of finishing times achieved using
two different lists, L and L’, and exhibit constructions to show that the bounds are best possible.

Key words, scheduling models, graph theory, worst-case analysis, performance bounds

1. Introduction. A number of authors (cf. [123, [16], [7], [3], [11], [4], [5],
[9]) have recently been concerned with scheduling problems associated with a
certain model of an abstract multiprocessing system (to be described in the next

section) and, in particular, with bounds on the worst-case behavior of this system
as a function of the way in which the inputs are allowed to vary. In this paper, we
introduce an additional element of realism into the model by postulating the
existence of a set of "resources" with the property that at no time may the system
use more than some predetermined amount of each resource. With this extra
constraint taken into consideration, we derive a number of rather close bounds on
the behavior of this augmented system. It will be seen that this investigation also
leads to several interesting results in graph theory and analysis

2. The standard model. We consider a system composed of (usually n)
abstract identical processors. The function of the system is to execute some given
set - T .-., T} of tasks. However, - is partially ordered by some relation1- which must be respected in the execution of - as follows:if T - T, then the
execution of T must be completed before the execution of T can begin. To each
task T is associated a positive real number zi which represents the amount of time
T requires for its execution. The operation of the system is assumed to be non-
preemptive, which means that once a processor begins to execute a task T, it must
continue to execute it to completion, zi time units later. Finally, the order in which
the tasks are chosen is determined as follows: a permutation (or list) L {TI,
.., Tr} of - is given initially. At any time a processor is idle, it instantaneously

scans L from the beginning and selects the first task T (if any) which may validly
be executed (i.e., all T -< T have been completed) and which is not currently
being executed by another processor. Ties by two or more processors for the same
task may be broken arbitrarily (since the processors are assumed to be identical).

Received by the editors June 14, 1974, and in revised form August 9, 1974.

f Bell Laboratories, Murray Hill, New Jersey 07974.
Thus, -< is transitive, antisymmetric and irreflexive.

187

188 M.R. GAREY AND R. L. GRAHAM

The system begins at time 0 and starts executing .. The finishing time co
is defined to be the least time at which all tasks have been completed. Of course, co
is a function of L,-, n and the zi. It is known [7] that if -’ { T’I, ..., T’r} with

T’i -<(T) T -< T and z _< i for all and j, and -’ is executed by the system
using a list L’, then the corresponding finishing time co’ satisfies

(1) co’/co =< 2 1/n.

Furthermore, this bound is best possible. Efficient procedures are known [3], [4],
[93 for generating optimal lists when all the are and either - (viewed as a
directed graph in the obvious way) is a tree or n 2. However, Ullman [12] has
recently shown that even the case of n 2 and z 1, 2} for all is polynomial
complete2 and therefore probably has no efficient solution in general.

3. The augmented model. Before proceeding to a description of the new
model we first introduce some notation which will make the ensuing discussion
mathematically more convenient.

For a given list L, let F"- 2L’’) be defined by F(T/) i, +), where
r is the time at which the execution of T was started. Let f: [0, co) 2- be defined
by f(t)= (T -’t F(Ti)}. Thus f(t) is just the set of tasks which are being
executed at time t. The restriction that we have at most n processors can be ex-
pressed by requiring If(t)l <- n for all t [0, co).

Assume now that we are also given a set of resources
and that these resources have the following properties. The total amount of
resource 5i available at any time is (normalized without loss of generality to) 1.
For each j, the task Tj requires the use of 5(T) units of resource at all times
during its execution, where 0 __< i(T) __< 1. For each [0, co), let r(t) denote the
total amount of resource which is being used at time t. Thus

Tiff(t)

In this augmented model, the fundamental constraint is simply this"

r(t) __< for all 0, co).

In other words, at no time can we use more of any resource than is currently
available.

The basic problem we shall consider is to what extent the use of different
lists for this model can affect the finishing time co.

4. Summary of results. There are essentially three results which will be proved
in this paper. They all are derived from the following situation. We assume we
are given a set of tasks Y- {T1, -.-, T}, execution times z, a partial order
on ,, a set of resources (1,"", }, task resource requirements3 (Tj)
and a positive integer n. For an arbitrary list L, let co co(L) be the finishing time
for the (augmented) system of n processors executing - according to list L. Let
co* co(L*) denote the minimum of co(L) over all lists L. (Note that the use of
n >= r processors is equivalent to having an unlimited number of processors

See [10] for a definition of this term.

