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Abstract. It is shown that high-order feedforward neural nets of constant depth with piecewise-
polynomial activation functions and arbitrary real weights can be simulated for Boolean inputs and
outputs by neural nets of a somewhat larger size and depth with Heaviside gates and weights from
{−1, 0, 1}. This provides the first known upper bound for the computational power of the former
type of neural nets. It is also shown that in the case of first-order nets with piecewise-linear activation
functions one can replace arbitrary real weights by rational numbers with polynomially many bits
without changing the Boolean function that is computed by the neural net. In order to prove these
results, we introduce two new methods for reducing nonlinear problems about weights in multilayer
neural nets to linear problems for a transformed set of parameters. These transformed parameters
can be interpreted as weights in a somewhat larger neural net.

As another application of our new proof technique we show that neural nets with piecewise-
polynomial activation functions and a constant number of analog inputs are probably approximately
correct (PAC) learnable (in Valiant’s model for PAC learning [Comm. Assoc. Comput. Mach., 27
(1984), pp. 1134–1142]).

Key words. neural networks, analog computing, threshold circuits, circuit complexity, learning
complexity
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1. Introduction. We examine in this paper the computational power and learn-
ing complexity of high-order analog feedforward neural nets N , i.e., of circuits with
analog computational elements in which certain parameters are treated as
programmable parameters. We focus on neural nets N of bounded depth in which each
gate g computes a function from Rm into R of the form 〈y1, . . . , ym〉 7→
γg(Qg(y1, . . . , ym)). We assume that, for each gate g, γg is some fixed piecewise-
polynomial activation function (also called response function). This function is applied
to some polynomial Qg(y1, . . . , ym) of bounded degree with arbitrary real coefficients,
where y1, . . . , ym are the real-valued inputs to gate g. One usually refers to the degree
of the polynomial Qg as the order of the gate g. It should be noted that (following
the conventions in the neural net literature) the order of a gate g does not refer to the
degree of its activation function γg. We will specify bounds for that degree separately.

The coefficients (“weights”) of Qg are the programmable variables of N whose
values may arise from some learning process.

We are primarily interested in the case where the neural net N computes (re-
spectively, learns) a Boolean-valued function. For that purpose we assume that the
real-valued output of the output gate gout of N is “rounded off.” More precisely,
we assume that there is an outer threshold Tout (which belongs to the programmable
parameters of N ) such that the output of N is 1 whenever the real-valued output z of
gout satisfies z ≥ Tout and 0 if z < Tout. In some results of this paper we also assume
that the input 〈x1, . . . , xn〉 of N is Boolean valued. It should be noted that this does
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not affect the capacity of N to carry out, on its intermediate levels (i.e., in its “hidden
units”), computation over reals, whose real-valued results are then transmitted to the
next layer of gates.

Circuits of this type have rarely been considered in computational complexity
theory, and they give rise to the principal question whether these intermediate analog
computational elements will allow the circuit to compute more complex Boolean func-
tions than a circuit with a similar layout but digital computational elements. Note
that circuits with analog computational elements have an extra source of potentially
unlimited parallelism at their disposal, since they can execute operations on num-
bers of arbitrary bit-length in one step, and they can transmit numbers of arbitrary
bit-length from one gate to the next.

One already knows quite a bit about the special case of such neural nets N , where
each gate g is a linear threshold gate. In this case each polynomial Qg(y1, . . . , ym)
is of degree ≤ 1 (i.e., a weighted sum), and each activation function γg in N is the
Heaviside function (also called hard limiter) H defined by

