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Abstract: We establish new simple bounds for the quotients of inverse trigonometric and inverse
hyperbolic functions such as sin−1 x

sinh−1 x
and tanh−1 x

tan−1 x . The main results provide polynomial bounds

using even quadratic functions and exponential bounds under the form eax2
. Graph validation is

also performed.
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1. Introduction

As discussed in [1], functions whose graphs are similar to bell-shaped curves should
be studied, and one of the aspects is to investigate the bounds of such functions. For the
bounds of this type of functions involving inverse trigonometric and inverse hyperbolic
functions, we refer the reader to [2–20] and references therein. Chesneau and Bagul [1]
investigated the sharp bounds for ratio functions cos x

cosh x and sin x
sinh x . These inequalities were

carefully studied and generalized by Kostić et al. [21] to get several types of bounds using
infinite products.

Recently, Bagul et al. [22] corroborated the following double inequalities involving
exponential bounds.

Proposition 1 ([22] Proposition 1). For x ∈ [0, α], where α ∈
(
0, π

2
)
, the inequalities

e−a1x2 ≤ cos x
cosh x

≤ e−a2x2
(1)

hold with the best possible constants a1 = α−2 ln
(

cosh α
cos α

)
and a2 = 1.

Proposition 2 ([22] Proposition 2). For x ∈
(
0, π

2
)
, the inequalities

e−b1x2
<

sin x
sinh x

< e−b2x2
(2)

hold with the best possible constants b1 = 4π−2 ln
[
sinh

(
π
2
)]
≈ 0.337794 and b2 = 1

3 .

Proposition 3 ([22] Proposition 4). For x ∈ (0, α], where α ∈
(
0, π

2
)
, the inequalities

e−c1x2
<

tanh x
tan x

< e−c2x2
(3)

hold with the best possible constants c1 = α−2 ln
( tan α

tanh α

)
and c2 = 2

3 .
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We contribute to the subject by establishing polynomial and exponential bounds for
the functions sin−1 x

sinh−1 x
and tanh−1 x

tan−1 x , which are motivated by these works. In the whole paper,
it is to be noted that the superscript “−” for trigonometric and hyperbolic functions is used
for their inverses.

2. Main Theorems
2.1. Statements

Our main results are the following theorems.

Theorem 1. η1 = 1
3 and η2 = π

ln(3+2
√

2)
− 1 ≈ 0.78221397 are the best possible constants such

that the inequalities

1 + η1x2 <
sin−1 x

sinh−1 x
< 1 + η2x2; x ∈ (0, 1) (4)

hold.

Theorem 2. If x ∈ (0, r) and r is any real number in (0, 1), then the inequalities

1 + θ1x2 <
tanh−1 x
tan−1 x

< 1 + θ2x2 (5)

hold with the best possible constants θ1 = 2
3 and θ2 = tanh−1 r−tan−1 r

r2 ˙tan−1r
.

Theorem 3. µ1 = 1
3 and µ2 = ln

(
π

2 sinh−1 1

)
≈ 0.57785639 are the best possible constants such

that the inequalities

eµ1x2
<

sin−1 x
sinh−1 x

< eµ2x2
; x ∈ (0, 1) (6)

hold.

Theorem 4. If x ∈ (0, r) and r is any real number in (0, 1), then the inequalities

eν1x2
<

tanh−1 x
tan−1 x

< eν2x2
(7)

hold with the best possible constants ν1 = 2
3 and ν2 = ln(tanh−1 r)−ln(tan−1 r)

r2 .

Since η1 = µ1 and θ1 = ν1, by the well-known inequality 1 + y ≤ ey, it is not difficult
to see that the lower bounds of (6) and (7) are sharper than those of (4) and (5), respectively.