These are as described in the preceding section.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 189

available, since clearly there can never be more than r processors active at any time.)
THEOREM 1. For 1 },

(2) 09/09* =< n.

THEOREM 2. For {1, 2, ls},’< empty, and n >= r,

(3) o9/o9* __< s + 1.

THEOREM 3. For (l 1, 2, }, "< empty, and n >= 2,

09 <min{n+l 2s+l}(4)
o* ---, s + 2

n

By way of comparison, the following result (now a special case of Theorem 3) is
proved in [7].

THEOREM 0. For ,
09/09* <= 2- 1In.

Furthermore, as in the case of Theorem 0, examples will be given to show that
each of these results is essentially best possible.

Thus the addition of limited resources into the standard model causes an
increase in the worst-case behavior bounds, as might be expected. What is some-
what surprising, however, is the significant effect the partial order - can have on
these bounds. This is in contrast to the previous case of in which the upper
bound 09/09* =< 2 1/n which holds for arbitrary could, in fact, be achieved by
examples with - empty. Also significant is the apparent need for somewhat more
sophisticated mathematical techniques than were required previously.

Proof of Theorem 1. The proof of (2) is immediate. We merely need to observe
that

i=1

since at no time before time 09 are all processors idle when using list L, and the
number of processors busy at any time never exceeds n.

More interesting is the following example, which shows that (2) is best
possible.

Example 1.

L},
ri 1, "i= e > O,

l(Y/)----, 1(//) 1, --__< =< n.
n

-< is defined by

L T,, T,, T,,

for 1 _< <_ n,

L’ I, Tn, T1, Tn).

190 M.R. GAREY AND R. L. GRAHAM

A simple calculation’ shows that

O) r/

Thus
O)* O)’ -4-r/;.

O) n
’tl as 8 -- 0.

O)* +he

Proof of Theorem 2. In this case, we assume [1,2,"", s}, "< is
empty and n _>_ r. The proof will require several preliminary results. The meaning
of undefined terminology in graph theory may be found in [8.

Let G denote a graph with vertex set V V(G) and edge set E E(G). By a
valid labeling L of G we mean a function L’V- [0, oe) which satisfies

(5) for alle= {a,b}eE, L(a) + L(b) >_ 1.

Define the score of G, denoted by S(G), by

S(G) infL {v L(v)},
where the inf is taken over all valid labelings L of G.

LEMMA 1. For any graph G, there exists a valid labeling L’V {0, 1/2, such
that

S(G) L(v).

Proof. For the case of a bipartite graph, K6nig’s theorem [8] states that the
number of edges in a maximum matching equals the point covering number.
Thus for any bipartite graph G, there exists a valid labeling L’V {0, 1} such
that S(G) L(v).

For an arbitrary graph G, we construct a bipartite graph GB as follows" for
each vertex v V(G) we have two vertices vl, v2 e V(G); for each edge {u, v} e E(G)
we have two edges {ul, v2}, {u2, v} e E(G). It is not difficult to verify that S(G)

2S(G) and furthermore, if L" V(GR) {0, 1} is a valid labeling of G, then
L’V(G) ---, {0, 1/2, 1} by L(v) 1/2(L(v) + L(v2))is a valid labeling of G. [

For positive integers m and s, let G(m, s) denote the graph with vertex set
{0, 1,-.., (s + 1)m- 1} and edge set consisting of all pairs {a,b} for which
la-bl >m.

LEMMA 2. Suppose G(m, s) is partitioned into s spanning subgraphs H, 1 <= s.
Then
(6) max {S(Hi)} >= m.

<i<s

Proof. Assume the lemma is false, i.e., there exists a partition of G(tn, s) into
H, 1 <= < s, such that S(H3 < m for <= =< s. Thus, by Lemma 1, for each
there exists a valid labeling L" V(H3 - {0, 1/2, 1} such that

(7) _, L,(v) S(Hi) < m.
vV(Hi)

* The reader will probably find it helpful to construct a timing diagram to understand the behavior
of this (and succeeding) examples.

