BOUNDS FOR NEARLY BEST APPROXIMATIONS

RUDOLF WEGMANN

ABSTRACT. Let X be a uniformly convex space and ψ be the inverse function of the modulus of convexity $\delta(\cdot)$. Assume here that ψ is a concave function. Let V be a linear subspace of X and let f in X be such that $\|f\|$ $=1=\min \{\|f-v\|: v \in V\}$. Then for $0<\delta \leq 1$ and for v in V with $\|f-v\| \leq$ $1+\delta$, it follows that $\|v\| \leq K \cdot \psi(\delta)$.

Let T be a compact Hausdorff-space and V a finite-dimensional subspace of $C(T, X)$. When V has the interpolation property $\left(P_{m}\right)$ with $\operatorname{dim} V=$ $m \cdot \operatorname{dim} X$, then the same type of estimate as above holds.

Let X be a uniformly convex normed linear space [1], i.e., for each ϵ with $0<\epsilon \leq 2$ there exists a $\delta(\epsilon)>0$ such that $x, y \in X,\|x\| \leq 1,\|y\| \leq 1$, and $\|x-y\|>\epsilon$ imply $\|(x+y) / 2\| \leq 1-\delta(\epsilon)$. The function $\delta(\cdot)$ is called the modulus of convexity of X. Without loss of generality we shall always assume that $\delta(\cdot)$ is monotone nondecreasing. Then an inverse function ψ can be defined by

$$
\begin{equation*}
\psi\left(\delta_{0}\right):=\sup \left\{\epsilon: 0<\epsilon \leq 2, \delta(\epsilon)<\delta_{0}\right\} \tag{1}
\end{equation*}
$$

for $\delta_{0}>0$. Obviously, ψ is monotone nondecreasing. From $\delta(\epsilon) \leq \epsilon / 2$ it follows that $\psi\left(\delta_{0}\right)>0$ for $\delta_{0}>0$.

One can replace $\delta(\cdot)$ by a monotone increasing convex function $\delta_{1}(\cdot)$, such that $0<\delta_{1}(\epsilon)<\delta(\epsilon)$ for $0<\epsilon \leq 2$ and $1 \leq \lim _{\inf }^{\epsilon \rightarrow 0} \boldsymbol{\delta}(\epsilon) / \delta_{1}(\epsilon)<\infty$. Then ψ is concave and continuous.

Let V be a subspace of X, and let f be in X such that $\|f\|=1$ and 0 is the best approximation for f by elements of V. A question of some practical interest is that of how fast the "nearly best approximations" v in V, with $\|f-v\| \leq 1+\delta$, approach 0 when $\delta \rightarrow 0$.

This note considers also the analogous question for subspaces V of $C(T, X), T$ compact, and gives estimates for $\|v\|$ in terms of the function ψ.

Theorem 1. The diameter $D(C)$ of every convex subset C of the spherical shell $R(\delta):=\{x \in X: 1-\delta \leq\|x\| \leq 1\}$ is $\leq \psi(\delta)$.

A result of this type was given by Fan and Glicksberg [2], but they did not relate the bound on $D(C)$ to the modulus of convexity.

Proof. From (1) it follows that $\delta(\epsilon) \geq \delta_{0}$ for $\epsilon>\psi\left(\delta_{0}\right)$. So, $\|x\| \leq 1$, $\|y\| \leq 1$, and $\|(x+y) / 2\|>1-\delta$ imply $\|x-y\| \leq \psi(\delta)$.

Received by the editors July 2, 1974.
AMS (MOS) subject classifications (1970). Primary 41A50; Secondary 41A65, License \AA r $108 y$,

Let C be a convex subset of $R(\delta)$. Then for $x, y \in C, x \neq y$, the segment $[x, y]$ is in $R(\delta)$. Define $y_{\theta}:=x+\theta(y-x)$. Then $\|x\| \leq 1,\left\|y_{\theta}\right\| \leq 1$, and $\left\|\left(x+y_{\theta}\right) / 2\right\| \geq 1-\delta$ for $0 \leq \theta \leq 1$. Since X is uniformly convex this last inequality is strict for all θ with at most one exception θ_{0}. Thus we obtain $\left\|x-y_{\theta}\right\| \leq \psi(\delta)$ for all $\theta \neq \theta_{0}$ and by continuity also for θ_{0}. Since x, y in C are arbitrarily chosen, $D(C) \leq \psi(\delta)$ is proved.