H(y) =

{

1 if y ≥ 0,
0 if y < 0

(e.g., see [R], [Ni], [Mu], [MP], [PS], [HMPST], [GHR], [SR], [SBKH], [BH], [A], [B],
[L]). The analog versus digital issue does not arise in this case, since the output of
each gate is a single bit. Still, it requires some work to bound the potential power of
arbitrary weights (in the weighted sums) for the computation of Boolean functions on
such circuit. Since there are only finitely many Boolean circuit inputs, it is obvious
that only rational weights have to be considered. The key result for the analysis of
these circuits was the discovery of Muroga [Mu] that it is sufficient to consider for
a linear threshold gate with m Boolean inputs only weights α1, . . . , αm and a bias
α0 that are integers of size 2O(m logm). (This upper bound is optimal according to a
recent result of H̊astad [Has].) With the help of this a priori bound on the relevant
bit-length of weights, it is easy to show that the same arrays (Fn)n∈N of Boolean
functions Fn : {0, 1}n → {0, 1} are computable by arrays (Nn)n∈N of neural nets
of depth O(1) and size O(nO(1)) with linear threshold gates, no matter whether one
uses as weights arbitrary reals, rationals, integers, or elements of {−1, 0, 1}; see [Mu],
[CSV], [HMPST], [GHR], [MT]. The resulting class of arrays (Fn)n∈N of Boolean
functions is called (nonuniform) TC0 (see [HMPST], [J]).

In comparison, very little is known about upper bounds for the computational
power and the learning complexity of feedforward neural nets whose gates g em-
ploy more general types of activation functions γg. This holds in spite of the fact
that “real neurons and real physical devices have continuous input-output relations”
[Ho]. In the analysis of information processing in natural neural systems, one usu-
ally views the firing rate of a neuron as its current output. Such firing rates are
known to change between a few and several hundred spikes per second (see Chap. 20
in [MR]). Hence the activation function γg of a gate g that models such a neuron
should have a graded response. It should also be noted that the customary learning
algorithms for artificial neural nets (such as backward propagation [RM]) are based
on gradient descent methods which require that all gates g employ smooth activation
functions γg.

In addition, it has frequently been pointed out that it is both biologically plau-
sible and computationally relevant to consider gates g that pass to γg instead of
a weighted sum

∑m

i=1 αiyi + α0 some polynomial Qg(y1, . . . , ym) of bounded de-
gree, where y1, . . . , ym are circuit inputs or outputs of the immediate predecessors
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of g. Such gates are called sigma-pi units or high-order gates in the literature (see
p. 73 and Chap. 10 in [RM]; see also [DR], [H], [PG], [MD]). From the point of
view of approximation theory there has been particular interest in the case in which
Qg(y1, . . . , ym) =

∑m

i=1 αi(yi − ci)
2 measures a “distance” of its input 〈y1, . . . , ym〉

from some “center” 〈c1, . . . , cm〉 (the latter may be determined through a learning pro-
cess). Apparently Theorems 3.1 and 4.3 of this paper provide the first upper bounds
for the computational power and learning complexity of high-order feedforward neural
nets with non-Boolean activation functions.

The power of feedforward neural nets with other activation functions besides H
has previously been investigated in [RM, Chap. 10], [S1], [S2], [H], [MSS], [DS], [SS]. It
was shown in [MSS] for a very general class of activation functions γg that neural nets
(Nn)n∈N of constant depth and size O(nO(1)) with real weights of size O(nO(1)) and
output separation Ω(1/nO(1)) (between the unrounded circuit outputs for rejected and
accepted inputs) can compute only Boolean functions in TC0. It follows from a result
of Sontag [S2] that the assumptions on the weight size and separation are essential for
this upper bound: he constructed an arbitrarily smooth monotone function Θ (which
can be made to satisfy the conditions on γg in the quoted result of [MSS]) and neural
nets Nn of size 2 (!) with activation function Θ such that Nn can compute with
sufficiently large weights any Boolean function Fn : {0, 1}n → {0, 1} (hence Nn has
VC dimension 2n).

These results leave open the question about the computational power and learning
complexity of feedforward neural nets with arbitrary weights that employ “natural”
analog activation functions γg. For example there has previously been no upper bound
for the set of Boolean functions computable by analog neural nets with the very simple
piecewise-linear activation function π defined by

π(y) =







0 if y ≤ 0,
y if 0 ≤ y ≤ 1,
1 if y ≥ 1.