That is, the cardinality of the smallest set of vertices of G incident to every edge of G.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 191

Let A {al < <ap’Li(aj)<=1/2 for all i, Ni=<s}, and let S* denote= S(Hi). There are three cases.
(i) p =< m. In this case we have S* >__ m(s + 1)- p >= m(s + 1) rn ms,

which contradicts (7).
(ii) m < p <__ 2m + 1. For each edge {aj, am+j}, 1 _<_ j _<_ p m, there must

exist an such that Li(a) + L(a,,+) >_ 1. Thus S* >= m(s + 1)- p + (p m)
ms, again contradicting (7).

(iii) p > 2m + 1. We first note that for each vertex v V(G(m, s)), there exists
an such that L(v) >= 1/2. For suppose L(v) 0 for < =< s. There must be some

aj such that [aj vl => m. But since Li(aj) 1/2 for all i, then Li(aj) -1- Li(l; 1/2 for
all i, which is a contradiction.

For each i, let n denote the number of vertices v such that L(v) 1. Then

since otherwise

I{v’Li(v) > 0}1 < 2m- ni,

Li(v)> ni.1 +(2m- 2ni).1/2= m,
v.V(Hi)

which contradicts (7). Therefore

(8) o ,1 =<
i=1 i=1

Let q denote the number of vertices v such that there is exactly one for which
Li(v) > O. Then

(9) I{v’L(v)> 0}1 2(m(s + 1)- q) + q.
i=1

Combining (8) and (9), we have

(10) q >= 2m + s + ni.
i=1

Of course, we may assume without loss of generality that if Li(v 1, then L(v) 0
for all j i. Hence, by the definition of ni, there must be at least 2m + s vertices,
say b < < bzm +s, such that = Li(bj) 1/2, i.e., for each bj there is a unique
L such that L(bj) 1/2 and Lk(bj) 0 for all k # i. Thus, if [bj bk[m, then for
some i, L(bj)= Lg(bk)= 1/2. Since [bx- b2,,+l >= m, let io be such that Lo(bl)

Lo(b2,,+) 1/2. But, by the same reasoning we must also have Lio(b,,+j Lo(b)
1/2 and Lio(b2m+s Lio(bj) 1/2 for =< j =< m + s. Therefore

S(Ho Lo(V >= (2m +s).1/2>__m,
vV(Hio)

which is a contradiction. This completes the proof of Lemma 2. U
Recall that when is executed using the list L, F(T) is defined to be the

interval [ai, ai + z), where a is the time at which T starts to be executed and

192 M. R. GAREY AND R. L. GRAHAM

ri + zi is the time at which T is finished. Note that because of the way in which
the operation of the system is defined, each ai is a sum of a subset of the rj’s.

We may assume without loss of generality that co* 1. Assume now that
co > s + 1. Furthermore, suppose each ri can be written as ri ki/m, where ki
is a positive integer. Thus k <_ m, since ri <- co* 1. Also, for =< =< s, each
ri(t is constant on each interval [k/m, (k + 1)/m), this value being ri(k/m). An
important fact to note is that since -(is empty and n >= r, then, for t, t2 [0, co)
with t2 > 1, we must have

max {ri(tl) + ri(t2)} > 1.
l<_i<=s

For otherwise, any task being executed at time t2 should have been executed at
time or sooner. Thus, for each i, _< _< s, we can construct a graph H as
follows"

V(Hi) {0, 1, ..., (s + 1)m- 1};
()

Note that if la- bl >= m, then {a,b} is an edge of at least one Hi, __< __< s.

Hence it is not difficult to see that G(m,s) U H. Note that by (11), the mapping
Li" V(Hi) --, [0, oe) defined by Li(a) ri(a/m) is a valid labeling of H. Since G

_
G’

implies S(G) <__ S(G’) and the condition on the ri in (11) is a strict inequality, then
by Lemma 2 it follows that

(12) max 2 ri ax L,(v) > max {S(Hi)} >= m.
k=O

But we must have
(s + 1)m

(13)
m k=0

<= ri(t) dt < 1, <_ <_ s

(s+ 1)m- k
2 r <=m, <=i<=s.
k=0 m

This is a contradiction, and Theorem 2 is proved in the case that ri ki/m, where

ki is a positive integer for =<i=< r. Of course, it follows immediately that
Theorem 2 holds when all the ri are rational. The proof of Theorem 2 will be
completed by establishing the following lemma.

