BOUNDS FOR NEARLY BEST APPROXIMATIONS

RUDOLF WEGMANN

ABSTRACT. Let X be a uniformly convex space and ψ be the inverse function of the modulus of convexity $\delta(\cdot)$. Assume here that ψ is a concave function. Let V be a linear subspace of X and let f in X be such that ||f||= $1 = \min\{||f - v|| : v \in V\}$. Then for $0 < \delta \le 1$ and for v in V with $||f - v|| \le$ $1 + \delta$, it follows that $||v|| \le K \cdot \psi(\delta)$.

Let T be a compact Hausdorff-space and V a finite-dimensional subspace of C(T, X). When V has the interpolation property (P_m) with dim $V = m \cdot \dim X$, then the same type of estimate as above holds.

Let X be a uniformly convex normed linear space [1], i.e., for each ϵ with $0 < \epsilon \leq 2$ there exists a $\delta(\epsilon) > 0$ such that x, $y \in X$, $||x|| \leq 1$, $||y|| \leq 1$, and $||x - y|| > \epsilon$ imply $||(x + y)/2|| \leq 1 - \delta(\epsilon)$. The function $\delta(\cdot)$ is called the modulus of convexity of X. Without loss of generality we shall always assume that $\delta(\cdot)$ is monotone nondecreasing. Then an inverse function ψ can be defined by

(1)
$$\psi(\delta_0) := \sup \{ \epsilon : 0 < \epsilon \le 2, \ \delta(\epsilon) < \delta_0 \}$$

for $\delta_0 > 0$. Obviously, ψ is monotone nondecreasing. From $\delta(\epsilon) \le \epsilon/2$ it follows that $\psi(\delta_0) > 0$ for $\delta_0 > 0$.

One can replace $\delta(\cdot)$ by a monotone increasing convex function $\delta_1(\cdot)$, such that $0 < \delta_1(\epsilon) < \delta(\epsilon)$ for $0 < \epsilon \le 2$ and $1 \le \lim \inf_{\epsilon \to 0} \delta(\epsilon) / \delta_1(\epsilon) < \infty$. Then ψ is concave and continuous.

Let V be a subspace of X, and let f be in X such that ||f|| = 1 and 0 is the best approximation for f by elements of V. A question of some practical interest is that of how fast the "nearly best approximations" ν in V, with $||f - \nu|| \le 1 + \delta$, approach 0 when $\delta \to 0$.

This note considers also the analogous question for subspaces V of C(T, X), T compact, and gives estimates for ||v|| in terms of the function ψ .

Theorem 1. The diameter D(C) of every convex subset C of the spherical shell $R(\delta) := \{x \in X : 1 - \delta \le ||x|| \le 1\}$ is $\le \psi(\delta)$.

A result of this type was given by Fan and Glicksberg [2], but they did not relate the bound on D(C) to the modulus of convexity.

Proof. From (1) it follows that $\delta(\epsilon) \ge \delta_0$ for $\epsilon \ge \psi(\delta_0)$. So, $||x|| \le 1$, $||y|| \le 1$, and $||(x + y)/2|| \ge 1 - \delta$ imply $||x - y|| \le \psi(\delta)$.

Received by the editors July 2, 1974.

AMS (MOS) subject classifications (1970). Primary 41A50; Secondary 41A65, License are provinging regarding to redistribution; see https://www.ams.org/journal-terms-of-use

Let C be a convex subset of $R(\delta)$. Then for x, $y \in C$, $x \neq y$, the segment [x, y] is in $R(\delta)$. Define $y_{\theta} := x + \theta(y - x)$. Then $||x|| \leq 1$, $||y_{\theta}|| \leq 1$, and $||(x + y_{\theta})/2|| \geq 1 - \delta$ for $0 \leq \theta \leq 1$. Since X is uniformly convex this last inequality is strict for all θ with at most one exception θ_0 . Thus we obtain $||x - y_{\theta}|| \leq \psi(\delta)$ for all $\theta \neq \theta_0$ and by continuity also for θ_0 . Since x, y in C are arbitrarily chosen, $D(C) \leq \psi(\delta)$ is proved.

Theorem 2. Let V be a linear subspace of X, let f be in X such that $||f|| = 1 = \min\{||f - v|| : v \in V\}$. Then for $0 < \delta \le 1$ and all $v \in V$ with $||f - v|| \le 1 + \delta$ it follows that $||v|| \le 2\psi(\delta)$.