([L] refers to a gate g with γg = π as a threshold logic element.) On the other
hand, there exist results which suggest that such upper bound would be nontrivial.
It has already been shown in [MSS] that constant size neural nets of depth 2 with
activation function π and small integer weights can compute more Boolean functions
than constant size neural nets of depth 2 with linear threshold gates (and arbitrary
weights). [DS] exhibits an even stronger increase in computational power for the case
of quadratic activation functions.

Hence even simple non-Boolean activation functions provide more computational
power to a neural net than the Heaviside function. However it has been an open
problem by how much they can increase the computational power (in the presence
of arbitrary weights). From the technical point of view, this difficulty in proving
an upper bound for the computational power was caused by the lack of an upper
bound on the amount of information that can be encoded in such a neural net by the
assignment of weights. For the case of neural nets with Heaviside gates, this upper
bound on the information capacity of weights is provided by the quoted result of
Muroga [Mu]. However, this problem is substantially more difficult for neural nets
with piecewise-linear activation functions. For this model it is no longer sufficient to
analyze a single gate with Boolean inputs and outputs. Even if the inputs and outputs
of the neural net are Boolean valued, the signals that are transmitted between the
hidden units are real valued. Furthermore, one can give no a priori bound on the
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precision required for such analog signals between hidden units, since one has no
control over the maximal size of weights in the neural net. Obviously a large weight
will magnify any imprecision. Note also that a computation on a multilayer neural
net of the type considered here involves products of weights from subsequent levels.
Hence, if some of the weights are arbitrarily large, one needs arbitrarily high precision
for the other weights.

The main technical contribution of this paper is two new methods for reducing
nonlinear problems about weights in multilayer neural nets to linear problems for
a transformed set of parameters. These two methods are presented in sections 2
and 3 of this paper. We introduce in section 2 of this paper a method that allows
us to prove an upper bound for the information capacity of weights for neural nets
with piecewise-linear activation functions (hence in particular for π). It is shown
that for the computation of Boolean functions on neural nets Nn of constant depth
and polynomially in n many gates (where n is the number of input variables) it is
sufficient to use as weights rational numbers with polynomially in n many bits. As
a consequence, one can simulate any such analog neural net by a digital neural net
of constant depth and polynomial size with the Heaviside activation function (i.e.,
linear threshold gates) and binary weights (i.e., weights from {0, 1}). This result also
implies that the VC dimension of Nn can be bounded above by a polynomial in n.

In section 3 we introduce another proof technique that allows us to derive the
same two consequences for neural nets with piecewise-polynomial activation functions
and nonlinear gate inputs Qg(y1, . . . , ym) of bounded degree. These results show that
in spite of the previously quoted evidence for the superiority of non-Boolean activation
functions in neural nets, there is some limit to their computational power as long as
the activation functions are piecewise-polynomial. On the other hand the polynomial
upper bound on the VC dimension of such neural nets may be interpreted as good
news: it shows that neural nets of this type can in principle be trained with a sequence
of examples that is not too long.

We conclude in section 4 with a positive result for learning on neural nets in
Valiant’s model [V] for probably approximately correct learning (PAC learning). We
consider the problem of learning on neural nets with a fixed number of analog (i.e.,
real-valued) input variables. We exploit here the implicit linearization of the require-
ments for the desired weight assignment that is achieved in the new proof techniques
from sections 2 and 3. In this way one can show that such neural nets are properly
PAC learnable in the case of piecewise-linear activation functions and PAC learnable
with a hypothesis class that is given by a somewhat larger neural net in the case
of piecewise-polynomial activation functions. Another application of our parameter
transformation method from section 2 to PAC learning has subsequently been given
by Koiran [K94].

The results of this paper were first announced in [M92], and an extended abstract
of these results appeared in [M93a]. Another result of [M93a], the construction of
neural nets whose VC dimension is superlinear in the number of weights, has subse-
quently been improved to apply for depth 3 also. A full version of that proof appears
in [M93b].