LEMMA 3. Let r (z, zr) be a sequence of positive real numbers. Thenfor
any e > O, there exists z’ (z’, z’r) such that

(i) Irl- zil < e for <= <= r;
(ii) for all S, T

sS tT sS tT

(iii) all rl are positive rational numbers.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 193

Remark. The importance of (ii) is that it guarantees that the order of execution
of the T using the list L is the same for r and r’. Thus if L is used to execute ,,
once using execution times r and once using execution times rl, then the corres-
ponding finishing times o9 and o9’ satisfy Io9 o9’1 =< re. Hence if there were an
example - with o9/o9" > s + and some of the ri irrational, then we could
construct another example ’ by slightly changing the to rational rl so that
the corresponding new finishing times 09’ and 09* satisfy Io9- o9’1 =< re and
Io9" o9"1 =< re, and, therefore if e is sufficiently small, we still have o9’/o9" > s + 1.
However, this would contradict what has already been proved. Lemma 3 is
implied by the following slightly more general result. The proof we give here is
due to V. Chvfital (personal communication).

LEMMA 3’. Let S denote a finite system of inequalities of the form

aix >_ ao or aix > ao,
i=1 i=1

where the ai are rational. Then, for any > O, if S has a real solution (x 1,..., xr),
then S has a rational solution (x’, x’r) with Ixi x’i[< e for all i.

Proof We proceed by induction on r. For r the result is immediate.
Now, let S be a system of inequalities in r > variables which is solvable in reals.
S splits into two classes: So, the subset of inequalities not involving x, and
$1 S So. Each inequality in $1 can be written in one of the following four
ways:

(a) o + Y x __< x,,
i=1

r-1

(b) o + x < x,
i=1

r-1

(c) o + Y ix, >-
i=1

r-1

(d) flo + flixi > x.
i=1

For each pair of inequalities, one of type (a) and one of type (c), we shall consider
the inequality

r-1 r-1

i=1 i=1

Similarly, the pairs of types {(a), (d)}, {(b), (c)} and {(b), (d)) give rise to inequalities
r-1 r-1

(f) o + . ixi < flo + flixi.
i=1 i=1

Let S* be the set of all inequalities of type (e) and (f) that we obtain from
Since by hypothesis, S So 12 $1 has a real solution (xl, "’, x,), then So U S*
has the real solution (xl, "", x_ 1). But So I1 S* only involves r- variables,
so that, by the induction hypothesis, So (.J S* has a rational solution (x, ..., x_
with Ixi- xl < e’ for all and any preassigned e’> 0. Substituting the x into

194 M.R. GAREY AND R. L. GRAHAM

(a), (b), (c) and (d), we obtain a set of inequalities

(g) a’<=x,, b’<xr, c’>_xr, d’>x,,

where the a’, b’, c’ and d’ are rational. Since the xi satisfy (e) and (f), we have a’ < c’,
a’ b’ d’.b’ < c, < d, < Thus for any e > 0, if e’ is chosen to be suitably small,

then there is a rational x’,. satisfying (g) and with]x,- x’,.] < e, completing the
proof of Lemma 3’. This proves Lemma 3, and hence, Theorem 2. F1

The following example shows that the bound in Theorem 2 cannot be
improved.

Example 2.- {T,, T)., Ts+,, T;, Ti,

-<=; n>=s(N+ 1)+1 =r;

1
for < s + 1; z for 1 <= <= sN;

i(Ti) N’ i(Tj) sN’ J :/: i, <= <_ s;

i(Tj) N’ <= j <= sN, <= <_ s;

L (T T’ T’ T2 T’ T T’1, N, N+I, +1, kN+l,

LTklv+2, T(k+ 1)N, +2, N, +

(T’,, T, T;, T1, T, T+,).

It is easily checked that for this case, co s + and co’ + s/N, so that m/co’
(and hence co/co*) is arbitrarily close to s + for N sufficiently large.

Proof of Theorem 3. The proof of Theorem 3 consists primarily of two main
lemmas, each of which gives a bound on co/co* which is best possible for certain
values of s and n. We let 2 denote ordinary Lebesgue measure6 on the real line.