Proof. The set $C := \{v \in V : ||f - v|| \le 1 + \delta\}$ is a convex subset of the shell $\{x \in X : 1 \le ||x - f|| \le 1 + \delta\}$. Using Theorem 1 to estimate the diameter of C, we obtain

$$\|v\| = \|v - 0\| \le D(C) \le (1 + \delta)\psi(1 - 1/(1 + \delta))$$

= $(1 + \delta)\psi(\delta/(1 + \delta)) < 2\psi(\delta).$

Let P_V be the metric projection on V, i.e. the mapping which assigns to each f in X its best approximation $P_V(f)$ by elements of V. It is well known that P_V is uniformly continuous on bounded sets [5, p. 17]. From Theorem 2 we can obtain bounds for the modulus of continuity of P_V .

Corollary 1. Let V be a linear subspace of X. Let f, g in X be such that $2||f - g|| \le E(f) := \min\{||f - v|| : v \in V\}$. Then

$$\|P_V(f) - P_V(g)\| \le 2E(f)\psi(2\|f - g\|/E(f)).$$

Proof. Without loss of generality we assume $P_V(f) = 0$, so that E(f) = ||f||. Using $||P_V(g) - g|| \le ||f - g|| + E(f)$ we can estimate

$$E(f) \le \|P_V(g) - f\| \le \|P_V(g) - g\| + \|f - g\| \le E(f) + 2\|f - g\|.$$

It follows that

$$1 \le \|P_V(g) - f\|/E(f) \le 1 + 2\|f - g\|/E(f),$$

and by Theorem 2,

$$||P_V(g) - P_V(f)|| \le 2E(f) \cdot \psi(2||f - g||/E(f)).$$

Let T be a compact Hausdorff space and C(T, X) be the space of continuous functions $f: T \to X$ provided with the maximum norm $||/|| := \max\{||f(t)||_X : t \in T\}$. A subspace V of C(T, X) is said to have the interpolation property (P_m) if for every m distinct points t_1, \ldots, t_m in T and elements y_1, \ldots, y_m in X there exists v in V such that $v(t_i) = y_i$ for $i = 1, \ldots, m$ [6, p. 201]. When the real dimensions are in the relation dim $V = m \cdot \dim X$, then there exists exactly one such v, and each function v in V which vanishes at m distinct points on T vanishes identically.

The following theorem is analogous to Theorem 2. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Theorem 3. Let V be a linear subspace of C(T, X) which has property

 (P_m) with dim $V = m \cdot \dim X$. Let f in C(T, X) be such that $||f|| = 1 = \min\{||f - v|| : v \in V\}$. Then there exist numbers $K_1 > 0$, $K_2 \ge 1$ depending on f and V such that for all v in V with $||f - v|| \le 1 + \delta$ it follows that

$$\|v\| \leq K_1 \psi(K_2 \delta).$$

If ψ is a concave function, then (3) $\|v\| \leq K_{3}\psi(\delta).$

Proof. Let *n* be the dimension of *V* over the real field. According to [6, p. 202] the element 0 is a best approximation for *f* by elements of *V* if and only if there exist extremal points x_1^*, \ldots, x_b^* of the unit ball $\{x^* \in X^*: \|x^*\| \le 1\}$ of the dual space X^* , points t_1, \ldots, t_b in *T* and positive numbers λ_i with $\sum_{j=1}^{b} \lambda_j = 1$ such that

(4)
$$\sum_{j=1}^{h} \lambda_j x_j^*(v(t_j)) = 0 \quad \text{for each } v \text{ in } V,$$

(5)
$$x_j^*(f(t_j)) = ||f|| = 1 \text{ for } j = 1, ..., h.$$

The number h is in the range $m + 1 \le h \le n + 1$.

Since V has property (P_m) with dim $V = m \cdot \dim X$ from $v \in V$ and $v(t_j) = 0$ for j = 1, ..., h it follows that $v \equiv 0$. Hence $\max\{||v(t_j)||: j = 1, ..., h\}$ is a norm on V. Since V has finite dimension this norm is equivalent to the original one, i.e., there is a constant K_4 so that

(6)
$$||v|| \le K_4 \max\{||v(t_j)|| : j = 1, ..., h\}$$
 for v in V .