Theorem 2. Let V be a linear subspace of X, let f be in X such that $\|f\|=1=\min \{\|f-v\|: v \in V\}$. Then for $0<\delta \leq 1$ and all $v \in V$ with $\|f-v\|$ $\leq 1+\delta$ it follows that $\|v\| \leq 2 \psi(\delta)$.

Proof. The set $C:=\{v \in V:\|f-v\| \leq 1+\delta\}$ is a convex subset of the shell $\{x \in X: 1 \leq\|x-f\| \leq 1+\delta\}$. Using Theorem 1 to estimate the diameter of C, we obtain

$$
\begin{aligned}
\|v\|=\|v-0\| & \leq D(C) \leq(1+\delta) \psi(1-1 /(1+\delta)) \\
& =(1+\delta) \psi(\delta /(1+\delta)) \leq 2 \psi(\delta)
\end{aligned}
$$

Let P_{V} be the metric projection on V, i.e. the mapping which assigns to each f in X its best approximation $P_{V}(f)$ by elements of V. It is well known that P_{V} is uniformly continuous on bounded sets [5, p. 17]. From Theorem 2 we can obtain bounds for the modulus of continuity of P_{V}.

Corollary l. Let V be a linear subspace of X. Let f, g in X be such that $2\|f-g\| \leq E(f):=\min \{\|f-v\|: v \in V\}$. Then

$$
\left\|P_{V}(f)-P_{V}(g)\right\| \leq 2 E(f) \psi(2\|f-g\| / E(f))
$$

Proof. Without loss of generality we assume $P_{V}(f)=0$, so that $E(f)=$ $\|f\|$. Using $\left\|P_{V}(g)-g\right\| \leq\|f-g\|+E(f)$ we can estimate

$$
E(f) \leq\left\|P_{V}(g)-f\right\| \leq\left\|P_{V}(g)-g\right\|+\|f-g\| \leq E(f)+2\|f-g\| .
$$

It follows that

$$
1 \leq\left\|P_{V}(g)-f\right\| / E(f) \leq 1+2\|f-g\| / E(f)
$$

and by Theorem 2,

$$
\left\|P_{V}(g)-P_{V}(f)\right\| \leq 2 E(f) \cdot \psi(2\|f-g\| / E(f))
$$

Let T be a compact Hausdorff space and $C(T, X)$ be the space of continuous functions $f: T \rightarrow X$ provided with the maximum norm $\|f\|:=$ $\max \left\{\|f(t)\|_{X}: t \in T\right\}$. A subspace V of $C(T, X)$ is said to have the interpolation property $\left(P_{m}\right)$ if for every m distinct points t_{1}, \ldots, t_{m} in T and elements y_{1}, \ldots, y_{m} in X there exists v in V such that $v\left(t_{i}\right)=y_{i}$ for $i=1$, \ldots, m [6, p. 201]. When the real dimensions are in the relation $\operatorname{dim} V=$ $m \cdot \operatorname{dim} X$, then there exists exactly one such v, and each function v in V which vanishes at m distinct points on T vanishes identically.

The following theorem is analogous to Theorem 2.