LEMMA 4. For {ll, 2, s} and -, empty,

n+l
co co* co’ l,

2

Proof. Let I {t’lf(t)] 1}. We first show

(14) 2(1) _<_ co*.

Consider the set T of tasks defined by T Ut, f(t). For any pair of tasks T,
T belonging to T, there must exist some k, 1 =< k =< s, such that k(T) + k(T) > 1,
for otherwise, one of those tasks should have been started earlier (unless n 1,
in which case the lemma is trivial). But this implies that in the optimal schedule

Since in all of our applications, the subsets X of [0, co) under consideration are finite unions of
disjoint half-open intervals, then 2(X) is just the sum of the lengths of these intervals.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 195

no two members of T can be executed simultaneously. Therefore we have

o* _-> r => ,(I),
TiT

which proves (14).
To complete the proof of Lemma 4, observe that at least two processors

must be active at each time e i [0, 09) I.
Thus

nco* >= ri >= 22(i) + 2(1) 209 2(1) >= 209 co*,
i=1

and therefore (n + 1)o9" _> 2co. [2
The bound given by Lemma 4 is best possible whenever n <= s + 1, as shown

by the following examples.
Example 3.- To, Tx, T1, Tz, Tz, T x,T,_};

{?,?2,’",s}, 2=<n=<s +1;

’=1/2 l<j<n-l""ro 1, Tj Tj

’(T) n’ < s;

,(T) ,(T,) <_i<_n- 1;

i(Ti) i(TJ) 2n’
:/: j < < s

-<=;

l<j<n-l"

L (T, T’I, T2, T2, "., T,-t, T,_x, To);

L (TO Tx, Tz,..., 7",_, T’x, Tz.,.", T,_a).

It is easily checked that for this case,

n+l
09 co* co’ 1,

2

showing that the bound of Lemma 4 is best possible whenever n =< s + 1. [q

The following example, for the case s + 1 < n =< 2s + 1, is somewhat more
complicated.

Example 4. For suitably small e > 0 and a positive integer k, define

- {To} 1.3 {Tj’I <_ =< n 1,1 =<j =< k} IA {T’j’I __< =< n 1,1 =<j __< k};

= {l,2,’’’,s; S +1 <n<=2s +1; 4 =;
ro =2k; rj=rij= 1, <i<n- 1, <j<k"

i(To) , <= <= s;

196 M.R. GAREY AND R. L. GRAHAM

i(T/s) (n 1)eas_ 1,

;l(Tij) ’2j-1, # i,

-i(Ts + i,j) (n 1)c2s,

(T’i)- eES, # i- s,

l<i<s, l<j<k"

<=l<=s, <=i<n- 1, <=j<=k;

<=i<=n-s- 1, <=j<_k;

<=l<=s, <=i<=n- 1, <=j<_k..

To illuminate the structure of the two lists, L and L’, we describe them in block
form.

L (A1, A2, "’", A, A’I, A2, A_I, Ao),

where

Also

where

A (Bli, B2i,..., Bi), < k;

Bi=(T,T3), _-< i__<k, =<j=<s;

A (B’li, B2i,... B,_ 1,i), <= <= k 1;

Bji=(T’+j,i,T+,i+l), <= i=<k- 1, _<_j=< n- 1;

Ao (To, T+ 1,1, Ts+ 2,1, Tn-1,1, T+ 1,, T+ 2,, T,_ 1,).

L’ (Co, C1, C’1, C2, C’2,’", Ck, Ck),

Co (To);

Ci (Tli, T2i, Tn-1,i), k;

Ci (r’li, rzi,"’, rn-1,i), __< __< k.

It is not difficult to check that when the list L is used, each of the pairs of tasks
given in the sublists Bji and B) will be executed simultaneously on the first two
processors, with the other n 2 processors remaining inactive during that time.
After all such pairs have been executed, the tasks on sublist Ao will be started.
This results in

co=k(n- 1)-(n-s- 1) +2k---k(n +l)-(n-s- 1).