Corollary 1. If x ∈ (0, 1), then we have

sin−1 x
sinh−1 x

<
tanh−1 x
tan−1 x

. (8)

2.2. Graphical Illustrations

In this part, we compare the obtained bounds by the means of graphics, with a discussion.
Figure 1 presents the bounds obtained in Theorems 1 and 3 for the “ratio sin” function

defined by sin−1 x
sinh−1 x

.
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Figure 1. Visual comparison of the bounds for sin−1 x
sinh−1 x

: (a) lower bounds with x ∈ [0.4, 1], and (b) up-
per bounds for x ∈ [0, 1].

It can be observed that the exponential bounds are sharper.
Figure 2 displays the bounds obtained in Theorems 1 and 3 for the “ratio tan” function

defined by tanh−1 x
tan−1 x .
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Figure 2. Visual comparison of the bounds for tanh−1 x
tan−1 x : (a) lower bounds with x ∈ [0.4, r], and (b) up-

per bounds for x ∈ [0, r], with r = 7
8 (arbitrarily taken into (0, 1)).

Again, it can be observed that the exponential bounds are sharper.
Thus, the graphical illustrations reveal that the upper bounds of (6) and (7) are sharper

than those of (4) and (5), respectively.
We end by illustrating the ratio comparison states in Corollary 1 in Figure 3.
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Figure 3. Visual comparison between sin−1 x
sinh−1 x

and tanh−1 x
tan−1 x .

3. Auxiliary Results

In order to prove our main results, we need the following lemmas from the existing
literature.

Lemma 1 ([23] L’Hôpital’s rule of monotonicity). Let f , g be two real-valued functions which
are continuous on [a, b] and differentiable on (a, b), where −∞ < a < b < ∞ and g′(x) 6= 0, for
∀x ∈ (a, b). Let,

r1(x) =
f (x)− f (a)
g(x)− g(a)

and r2(x) =
f (x)− f (b)
g(x)− g(b)

.

Then,

(i) r1(x) and r2(x) are increasing on (a, b) if f ′
g′ is increasing on (a, b); and

(ii) r1(x) and r2(x) are decreasing on (a, b) if f ′
g′ is decreasing on (a, b).

The strictness of the monotonicity of r1(x) and r2(x) depends on the strictness of the mono-
tonicity of f ′

g′ .

Lemma 2 ([2] Lemma 2). For 0 < |x| < 1, we have

(sin−1 x)2 =
∞

∑
n=0

22n+1 · (n!)2

(2n + 2)!
x2n+2

and

(sinh−1 x)2 =
∞

∑
n=0

(−1)n 22n+1 · (n!)2

(2n + 2)!
x2n+2.

The series for (sin−1 x)2 can also be found in [24]. For series expansions of powers of
sin−1 x we refer to [25] and references therein.

We also prove some other lemmas that are required to prove our main results.

Lemma 3. The following inequality is true.

sin−1 x
x

<
3

(3 + x2)
√

1− x2
; x ∈ (0, 1). (9)
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Proof. Let
φ(x) = 3x− (3 + x2)

√
1− x2 sin−1 x; x ∈ (0, 1).

Differentiation gives

φ′(x) = 3− (3 + x2)− 2x
√

1− x2 sin−1 x +
x(3 + x2) sin−1 x√

1− x2

=
x(3 + x2) sin−1 x− 2x(1− x2) sin−1 x√

1− x2
− x2

=
x(1 + 3x2) sin−1 x√

1− x2
− x2

= x

[
(1 + 3x2) sin−1 x− x

√
1− x2

√
1− x2

]
.

Since
√

1− x2 < 1 + 3x2 and x < sin−1 x, clearly, for x ∈ (0, 1), we get
√

1− x2

1 + 3x2 < 1 <
sin−1 x

x
,

which results in φ′(x) > 0. So φ(x) is strictly increasing in (0, 1) and we have φ(x) >
φ(0) = 0.

Note 1. The inequality (9) is a refinement of the inequality

sin−1 x
x

<
1√

1− x2
; x ∈ (0, 1).

See, for instance, [5].

Lemma 4. For x ∈ (0, 1), the inequality(
sinh−1 x

x

)2

>
√

1− x2 · sin−1 x
x

(10)

is true.