Definition 1.1. A network architecture (or neural net) N of order k is a labeled
acyclic directed graph 〈V,E〉. Its nodes of fan-in 0 are labeled by the input variables
x1, . . . , xn. Each node g of fan-in m > 0 is called a computation node (or gate) and is
labeled by some activation function γg : R → R and some polynomial Qg(y1, . . . , ym)
of degree ≤ k. Furthermore, N has a unique node of fan-out 0 which is called the
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output node of N and which carries as an additional label a certain real number Tout

(called the outer threshold of N ).
The coefficients of all polynomials Qg(y1, . . . , ym) for gates g in N and the outer

threshold Tout are called the programmable parameters of N . Assume that N has
w programmable parameters and that some numbering of these has been fixed. Then
each assignment α ∈ Rw of reals to the programmable parameters in N defines an
analog circuit Nα, which computes a function x 7→ Nα(x) from Rn into {0, 1} in
the following way: assume that some input x ∈ Rn has been assigned to the input
nodes of N . If a gate g in N has m immediate predecessors in 〈V,E〉 which output
y1, . . . , ym ∈ R, then g outputs γg(Qg(y1, . . . , ym)). Finally, if gout is the output gate
of N and gout gives the real-valued output z (according to the preceding inductive
definition), we define

Nα(x) :=

{

1 if z ≥ Tout,
0 if z < Tout,

where Tout is the outer threshold that has been assigned by α to gout.
Any parameters that occur in the definitions of the activation functions γg of N

are referred to as architectural parameters of N .
Definition 1.2. A function γ : R → R is called piecewise-polynomial if there

are thresholds t1, . . . , tk ∈ R and polynomials P0, . . . , Pk such that t1 < · · · < tk and
for each i ∈ {0, . . . , k} : ti ≤ x < ti+1 ⇒ γ(x) = Pi(x) (we set t0 := −∞ and
tk+1 := ∞).

If k is chosen minimal for γ, we refer to k as the number of polynomial pieces of
γ; to P0, . . . , Pk as the polynomial pieces of γ; and to t1, . . . , tk as the thresholds of
γ. Furthermore we refer to t1, . . . , tk together with all coefficients in the polynomials
P0, . . . , Pk as the parameters of γ. The maximal degree of P0, . . . , Pk is called the
degree of γ. If the degree of γ is ≤ 1 then we call γ piecewise-linear, and we refer to
P0, . . . , Pk as the linear pieces of γ.

If γ occurs as activation function γg of some network architecture N , then one
refers to the parameters of γ as architectural parameters of N .

Note that we do not require that γ is continuous (or monotone). It should also
be pointed out that according to Definition 1.1 the order k of a neural net does not
bound the degrees of the polynomial pieces of its activation functions. Finally, we
would like to mention that in contrast to [MSS], we do not require here any minimal
distance between the real-valued network outputs z and the outer threshold Tout.

Definition 1.3. Assume that N is an arbitrary network architecture with n
inputs and w programmable parameters and that S ⊆ Rn is an arbitrary set. Then
one defines the VC dimension of N over S in the following way:

VC dimension(N , S) := max{|S′||S′ ⊆ S has the property that for every function
F : S′ → {0, 1} there exists a parameter assignment
α ∈ Rw such that ∀ x ∈ S′(Nα(x) = F (x))}.

Remark 1.4. VC dimension is an abbreviation for Vapnik–Chervonenkis dimen-
sion. It has been shown in [BEHW] (see also [BH], [A]) that the VC dimension of a
neural net N essentially determines the number of examples that are needed to train
N (in Valiant’s model for PAC learning [V]). Sontag [S2] has shown that the VC di-
mension of a neural net can be drastically increased by using activation functions with
non-Boolean output instead of the Heaviside function H. The methods described in
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this paper were used in [M93a] to give the first proof of a polynomial upper bound for
the VC dimension of the here-considered neural nets. Subsequently [GJ] have shown
that such bounds for the VC dimension can also be derived more directly via Milnor’s
theorem. However their method does not yield upper bounds for the computational
power of these neural nets.