When the list L’ is used, each of the sets of n tasks given in the sublists Ci and
CI, will be executed simultaneously on processors 2 through n, with processor
executing To. Thus o* co’ 2k. We then have

co n +1 (n-s-l)
co* 2 2k

which is arbitrarily close to (n + 1)/2 for k sufficiently large.
We now prove an upper bound for o/co* which is best possible whenever

n>2s +1.
LEMMA 5. For {1,2, }, " , and n >__ 3,

co 2s+l"
<s+2

(D*-- n

BOUNDS FOR MULTIPROCESSOR SCHEDULING 197

Proof Suppose that we have a counterexample to the lemma. By Lemma 3,
we may assume all the zi are rational, i.e., there exists a positive integer m such that
for each i, =< =< r, there exists an integer ki satisfying zi ki/m. Without loss
of generality, we may also assume that co* 1. Thus each ki satisfies 1 _< ki _-< m
and co co(L) > s + 2 (2s + 1)/n.

Consider the operation of the system using the list L. Let I {t
1}, I’ {t e [0, co)’lf(t)l n} and let i [0, co) I’. By the proof of Lemma 4,

2(I) __< 1. Since at least two processors are active at each time e i,

F/ T H" (It) -- 2(1) + 2(co 2(1)- 2(I’))
i=1

(n 2)2(I’) + 209 1,

or

(15) &(I’)
n +l-2co
n-2

Since co > s + 2 (2s + 1)/n, we then have

2(i)-- co 2(I’) => co
n +l-2co

n-2

(16) > s + 2
2s+ 1 n+l-2(s+2 2s+l)n

n n-2

=s+l.

Now observe that for any l, t2 ff [satisfying 2 => 1, there must exist
an i, __< __< s, such that

(17) ri(tl) + ri(t2) > 1,

for otherwise, some task being executed at time tz should have been started at
time t or earlier. Recalling that i is a collection of intervals, each having the form
[k/m, (k + 1)/m) for some integer k, let ao < a < < ap be integers such that

m

Notice that (16) implies that p => (s + 1)m. For each i, N N s, we construct a
graph H as follows"

V(Hi) {0, 1,2,..., (s + 1)m- 1};

{u, v} is an edge of H iff
,m] +r’ > 1.

Note that lu vl m implies la, al m, which, by (17), implies that {u, v} is
an edge of at least one H, 1 N N s. Hence it is not difficult to see that G(m, s)
U H. The same reasoning used in the proof of Theorem 2 can be used now to

198 M.R. GAREY AND R. L. GRAHAM

show that, for some i, <_ s, S r(t)dt > 1, which contradicts the assumption
that co* 1. This completes the proof of Lemma 5. V1

Combining Lemmas 4 and 5, we obtain Theorem 3. It remains to be shown
that Lemma 5 is best possible whenever n > 2s + 1. This is done by the following
example.

Example 5. For suitably small e > 0 and a positive integer k’, let k k’n,
and define

e, e(n 1)i-k, <= <__ k;

,- {To} I,.J {To.1 <= <= n 1,1 <=j <= k};
,-- {l,2,’’’,,_s}; n > 2s + 1; -< ;
ro k; zij= 1, <= i< n- 1, <=j<= k;

i(To) el, <= <= s;

i(T0) (n- 1)sj, _< i__< s, =<j=< k;

,(To)-ej, l=/=i, <=ls, <=i<=n- 1,

As in Example 4, we again describe the lists L and L’ in block form.

where

Also

L (A 1, A2, A,_ 2s- 1, B1, B2, B, C),

A (T2s+i,1 T2s+i,2,’", T2s+i,k), <=i<=n-2s-1;

B, (TI, T+,,2, g/2 Ts+,,3,... Ti,k_ 1, gs+/,k), <i<s;

C (To, Ws+ 1,1, Ws+ 2,1, W2s,1, Wlk, g2k,’’’, gsk).

L’ (To,D1,D2, ..., D,),

where

D, (Tli, T2,..., T,_l,i), < _<_ k.

It is not difficult to check that

and co*

co=k’(n-2s- 1) +(k- 1)s +k=(s +2)k’n-(2s +l)k’-s

co’= k k’n. Thus

co 2s+l s
=s+2

co* n k’n’

which is arbitrarily close to the bound of Lemma 5 for k’ sufficiently large.

5. Concluding remarks. The results which have been discussed in this paper
lead naturally to a number of possible extensions, several of which we mention
here.

We first note that for the case {’1}, n > r, and general -, Example
may be used to show that co/co* can be arbitrarily large.