Proof. From Theorem 2.2 of [6], we have(
sinh−1 x

x

)2

>
3

3 + x2 .

Combining this inequality with (1), we get the desired inequality (10).

Lemma 5. For x ∈ (0, 1), it holds that

sinh−1 x√
1− x2

>
sin−1 x√

1 + x2
. (11)

Proof. A combination of inequalities (1.1) of [5] and (1.1) of [6] gives (11).

Lemma 6. The inequality

tanh−1 x
tan−1 x

<

√
1 + x2
√

1− x2
(12)
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holds in (0, 1).

Proof. From Theorem 4 (inequality (2.12)) of [5], we have

tan−1 x
x

>
1√

1 + x2
; x > 0 (13)

and from Theorem 2.4 (inequality (2.4)) of [6], we have

tanh−1 x
x

<
1

3
√

1− x2
; x ∈ (0, 1).

Since 1
3√1−x2

< 1√
1−x2 , the above inequality can be written as

x
tanh−1 x

>
√

1− x2; x ∈ (0, 1). (14)

The required inequality (12) follows from inequalities (13) and (14).

Remark 1. It is worth noting that an upper bound of tanh−1 x
tan−1 x in (12) is sharper than those in (5)

and (7) as r → 1.

Lemma 7. For x ∈ (0, 1), we have

x
tan−1 x

+
x

tanh−1 x
< 2. (15)

Proof. By Proposition 3 of [5], we have

x
tan−1 x

< 1 +
x2

3
; x > 0.

Similarly, from Theorem 2.3 (inequality (2.3)) of [6], we write

x
tanh−1 x

< 1− x2

3
; x ∈ (0, 1).

By simply adding these inequalities we get the required inequality (14).

4. Proofs of Theorems

Proof of Theorem 1. Let us set

f (x) =
sin−1 x− sinh−1 x

x2 sinh−1 x
:=

f1(x)
f2(x)

,

where f1(x) = sin−1 x − sinh−1 x and f2(x) = x2 sinh−1 x with f1(0) = 0 and f2(0) = 0.
By differentiating with respect to x, we obtain

f ′1(x)
f ′2(x)

=

1√
1−x2 −

1√
1+x2

2x sinh−1 x + x2√
1+x2

:=
f3(x)
f4(x)

,

where f3(x) = 1√
1−x2 −

1√
1+x2 and f4(x) = 2x sinh−1 x + x2

√
1+x2 with f3(0) = 0 and

f4(0) = 0. By differentiating again with respect to x, we get

f ′3(x)
f ′4(x)

=
x
[
(1− x2)−3/2 + (1 + x2)−3/2

]
2 sinh−1 x + 4x√

1+x2 − x3(1 + x2)−3/2
:=

f5(x)
f6(x)

,
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where f5(x) = x
[
(1− x2)−3/2 + (1 + x2)−3/2

]
and f6(x) = 2 sinh−1 x + 4x√

1+x2 − x3(1 +

x2)−3/2 with f5(0) = 0 and f6(0) = 0. Then,

f ′5(x)
f ′6(x)

=
(1 + 2x2)

(
1+x2

1−x2

)5/2
+ (1− 2x2)

6 + 5x2 + 2x4

:=
(1 + 2x2) f7(x) + (1− 2x2)

6 + 5x2 + 2x4 := f8(x),

where f7(x) =
(

1+x2

1−x2

)5/2
with f ′7(x) = 10x

(1−x2)2

(
1+x2

1−x2

)3/2
. Now we need to show that f8(x)

is strictly increasing on (0, 1). To demonstrate the required monotonicity of f8(x), we must
prove that f ′8(x) > 0. First, we show that the numerator in f ′8(x), say N1, is positive on
(0, 1). We have

N1 = (6 + 5x2 + 2x4)
[
(1 + 2x2) f

′
7(x) + 4x f7(x)− 4x

]
−
[
(1 + 2x2) f7(x) + (1− 2x2)

]
(10x + 8x3).