2. A bound for the information—capacity of weights in neural nets

with piecewise-linear activation functions. We consider for arbitrary a ∈ N the
following set of rationals with up to a bits before and after the comma:

Qa :=

{

r ∈ Q

∣

∣

∣

∣

r = s ·
a−1
∑

i=−a

bi · 2i for bi ∈ {0, 1}, i = −a, . . . , a− 1, and

s ∈ {−1, 1}
}

.

Note that for any r ∈ Qa : |r| ≤ 2a ≤ 22a · min{|r′| | r′ ∈ Qa and r′ 6= 0}.
Theorem 2.1. Consider an arbitrary network architecture N of order 1 over a

graph 〈V,E〉 with n input nodes in which every computation node has fan-out ≤ 1.
Assume that each activation function γg in N is piecewise-linear with parameters
from Qa. Let w := |V | + |E| + 1 be the number of programmable parameters in N .

Then for every α ∈ Rw there exists a vector α′ = 〈 s1
t
, . . . , sw

t
〉 ∈ Qw with integers

s1, . . . , sw, t of absolute value ≤ (2w + 1)! 22a(2w+1) such that ∀x ∈ Qn
a (Nα(x) =

Nα′

(x)). In particular Nα′

computes the same Boolean function as Nα.
Remark 2.2. The condition of Theorem 2.1 that all computation nodes in N have

fan-out ≤ 1 is automatically satisfied for d ≤ 2. For larger d one can simulate any
network architecture N of depth d with s nodes by a network architecture N ′ with
≤ s

s−1 · sd−1 ≤ 3
2s

d−1 nodes and depth d that satisfies this condition (replace each
computation node with fan-out k by k identical nodes with fan-out 1, starting from
the output layer). Hence this condition is not too restrictive for network architectures
of a constant depth d.

It should also be pointed out that there is in the assumption of Theorem 2.1 no
explicit bound on the number of linear pieces of γg (apart from the requirement that
its thresholds are from Qa). For example, these activation functions may consist of 2a

linear pieces (with discontinuous jumps in between). Furthermore γg is not required
to be monotone.

Finally, it should be mentioned that a corresponding version of Theorem 2.1 also
holds for rational numbers that do not have a finite binary representation, i.e., for all
rationals from Q′

a := {r ∈ Q : r is the quotient of integers of bit-length ≤ a} instead
of Qa.

Remark 2.3. Previously, one had no upper bound for the computational power
(or for the VC dimension) of multilayer neural nets N with arbitrary weights and
analog computational elements (i.e., activation functions with non-Boolean output).
Theorem 2.1 implies that any N of the considered type can compute with the help
of arbitrary parameter assignments α ∈ Rw at most 2O(aw2 logw) different functions
from Qn

a into {0, 1}, hence VC dimension (N ,Qn
a) = O(w2(a + logw)) (see Remark

3.9 for a slightly better bound and for a related bound for the case of inputs from
Rn).

Furthermore Theorem 2.1 implies that one can replace all analog computations
inside N by digital arithmetical operations on not too large integers (the proof gives
an upper bound of O(wa+w logw) for their bit-length). It is well known that each of
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these digital arithmetical operations (multiple addition, multiplication, division) can
be carried out on a circuit of small constant depth with O(aO(1) ·wO(1)) MAJORITY-
gates, hence also on a network architecture of depth O(1) and size O(aO(1) · wO(1))
with Heaviside gates and weights from {−1, 0, 1} (see [CSV], [PS], [HMPST], [GHR],
[SR], [SBKH]). Thus one can simulate for inputs from {0, 1}n any depth d network
architecture N as in Theorem 2.1 with arbitrary parameter assignments α ∈ Rw by
a network architecture of depth O(d) and size O(aO(1) · wO(1)) with Heaviside gates
and weights from {−1, 0, 1}. The same holds for inputs from Qn

a if they are given to
N in digital form.

The size of this simulating digital neural net with Heaviside gates is polynomial
in the number of real-valued parameters of the simulated analog neural net N but
exponential in the depth of N . Subsequent to [M93a], Koiran [K93] has proven a
complementary simulation result, where the size of the simulating digital neural net
is exponential in the number of real-valued parameters in N but subexponential in
the depth of N .