From $||f(t_j) - v(t_j)|| \le 1 + \delta$ it follows that $|x_j^*(f(t_j) - v(t_j))| \le 1 + \delta$. For each fixed index k in $1 \le k \le h$ we obtain from (4) and (5)

$$\begin{split} \sum_{j \neq k} \lambda_j + \lambda_k x_k^*(\nu(t_k)) &= \sum_{j \neq k} \lambda_j x_j^*(f(t_j) - \nu(t_j)) \\ &\leq \sum_{j \neq k} \lambda_j \left| x_j^*(f(t_j) - \nu(t_j)) \right| \leq \sum_{j \neq k} \lambda_j (1 + \delta), \end{split}$$

and consequently

(7)
$$\lambda_k x_k^*(\nu(t_k)) \leq \left(\sum_{j \neq k} \lambda_j\right) \delta.$$

The number $K_5 := \max \{ \sum_{j \neq k} (\lambda_j / \lambda_k) : k = 1, ..., h \}$ depends on f and V, but not on v. So we obtain from (7)

$$x_k^*(v(t_k)) \leq K_5 \cdot \delta$$
 for $k = 1, \ldots, h$.

For both points, $x_k = 0$ and $x_k = v(t_k)$, we have $||f(t_k) - x_k|| \le 1 + \delta$ and $x_k^*(x_k) \le K$. δ , hence by (5) $x_k^*(f(t_k) - x_k) \ge 1 - K_5 \delta$. Consequently License or ordering restrictions may apply to redistribution; see https://www.sens.org/journal-terms-of-use 5δ . Consequently $(f(t_k) - x_k)/(1 + \delta)$ is in the convex subset $C := \{x \in X : ||x|| \le 1, x_k^*(x) \ge 1 + \delta \}$.

 $(1 - K_5\delta)/(1 + \delta)$ of the spherical shell $\{x \in X : 1 - (K_5 + 1) \cdot \delta/(1 + \delta) \le ||x|| \le 1$. Using the estimate of Theorem 1 for the diameter D(C) we obtain

$$\|v(t_k)\| \leq (1+\delta)D(C) \leq (1+\delta)\psi\left(\frac{(K_5+1)\delta}{1+\delta}\right) \leq 2\psi((K_5+1)\delta)$$

for k = 1, ..., h. Together with (6) this yields the estimate (2). If ψ is a concave function then we can use $\psi(\lambda \delta) \leq \lambda \psi(\delta)$ for $\lambda \geq 1$ to obtain (3).

For X a real Hilbert space one can choose $\psi(\delta) = \delta$ if dim X = 1 and $\psi(\delta) = 2\delta^{\frac{1}{2}}$ if dim $X \ge 2$. We note that C is norm-isomorphic to the Euclidean \mathbb{R}^2 . The space V of the polynomials of degree $\le n$ has the interpolation property (P_{n+1}) in the real as well as in the complex case. So we obtain from Theorem 3 the following

Corollary 2. Let T be a compact subset of **R** (or **C**) with at least n + 2 points and let V be the space of polynomials of degree $\leq n$ restricted to T. Let f be in $C(T, \mathbf{R})$ (or $C(T, \mathbf{C})$) such that $||f|| = 1 = \min\{||f - v||, v \in V\}$. Then there exists a number K dependent on T, n and f, such that for all v in V with $||f - v|| \leq 1 + \delta$ it follows that $||v|| \leq K \cdot \delta$ (or $||v|| \leq K\delta^{\frac{1}{2}}$).

In the real case this is a result of Freud [3]. The complex case improves a result of Poreda, who proved in [4] only $||v|| = O(\delta^{\beta})$ for $0 < \beta < \frac{1}{2}$.

Now we show that the estimate (3) is sharp in the sense that the function ψ may not be replaced by another one ψ_1 such that $\psi_1(\delta)/\psi(\delta) \to 0$ as $\delta \to 0$. We make the hypothesis that ψ is concave and sharp in the following sense: There exists a constant K > 0 such that for all x in X and $x^* \in X^*$ with $||x^*|| = 1 = ||x|| = x^*x$, from $||y|| = 1 + \delta$ and $x^*(x - y) = 0$ it follows that $||y - x|| \ge K\psi(\delta)$.

We note that Hilbert-spaces have this property, when ψ is specified as before Corollary 2. So the estimates of the corollary are sharp.