Simplifying the above expression we get the following

N1 =
60x + 170x3 + 120x5 + 40x7

(1− x2)2

(
1 + x2

1− x2

)3/2

+ (14x− 8x3 − 8x5)

(
1 + x2

1− x2

)5/2

− 34x− 8x3 + 8x5

=
60x + 170x3 + 120x5 + 40x7 + (14x− 8x3 − 8x5)(1− x4)

(1− x2)2

(
1 + x2

1− x2

)3/2

− 34x− 8x3 + 8x5

>
74x + 162x3 + 98x5 + 48x7 + 8x9

(1− x2)2 − 34x− 8x3 + 8x5

due to the fact that
(

1 + x2

1− x2

)3/2

> 1. Thus,

(1− x2)2N1 > (74x + 162x3 + 98x5 + 48x7 + 8x9)

− (34x + 8x3 − 8x5)(1− x2)2

= 40x + 222x3 + 88x5 + 24x7 + 16x9 > 0.

So N1 > 0 and hence f ′8(x) is positive. As a result, f8(x) is strictly increasing on (0, 1).
By successive application of Lemma 1, we conclude that f (x) is strictly increasing on (0, 1).
Therefore, f (0+) < f (x) < f (1), where η1 = f (0+) = 1

3 and η2 = f (1) = π
ln(3+2

√
2)
− 1.

This completes the proof of Theorem 1.

Proof of Theorem 2. Let

g(x) =
tanh−1 x− tan−1 x

x2 tan−1 x
:=

g1(x)
g2(x)

,

where g1(x) = tanh−1 x− tan−1 x and g2(x) = x2 tan−1 x, satisfying g1(0) = 0 = g2(0). By
differentiating with respect to x, we have

g′1(x)
g′2(x)

=
1

1−x2 − 1
1+x2

2x tan−1 x + x2

1+x2

:=
g3(x)
g4(x)

,
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where g3(x) = 1
1−x2 − 1

1+x2 and g4(x) = 2x tan−1 x + x2

1+x2 with g3(0) = 0 = g4(0).
Differentiation gives us

g′3(x)
g′4(x)

=
x
(
(1− x2)−2 + (1 + x2)−2)

tan−1 x + 2x
1+x2 − x3

(1+x2)2

:=
g5(x)
g6(x)

,

where g5(x) = x
(
(1− x2)−2 + (1 + x2)−2) and g6(x) = tan−1 x + 2x

1+x2 − x3

(1+x2)2 are such
that g5(0) = 0 and g6(0) = 0. Differentiating again with respect to x, we get

g′5(x)
g′6(x)

=
(1 + 3x2)

(
1+x2

1−x2

)3
+ (1− 3x2)

3− x2

:=
(1 + 3x2)g7(x) + (1− 3x2)

3− x2 := g8(x),

where g7(x) =
(

1+x2

1−x2

)3
with g′7(x) = 12x

(1−x2)2

(
1+x2

1−x2

)2
. We show that g8(x) is strictly

increasing on (0, 1). We demonstrate the positivity of g′8(x) by showing that the numerator
of g′8(x), say N2, is positive. We have

N2 = (3− x2)
(
(1 + 3x2)g′7(x) + 6xg7(x)− 6x

)
+2x

(
(1 + 3x2)g7(x) + (1− 3x2)

)
.

Simplifying the above as in the proof of Theorem 2 and using the fact that
(

1+x2

1−x2

)3
> 1,

we get

N2 >
40x + 88x3 − 32x5

(1− x2)2 =
40x + 8x3(11− 4x2)

(1− x2)2 > 0.

Therefore, g8(x) is increasing. By Lemma 1, it is concluded that g(x) is strictly increas-
ing in (0, r). Consequently, g(0+) < g(x) < g(r). The inequalities (5) follow due to the
limits g(0+) = 2

3 and g(r) = tanh−1 r−tan−1 r
r2 tan−1 r .

Proof of Theorem 3. Let us set

F(x) =
ln
(

sin−1 x
sinh−1 x

)
x2 :=

F1(x)
F2(x)

; x ∈ (0, 1).