BOUNDS FOR MULTIPROCESSOR SCHEDULING 199

Regarding Lemma 1, an algorithm can be given which determines S(G) (and
a corresponding valid labeling as well) in at most

O(I EI x/jl VI
operations. A similar algorithm may be used for the following dual problem"
given a graph G, determine

max L*(e),
L* eE

where the max ranges over all functions L* "E ---, [0, oe) such that for all v e V,

L*(e’)<= 1,
e’ E(v)

where E(v) is the set of all edges incident to v. It would be interesting to investigate
the analogous questions for hypergraphs.

The following result follows more or less directly from Lemma 2.
COROLLARY. For a positive integer n, let f’O, n + 1) [0,), <= <= n, be

(Lebesgue) measurable functions satisfying the following condition"
If t, 2 [0, n + 1) with [t t2[>_ 1, then

max {f/(t,) +f/(t2)} >_- 1.
<i<n

Then

max | f/d2>__ 1.
<=i<_n][O,n+ II

It is interesting to note that, at present, no purely analytical proof of the
Corollary is known.

The techniques of Lemma 2 may also be used to derive several new results
in graph theory. In particular, it follows that if m is a positive integer and G,,
denotes the graph with vertex set

and edge set

V,, {0, 1,..., 3m- 1}

E,. {{a,b}
_

Vm’min {a b,3m a + b} >= m}.

then any 2-coloring of E,, contains m disjoint edges having the same color.
The corresponding general conjecture is that for a fixed s > !, if we take

and

V,,= {0,1, (s +l)m- 1}

E,. {{a,b}

Vm’min {a b,(s + 1)m- a + b} >__ m},

then any s-coloring of E,, contains m disjoint edges having the same color. At
present, this conjecture is still open. If true, it is close to being best possible,
since there exist m-colorings of the edges of the complete graph on (s + 1)m s
vertices which have no set of m disjoint edges having a single color (cf. [1], [2]).

200 M.R. GAREY AND R. L. GRAHAM

Finally, it is natural to inquire under what restrictions do there exist efficient
algorithms for determining optimal schedules for problems of the type considered
herein (cf. e.g., [6], [12]).

Acknowledgments. The authors take pleasure in acknowledging the resourceful
suggestions of S. A. Burr, J. C. Cheng, V. Chvital, D. S. Johnson, Shen Lin, and
H. S. Witsenhausen. The introduction of limited resources into scheduling
problems of this type was first suggested to the authors by E. Arthurs.

REFERENCES

[1] S. A. BURR, Generalized Ramsey theory for graphs--A survey of recent results, Graphs and
Combinatorics, R. Bari and F. Harary, eds., Lecture Notes in Mathematics No. 406,
Springer-Verlag, Berlin, 1974, pp. 52-75.

[2] E. J. COCKAYNE AND P. J. LORIMER, The Ramsey graph numbers for stripes, Univ. of Auckland
Math. Dept. Rep. Ser. No. 37, Auckland, New Zealand 1973.

[3] E. G. COFFrVIAN AND R. L. GRAHAM,, Optimal schedulingfor two-processor systems, Acta Informatica
(1972), pp. 200-213.

[4] M. FuJII, T. KASAMI AND K. NINOMIYA, Optimal sequencing of two equivalent processors, SIAM J.
Appl. Math., 17 (1969), pp. 784-789.

[5] ., Erratum: Optimal sequencing of two equivalent processors, Ibid., 20 (1971), p. 141.
[6] R. L. GRAHAra, Bounds on multiprocessing anomalies and related packing algorithms, AFIPS

Conf. Proc., 40 (1972), pp. 205-217.
[7] , Bounds on multiprocessing timing anomalies, SIAM J., Appl. Math., 17 (1969), pp. 263-

269.
[8] F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[9] T. C. Ht, Parallel scheduling and assembly line problems, Operations Res., 9 1961), pp. 841-848.
10] R. M. KARP, Reducibility among combinatorialproblems, Complexity ofComputer Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972.
[11] M. T. KAUFMAY, Anomalies in scheduling unit-time tasks, Stanford Electronics Lab. Tech. Rep.

34, 1972.
[12] J. D. ULLMAN, Polynomial complete scheduling problems, Computer Science Tech. Rep. 9, Univ.

of Calif., Berkeley, 1973.