[^0]Theorem 3. Let V be a linear subspace of $C(T, X)$ which has property
$\left(P_{m}\right)$ with $\operatorname{dim} V=m \cdot \operatorname{dim} X$. Let f in $C(T, X)$ be such that $\|f\|=1=$ $\min \{\|f-v\|: v \in V\}$. Then there exist numbers $K_{1}>0, K_{2} \geq 1$ depending on f and V such that for all v in V with $\|f-v\| \leq 1+\delta$ it follows that

$$
\begin{equation*}
\|v\| \leq K_{1} \psi\left(K_{2} \delta\right) \tag{2}
\end{equation*}
$$

If ψ is a concave function, then

$$
\begin{equation*}
\|v\| \leq K_{3} \psi(\delta) \tag{3}
\end{equation*}
$$

Proof. Let n be the dimension of V over the real field. According to [6, p. 202] the element 0 is a best approximation for f by elements of V if and only if there exist extremal points $x_{1}^{*}, \ldots, x_{h}^{*}$ of the unit ball $\left\{x^{*} \in X^{*}\right.$: $\left.\left\|x^{*}\right\| \leq 1\right\}$ of the dual space X^{*}, points t_{1}, \ldots, t_{h} in T and positive numbers λ_{j} with $\sum_{j=1}^{h} \lambda_{j}=1$ such that

$$
\begin{gather*}
\sum_{j=1}^{h} \lambda_{j} x_{j}^{*}\left(v\left(t_{j}\right)\right)=0 \quad \text { for each } v \text { in } V, \tag{4}\\
x_{j}^{*}\left(f\left(t_{j}\right)\right)=\|f\|=1 \quad \text { for } j=1, \ldots, h . \tag{5}
\end{gather*}
$$

The number h is in the range $m+1 \leq h \leq n+1$.
Since V has property $\left(P_{m}\right)$ with $\operatorname{dim} V=m \cdot \operatorname{dim} X$ from $v \in V$ and $v\left(t_{j}\right)=0$ for $j=1, \ldots, h$ it follows that $v \equiv 0$. Hence $\max \left\{\left\|v\left(t_{j}\right)\right\|: j=1\right.$, $\ldots, h\}$ is a norm on V. Since V has finite dimension this norm is equivalent to the original one, i.e., there is a constant K_{4} so that

$$
\begin{equation*}
\|v\| \leq K_{4} \max \left\{\left\|v\left(t_{j}\right)\right\|: j=1, \ldots, h\right\} \text { for } v \text { in } V . \tag{6}
\end{equation*}
$$

From $\left\|f\left(t_{j}\right)-v\left(t_{j}\right)\right\| \leq 1+\delta$ it follows that $\left|x_{j}^{*}\left(f\left(t_{j}\right)-v\left(t_{j}\right)\right)\right| \leq 1+\delta$. For each fixed index k in $1 \leq k \leq h$ we obtain from (4) and (5)

$$
\begin{aligned}
\sum_{j \neq k} \lambda_{j}+\lambda_{k} x_{k}^{*}\left(v\left(t_{k}\right)\right) & =\sum_{j \neq k} \lambda_{j} x_{j}^{*}\left(f\left(t_{j}\right)-v\left(t_{j}\right)\right) \\
& \leq \sum_{j \neq k} \lambda_{j}\left|x_{j}^{*}\left(f\left(t_{j}\right)-v\left(t_{j}\right)\right)\right| \leq \sum_{j \neq k} \lambda_{j}(1+\delta),
\end{aligned}
$$

and consequently

$$
\begin{equation*}
\lambda_{k} x_{k}^{*}\left(v\left(t_{k}\right)\right) \leq\left(\sum_{j \neq k} \lambda_{j}\right) \delta . \tag{7}
\end{equation*}
$$

The number $K_{5}:=\max \left\{\Sigma_{j \neq k}\left(\lambda_{j} / \lambda_{k}\right): k=1, \ldots, b\right\}$ depends on f and V, but not on v. So we obtain from (7)

$$
x_{k}^{*}\left(\nu\left(t_{k}\right)\right) \leq K_{5} \cdot \delta \quad \text { for } k=1, \ldots, h .
$$