By differentiation, we obtain

F′1(x)
F′2(x)

=
1
2

1√
1− x4

·
√

1 + x2 sinh−1 x−
√

1− x2 sin−1 x
x sin−1 x sinh−1 x

:=
1
2

F3(x) · F4(x),

where F3(x) = 1√
1−x4 is strictly positively increasing in (0, 1) and

F4(x) =

√
1 + x2 sinh−1 x−

√
1− x2 sin−1 x

x sin−1 x sinh−1 x
> 0

due to Lemma 5. We prove that F4(x) is strictly monotonically increasing in (0, 1). We
differentiate F4(x) with respect to x to get
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F′4(x)(x sin−1 x sinh−1 x)2 = x sin−1 x sinh−1 x

(
x sinh−1 x√

1 + x2
+

x sin−1 x√
1− x2

)
−
(√

1 + x2 sinh−1 x−
√

1− x2 sin−1 x
)

×
(

sin−1 x sinh−1 x +
x sinh−1 x√

1− x2
+

x sin−1 x√
1 + x2

)
.

After some calculations, we get

F′4(x)(x sin−1 x sinh−1 x)2

=
1√

1 + x2

[
x
√

1− x2(sin−1 x)2 + x2 sin−1 x(sinh−1 x)2 − (1 + x2) sin−1 x(sinh−1 x)2
]

+
1√

1− x2

[
x2(sin−1 x)2 sinh−1 x + (1− x2)(sin−1 x)2 sinh−1 x− x

√
1 + x2(sinh−1 x)2

]
=

sin−1 x√
1 + x2

[
x
√

1− x2 sin−1 x− (sinh−1 x)2
]
+

sinh−1 x√
1− x2

[
(sin−1 x)2 − x

√
1 + x2 sinh−1 x

]
>

sinh−1 x√
1− x2

[
x
√

1− x2 sin−1 x− (sinh−1 x)2
]
+

sinh−1 x√
1− x2

[
(sin−1 x)2 − x

√
1 + x2 sinh−1 x

]
due to Lemmas 4 and 5. Then, we have

F′4(x)(x sin−1 x sinh−1 x)2 >
sinh−1 x√

1− x2
· ψ(x),

where ψ(x) = (sin−1 x)2 − (sinh−1 x)2 + x
√

1− x2 sin−1 x − x
√

1 + x2 sinh−1 x. Let us
now consider

ψ′(x)

= 2
sin−1 x√

1− x2
− 2

sinh−1 x√
1 + x2

+
√

1− x2 sin−1 x− x2 sin−1 x√
1− x2

− x2 sinh−1 x√
1 + x2

−
√

1 + x2 sinh−1 x.

Therefore,

ψ′(x)
√

1− x4 = 2
√

1 + x2 sin−1 x− 2
√

1− x2 sinh−1 x + (1− x2)
√

1 + x2 sin−1 x

− x2
√

1 + x2 sin−1 x− x2
√

1− x2 sinh−1 x− (1 + x2)
√

1− x2 sinh−1 x

=
√

1 + x2(3− 2x2) sin−1 x−
√

1− x2(3 + 2x2) sinh−1 x.

Next, we prove that√
1 + x2(3− 2x2) sin−1 x >

√
1− x2(3 + 2x2) sinh−1 x.

Equivalently,

(1 + x2)(3− 2x2)2(sin−1 x)2 > (1− x2)(3 + 2x2)2(sinh−1 x)2

or
(4x6 − 8x4 − 3x2 + 9)(sin−1 x)2 + (4x6 + 8x4 − 3x2 − 9)(sinh−1 x)2 > 0,

i.e.,

ϕ(x) := (4x6 − 3x2)
[
(sin−1 x)2 + (sinh−1 x)2

]
+ (9− 8x4)

[
(sin−1 x)2 − (sinh−1 x)2

]
> 0.