Proof of Theorem 2.1. In the special case where γg = H for all gates in N this
result is well known [Mu]. It follows by applying separately to each gate in N the
following result.

Lemma 2.4 (folklore; see [MT] for a proof). Consider a system Ax ≤ b of some
arbitrary finite number of linear inequalities in l variables. Assume that all entries in
A and b are integers of absolute value ≤ K.

If this system has any solution in Rl, then it has a solution of the form 〈 s1
t
, . . . , sl

t
〉,

where s1, . . . , sl, t are integers of absolute value ≤ (2l + 1)! K2l+1.
Sketch of the proof for Lemma 2.4. Let k be the number of inequalities in Ax ≤ b.

One writes each variable in x as a difference of two nonnegative variables and adds
to each inequality a “slack variable.” In this way one gets an equivalent system

(1) A′x′ = b, x′ ≥ 0,

over l′ := 2l + k variables for some k × l′ matrix A′. The k columns of A′ for the k
slack variables in x′ form an identity matrix. Hence A′ has rank k.

The assumption of the lemma implies that (1) has a solution over R. Hence by
Carathéodory’s theorem (Corollary 7.1i in [Sch]) one can conclude that there is also
a solution over R of a system

(2) A′′x′′ = b, x′′ ≥ 0.

Subsequent to the first publication of the techniques of this article in [M93a], Koiran
[K93] has proven a complementary result without assumption that the depth is
bounded but where one has to assume that the number of real-valued parameters
in the given neural net N is bounded by a constant where A′′ consists of k linearly
independent columns of A′. Since A′′ has full rank, (2) has in fact a unique solution
that is given by Cramer’s rule: x′′

j = det(A′′
j )/ detA′′ for j = 1, . . . , k, where A′′

j

results form A′′ by replacing its jth column by b. Since all except up to 2l columns
of A′′ contain exactly one 1 and else only 0’s, we can bring each of the matrices A′′,
A′′

j by permutations of rows and columns into a form

B =

(

C 0

D I

)

,

where C is a square matrix with 2l+1 rows. Hence the determinant of B is an integer
of absolute value ≤ (2l + 1)! K2l+1.
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The difficulty of the proof of Theorem 2.1 lies in the fact that with analog com-
putational elements one can no longer treat each gate separately, since intermediate
values are no longer integers. Furthermore, the total computation of N can in general
not be described by a system of linear inequalities, where the w variable parameters
of N are the variables in the inequalities (and the fixed parameters of N are the
constants). This becomes obvious if one just considers the composition of two very
simple analog gates g1 and g2 on levels 1 and 2 of N , whose activation functions γ1, γ2

satisfy γ1(y) = γ2(y) = y. Assume x =
∑n

i=1 αixi + α0 is the input to gate g1, and
g2 receives as input

∑m

j=1 α
′
jyj + α′

0, where y1 = γ1(x) = x is the output of gate g1.

Then g2 outputs α′
1 · (

∑n

i=1 αixi + α0) +
∑m

j=2 α
′
jyj + α′

0. Obviously this term is not
linear in the weights α′

1, α1, . . . , αn. Hence if the output of gate g2 is compared with
a fixed threshold at the next gate, the resulting inequality is not linear in the weights
of the gates in N .

If the activation functions of all gates in N were linear (as in the example for g1

and g2), then there would be no problem because a composition of linear functions is
linear. However for piecewise-linear activation functions it is not sufficient to consider
their composition, since intermediate results have to be compared with boundaries
between linear pieces of the next gate.