For both points, $x_{k}=0$ and $x_{k}=v\left(t_{k}\right)$, we have $\left\|f\left(t_{k}\right)-x_{k}\right\| \leq 1+\delta$ and
 $\left(f\left(t_{k}\right)-x_{k}\right) /(1+\delta)$ is in the convex subset $C:=\left\{x \in X:\|x\| \leq 1, x_{k}^{*}(x) \geq\right.$
$\left.\left(1-K_{5} \delta\right) /(1+\delta)\right\}$ of the spherical shell $\left\{x \in X: 1-\left(K_{5}+1\right) \cdot \delta /(1+\delta) \leq\right.$ $\|x\| \leq 1\}$. Using the estimate of Theorem 1 for the diameter $D(C)$ we obtain

$$
\left\|v\left(t_{k}\right)\right\| \leq(1+\delta) D(C) \leq(1+\delta) \psi\left(\frac{\left(K_{5}+1\right) \delta}{1+\delta}\right) \leq 2 \psi\left(\left(K_{5}+1\right) \delta\right)
$$

for $k=1, \ldots, h$. Together with (6) this yields the estimate (2). If ψ is a concave function then we can use $\psi(\lambda \delta) \leq \lambda \psi(\delta)$ for $\lambda \geq 1$ to obtain (3).

For X a real Hilbert space one can choose $\psi(\delta)=\delta$ if $\operatorname{dim} X=1$ and $\psi(\delta)=$ $2 \delta^{1 / 2}$ if $\operatorname{dim} X \geq 2$. We note that \mathbf{C} is norm-isomorphic to the Euclidean \mathbf{R}^{2}. The space V of the polynomials of degree $\leq n$ has the interpolation property $\left(P_{n+1}\right)$ in the real as well as in the complex case. So we obtain from Theorem 3 the following

Corollary 2. Let T be a compact subset of \mathbf{R} (or \mathbf{C}) with at least $n+2$ points and let V be the space of polynomials of degree $\leq n$ restricted to T. Let f be in $C(T, \mathbf{R})($ or $C(T, \mathbf{C}))$ such that $\|f\|=1=\min \{\|f-v\|, v \in V\}$. Then there exists a number K dependent on T, n and f, such that for all v in V with $\|f-v\| \leq 1+\delta$ it follows that $\|v\| \leq K \cdot \delta\left(\right.$ or $\left.\|v\| \leq K \delta^{1 / 2}\right)$.

In the real case this is a result of Freud [3]. The complex case improves a result of Poreda, who proved in [4] only $\|v\|=O\left(\delta^{\beta}\right)$ for $0<\beta<1 / 2$.

Now we show that the estimate (3) is sharp in the sense that the function ψ may not be replaced by another one ψ_{1} such that $\psi_{1}(\delta) / \psi(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. We make the hypothesis that ψ is concave and sharp in the following sense: There exists a constant $K>0$ such that for all x in X and $x^{*} \in X^{*}$ with $\left\|x^{*}\right\|=1=\|x\|=x^{*} x$, from $\|y\|=1+\delta$ and $x^{*}(x-y)=0$ it follows that $\|y-x\| \geq K \psi(\delta)$.

We note that Hilbert-spaces have this property, when ψ is specified as before Corollary 2. So the estimates of the corollary are sharp.

To prove the sharpness of (3) we proceed in the following way. Let V be a subspace of $C(T, X)$ as in Theorem 3. We construct a suitable f in $C(T, X)$ which fulfills the hypotheses of Theorem 3 such that for all $\delta>0$ there exists v in V such that $\|f-v\| \leq 1+\delta$ and $\|v\| \geq K \psi(\delta)$.

Let t_{1}, \ldots, t_{m+1} be different points of T. The mapping $v \rightarrow\left(v\left(t_{1}\right)\right.$, $\left.\ldots, \nu\left(t_{m+1}\right)\right)$ carries V onto an n-dimensional subspace of the ($m+1$)-fold product $W:=X \times \cdots \times X$, which has dimension $(m+1) \cdot \operatorname{dim} X>n$. So there exists a nontrivial linear functional w^{*} on W which vanishes on the image of V. Hence there exist x_{j}^{*} in X^{*} and real λ_{j} such that

$$
\begin{equation*}
\sum_{j} \lambda_{j} x_{j}^{*}\left(v\left(t_{j}\right)\right)=0 \tag{8}
\end{equation*}
$$

for all v in V. By suitable normalization we can reach $\left\|x_{j}^{*}\right\|=1, \lambda_{j} \geq 0$,