Axioms 2022, 11, 262 10 of 13

Making use of Lemma 2, we write

ϕ(x) = (4x6 − 3x2)
∞

∑
n=0

(1 + (−1)n)
22n+1(n!)2

(2n + 2)!
x2n+2

+ (9− 8x4)
∞

∑
n=0

(1− (−1)n)
22n+1(n!)2

(2n + 2)!
x2n+2

=
∞

∑
n=0

4(1 + (−1)n)
22n+1(n!)2

(2n + 2)!
x2n+8 −

∞

∑
n=0

8(1− (−1)n)
22n+1(n!)2

(2n + 2)!
x2n+6

−
∞

∑
n=0

3(1 + (−1)n)
22n+1(n!)2

(2n + 2)!
x2n+4 +

∞

∑
n=0

9(1− (−1)n)
22n+1(n!)2

(2n + 2)!
x2n+2

=
∞

∑
n=3

4(1 + (−1)n−3)
22n−5((n− 3)!)2

(2n− 4)!
x2n+2 −

∞

∑
n=2

8(1− (−1)n−2)
22n−3((n− 2)!)2

(2n− 2)!
x2n+2

−
∞

∑
n=1

3(1 + (−1)n−1)
22n−1((n− 1)!)2

(2n)!
x2n+2 +

∞

∑
n=0

9(1− (−1)n)
22n+1(n!)2

(2n + 2)!
x2n+2

:=
∞

∑
n=3

anx2n+2,

where

an = 4(1 + (−1)n−3)
22n−5((n− 3)!)2

(2n− 4)!
− 8(1− (−1)n−2)

22n−3((n− 2)!)2

(2n− 2)!

− 3(1 + (−1)n−1)
22n−1((n− 1)!)2

(2n)!
+ 9(1− (−1)n)

22n+1(n!)2

(2n + 2)!
, n = 3, 4, 5, · · · .

Clearly, an = 0, for n = 4, 6, 8, · · · . For n = 3, 5, 7, · · · , we write

an =
22n((n− 3)!)2

(2n + 2)!
· bn,

where

bn = n(n + 1)(2n + 1)(2n− 1)(2n− 2)(2n− 3)− 8n(n + 1)(2n + 1)(2n− 1)(n− 2)2

− 6(n + 1)(2n + 1)(n− 1)2(n− 2)2 + 36n2(n− 1)2(n− 2)2

= (n2 + n)(4n2 − 1)(−4n2 + 22n− 26) + 6(n2 − 2n + 1)(n2 − 4n + 4)(4n2 − 3n− 1)

= 8n6 − 90n5 + 402n4 − 608n3 + 238n2 + 26n− 24.

Now it is very easy to prove that bn > 0 for n ≥ 3 and hence an ≥ 0 for n = 3, 5, 7, · · · .
This shows that an ≥ 0 for n = 3, 4, 5, · · · , implying that ϕ(x) > 0 and ψ′(x) > 0, which
further implies ψ(x) > ψ(0) = 0 and F′4(x) > 0. Then F4(x) is strictly monotonically
increasing in (0, 1), as F3(x) and F4(x) both are monotonically increasing in (0, 1). Thus,
F′1(x)
F′2(x) and thus, according to Lemma 1, F(x) is also monotonically increasing in (0, 1). As

a result, F(0+) < F(x) < F(1). The limits F(0+) = 1
3 and F(1) = ln

(
π

2 sinh−1 1

)
give the

required inequalities (6).

Proof of Theorem 4. Let us set

G(x) =
ln
(

tanh−1 x
tan−1 x

)
x2 :=

G1(x)
G2(x)

; x ∈ (0, r) and r ∈ (0, 1).



Axioms 2022, 11, 262 11 of 13

After differentiation, we obtain

G′1(x)
G′2(x)

=
1
2
(1 + x2) tan−1 x− (1− x2) tanh−1 x

x(1− x4) tan−1 x tanh−1 x

=
1
2
(1 + x2) tan−1 x− (1− x2) tanh−1 x

x3 · x2

(1− x4) tan−1 x tanh−1 x

:=
1
2

G3(x) · G4(x).