To prove the sharpness of (3) we proceed in the following way. Let V be a subspace of C(T, X) as in Theorem 3. We construct a suitable f in C(T, X) which fulfills the hypotheses of Theorem 3 such that for all $\delta > 0$ there exists v in V such that $||f - v|| \le 1 + \delta$ and $||v|| \ge K\psi(\delta)$.

Let t_1, \ldots, t_{m+1} be different points of T. The mapping $v \to (v(t_1), \ldots, v(t_{m+1}))$ carries V onto an *n*-dimensional subspace of the (m + 1)-fold product $W := X \times \cdots \times X$, which has dimension $(m+1) \cdot \dim X > n$. So there exists a nontrivial linear functional w^* on W which vanishes on the image of V. Hence there exist x_i^* in X^* and real λ_i such that

(8)
$$\sum_{j} \lambda_{j} x_{j}^{*}(v(t_{j})) = 0$$

for all v in V. By suitable normalization we can reach $||x_j^*|| = 1$, $\lambda_j \ge 0$, Liosed popyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Since X has finite dimension there exist x_i in X so that $||x_i|| = 1 =$

 $x_{j}^{*}x_{j}$. We put $f(t_{j}) = x_{j}$ and extend f to an element of C(T, X) such that for an $\eta > 0$

$$||f(t) - v(t)|| \le \max\{||f(t_j) - v(t_j)|| : j = 1, ..., m + 1\}$$

holds for all t in T and v in V with $||v|| \le \eta$. We omit the lengthy but elementary details of this construction. For this f we have $||f|| = 1 = \min\{||f - v||: v \in V\}$.

If $X = \mathbf{R}$, it follows from $||f - v|| = 1 + \delta$ that $|f(t_j) - v(t_j)| = 1 + \delta$ for at least one j, and so $||v|| \ge |v(t_j)| = \delta$.

In case dim $X \ge 2$ we construct a $v \ne 0$ in V with

(9)
$$x_{j}^{*}v(t_{j}) = 0 \quad \text{for all } j.$$

Let v_1, \ldots, v_n be a basis of V, then (9) leads with $v = \sum \alpha_v v_v$ to the system of equations

(10)
$$\sum_{\nu} \alpha_{\nu} x_{j \nu_{\nu}}^{*}(t_{j}) = 0, \quad j = 1, \ldots, m+1,$$

which has a nontrivial solution $\alpha_1, \ldots, \alpha_n$, since the rank of the matrix of (10) is at most n-1 because of $n \ge m+1$ and (8). Therefore a $v \ne 0$ in V with (9) exists.

If $||f - \lambda v|| = 1 + \delta$ then $||f(t_j) - \lambda v(t_j)|| = 1 + \delta$ for at least one *j*. From this it follows $||\lambda v(t_j)|| \ge K\psi(\delta)$ by hypothesis and so $||\lambda v|| \ge K\psi(\delta)$.

From Theorem 3 one can obtain a bound for the modulus of continuity of the metric projection similar to that of Corollary 1. It may be noted that the bound of Corollary 1 is not sharp in general. For a Hilbert-space of dimension ≥ 2 it yields $||P_V(f) - P_V(g)|| = O(||f - g||^{\frac{1}{2}})$ which is less sharp than the well-known estimate $||P_V(f) - P_V(g)|| \leq ||f - g||$.

REFERENCES

1. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.

2. Ky Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553-568. MR 20 #5421.

3. G. Freud, Eine Ungleichung für Tschebyscheffsche Approximations polynome, Acta Sci. Math. (Szeged) 19 (1958), 162-164. MR 21 #251.

4. S. J. Poreda, On the continuity of best polynomial approximations, Proc. Amer. Math. Soc. 36 (1972), 471-476.

5. A. Schönhage, Approximations theorie, de Gruyter, Berlin, 1971. MR 43 #3693.

6. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Editura Academiei Republicii Socialiste România, Bucharest, 1967; English transl., Die Grundlehren der math. Wissenschaften, Band 171, Springer-Verlag, Berlin and New York, 1970. MR 38 #3677; 42 #4937.

INSTITUT FÜR ASTROPHYSIK, MAX-PLANCK-INSTITUT FÜR PHYSIK UND ASTRO-PHYSIK, 8 MÜNCHEN 40. WEST GERMANY