Since X has finite dimension there exist x_{j} in X so that $\left\|x_{j}\right\|=1=$
$x_{j}^{*} x_{j}$. We put $f\left(t_{j}\right)=x_{j}$ and extend f to an element of $C(T, X)$ such that for an $\eta>0$

$$
\|f(t)-v(t)\| \leq \max \left\{\left\|f\left(t_{j}\right)-v\left(t_{j}\right)\right\|: j=1, \ldots, m+1\right\}
$$

holds for all t in T and v in V with $\|v\| \leq \eta$. We omit the lengthy but elementary details of this construction. For this f we have $\|f\|=1=\min \{\|f-v\|$: $v \in V\}$.

If $X=\mathbf{R}$, it follows from $\|f-v\|=1+\delta$ that $\left|f\left(t_{j}\right)-v\left(t_{j}\right)\right|=1+\delta$ for at least one j, and so $\|v\| \geq\left|v\left(t_{j}\right)\right|=\delta$.

In case $\operatorname{dim} X \geq 2$ we construct a $\nu \neq 0$ in V with

$$
\begin{equation*}
x_{j}^{*} \nu\left(t_{j}\right)=0 \quad \text { for all } j \tag{9}
\end{equation*}
$$

Let v_{1}, \ldots, v_{n} be a basis of V, then (9) leads with $v=\Sigma a_{\nu} v_{\nu}$ to the system of equations

$$
\begin{equation*}
\sum_{\nu} a_{\nu} x_{j}^{*} v_{\nu}\left(t_{j}\right)=0, \quad j=1, \ldots, m+1 \tag{10}
\end{equation*}
$$

which has a nontrivial solution $\alpha_{1}, \ldots, \alpha_{n}$, since the rank of the matrix of (10) is at most $n-1$ because of $n \geq m+1$ and (8). Therefore a $v \neq 0$ in V with (9) exists.

If $\|f-\lambda \nu\|=1+\delta$ then $\left\|f\left(t_{j}\right)-\lambda \nu\left(t_{j}\right)\right\|=1+\delta$ for at least one j. From this it follows $\left\|\lambda v\left(t_{j}\right)\right\| \geq K \psi(\delta)$ by hypothesis and so $\|\lambda v\| \geq K \psi(\delta)$.

From Theorem 3 one can obtain a bound for the modulus of continuity of the metric projection similar to that of Corollary 1. It may be noted that the bound of Corollary 1 is not sharp in general. For a Hilbert-space of dimension ≥ 2 it yields $\left\|P_{V}(f)-P_{V}(g)\right\|=O\left(\|f-g\|^{1 / 2}\right)$ which is less sharp than the well-known estimate $\left\|P_{V}(f)-P_{V}(g)\right\| \leq\|f-g\|$.

REFERENCES

1. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
2. Ky Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553-568. MR 20 \#5421.
3. G. Freud, Eine Ungleichung für Tschebyscheffsche Approximations polynome, Acta Sci. Math. (Szeged) 19 (1958), 162-164. MR 21 \#25 1.
4. S. J. Poreda, On the continuity of best polynomial approximations, Proc. Amer. Math. Soc. 36 (1972), 471-476.
5. A. Schönhage, Approximations theorie, de Gruyter, Berlin, 1971. MR 43 \#3693.
6. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Editura Academiei Republicii Socialiste România, Bucharest, 1967; English transl., Die Grundlehren der math. Wissenschaften, Band 171, Springer-Verlag, Berlin and New York, 1970. MR 38 \#3677; 42 \#4937.

InSTITUT FÜR ASTROPHYSIK, MAX-PLANCK-INSTITUT FÜR PHYSIK UND ASTROPHYSIK, 8 MÜNCHEN 40, WEST GERMANY

[^0]: License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