Consider

G3(x) =
(1 + x2) tan−1 x− (1− x2) tanh−1 x

x3 :=
G5(x)
G6(x)

,

where G5(x) = (1 + x2) tan−1 x − (1− x2) tanh−1 x and G6(x) = x3 satisfying G5(0) =
0 = G6(0). Differentiation gives

G′5(x)
G′6(x)

=
2
3
· tan−1 x + tanh−1 x

x
:=

2
3
· G7(x)

G8(x)
,

where G7(x) = tan−1 x + tanh−1 x and G8(x) = x with G7(0) = 0 = G8(0). Differentiating
again, we get

G′7(x)
G′8(x)

=
1

1 + x2 +
1

1− x2 =
2

1− x4 ,

which is strictly increasing in (0, r). By Lemma 1, G3(x) is strictly increasing in (0, r). In
addition, by Lemma 6 and the fact that

√
1− x2
√

1 + x2
>

1− x2

1 + x2 ,

we get that G3(x) is positive in (0, r).
Now, consider

G4(x) =
x2

(1− x4) tan−1 x tanh−1 x
; x ∈ (0, r).

Then, we have

G′4(x)
(
(1− x4) tan−1 x tanh−1 x

)2
= 2x(1− x4) tan−1 x tanh−1 x + 4x5 tan−1 x tanh−1 x

− x2(1− x2) tanh−1−x2(1 + x2) tan−1 x

= 2x tan−1 x tanh−1 x + 2x5 tan−1 x tanh−1 x− x2 tanh−1 x

− x2 tan−1 x + x4(tanh−1 x− tan−1 x)

> 2x tan−1 x tanh−1 x + 2x5 tan−1 x tanh−1 x− x2 tanh−1 x

− x2 tan−1 x

= x tan−1 x tanh−1 x
(

2 + 2x4 − x
tan−1 x

− x
tanh−1 x

)
> 0,

by Lemma 7. Therefore G4(x) is strictly increasing in (0, 1). Thus, since G′1(x)
G′2(x) is the product

of two positively increasing functions, it is increasing in (0, r). By Lemma 1, G(x) is strictly
increasing in (0, r). Consequently, we have

G(0+) < G(x) < G(r).
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The desired inequalities (7) follow due to the limits G(0+) = 2
3 and

G(r) = ln(tanh−1 r)−ln(tan−1 r)
r2 .

Remark 2. From the proofs of Theorems 2 and 4, it is clear that the rightmost inequalities of (5)
and (7) are, in fact, true in (0, 1).

Proof of Corollary 1. It is an immediate consequence of Theorems 1 and 2, and Remark 2.

Remark 3. A better upper bound for tanh−1 x
tan−1 x in (0, 1) can be found in Lemma 6, as stated in

Remark 1.

5. Conclusions and Direction for Further Research

Polynomial and exponential bounds for bell-shaped functions involving only trigono-
metric or only hyperbolic functions or their inverses are present in the literature. Recently,
these types of bounds have been obtained for the quotients of trigonometric and hyperbolic
functions. We contributed to the field by establishing similar bounds for the quotients of
inverse trigonometric and inverse hyperbolic functions, which can be useful in the theory of
analytical inequalities. The exponential bounds were sharper than the polynomial bounds.

Wilker-type and Huygens-type inequalities for inverse trigonometric and inverse
hyperbolic function quotients may also be obtained.
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R.M.D. and C.C.; writing—review and editing, S.B.T., Y.J.B., R.M.D. and C.C. All authors have read
and agreed to the published version of the manuscript.
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18. Zhu, L.; Malešević, B. Natural approximation of Masjed-Jamei’s inequality. RACSAM 2020, 114, 25. [CrossRef]
19. Zhu, L. The natural approaches of Shafer-Fink inequality for inverse sine function. Mathematics 2022, 10, 647. [CrossRef]
20. Yang, Z-H.; Tin, K.-F.; Gao, Q. The monotonicity of ratios involving arc tangent function with applications. Open Math. 2019, 17,

1450–1467. [CrossRef]
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