We introduce in this paper a new method in order to handle this difficulty. We
simulate Nα by another neural net N̂ [c]β (which one may view as a “normal form”
for Nα) that uses the same graph 〈V,E〉 as N but different activation functions
and different values β for its variable parameters. The activation functions of N̂ [c]

depend on |V | new parameters c ∈ R|V |, which we call scaling parameters in the
following. Although this new neural net has the disadvantage that it requires |V |
additional parameters c, it has the advantage that we can choose in N̂ [c] all weights
on edges between computation nodes to be from {−1, 0, 1}. Since these weights from
{−1, 0, 1} are already of the desired bit-length, we can treat them as constants in the
system of inequalities that describes computations of N̂ [c]. Therefore, all variables
that appear in the inequalities that describe computations of N̂ [c] (the variables for
weights of gates on level 1, the variables for the biases of gates on all levels, the
variable for the outer threshold, and the new variables for the scaling parameters c)
appear only linearly in those inequalities. Hence we can apply Lemma 2.4 to the
system of inequalities that describes the computations of N̂ for inputs from Qn

a and
thereby get a rational solution β′, c′ for all variable parameters in N̂ . Finally we

observe that we can transform N̂ [c′]β
′

back into the original neural net N with an
assignment of rational numbers α′ to all variable parameters in N .

We will now fill in some of the missing details. Consider the gate function γ
of an arbitrary gate g in N . Since γ is piecewise-linear, there are fixed parameters
t1 < · · · < tk, a0, . . . , ak, b0, . . . , bk in Qa (which may be different for different gates
g) such that with t0 := −∞ and tk+1 := +∞ one has γ(x) = aix + bi for x ∈ R with
ti ≤ x < ti+1; i = 0, . . . , k. For an arbitrary scaling parameter c ∈ R+ we associate
with γ the following piecewise-linear activation function γc: the thresholds of γc are
c · t1, . . . , c · tk, and its output is γc(x) = aix+ c · bi for x ∈ R with c · ti ≤ x < c · ti+1;
i = 0, . . . , k (set c · t0 := −∞, c · tk+1 := +∞). Thus for all reals c > 0 the function
γc is related to γ through the equality: ∀x ∈ R(γc(c · x) = c · γ(x)).

Assume that α ∈ Rw is some arbitrarily given assignment to the variable pa-
rameters in N . We transform Nα into a normal form N̂ [c]β , in which all weights on
edges between computation nodes are from {−1, 0, 1} such that ∀x ∈ Rn(Nα(x) =
N̂ [c]β(x)). We proceed inductively from the output level towards the input level.
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Assume that the output gate gout of Nα receives as input
∑m

i=1 αiyi + α0, where
α1, . . . , αm, α0 are the weights and the bias of gout (under the assignment α) and
y1, . . . , ym are the (real-valued) outputs of the immediate predecessors g1, . . . , gm of
g. For each i ∈ {1, . . . ,m} with αi 6= 0 such that gi is not an input node we replace

the activation function γi of gi by γ
|αi|
i , and we multiply the weights and the bias of

gate gi with |αi|. Finally we replace the weight αi of gate gout by

sgn(αi) :=

{

1 if αi > 0,
−1 if αi < 0.

This operation has the effect that the multiplication with |αi| is carried out before the
gate gi (rather than after gi, as done in Nα) but that the considered output gate gout

still receives the same input as before. The analogous operation is then inductively
carried out for the predecessors gi of gout (note, however, that the weights of gi are
no longer the original ones from Nα, since they have been changed in the preceding
step). We exploit here the assumption that each gate has fan-out ≤ 1.

Let β consist of the new weights on edges adjacent to input nodes, the resulting

biases of all gates in N̂ , and the (unchanged) outer threshold Tout. Let c consist of
the resulting scaling factors at the gates of N . Then we have ∀x ∈ Rn(Nα(x) =
N̂ [c]β(x)).

Finally we have to replace all strict inequalities of the form “s1 < s2” that are
needed to describe the computation of N̂ [c]β for some input x ∈ Qn

a by inequalities
of the form “s1 + 1 ≤ s2”. This concerns inequalities of the form s < c · ti, where
c · ti is the threshold of some gate g in N̂ [c] and s is its gate input, inequalities
of the form s < Tout where s is the output of gout, and inequalities of the form
0 < c for each scaling parameter c. In order to achieve this stronger separation it is
sufficient to multiply all parameters β, c in N̂ by a sufficiently large constant K. For
simplicity we write again β, c for the resulting parameters. We now specify a system
Az ≤ b of linear inequalities in w variables z that play the role of the w parameters
β, c in the computations of N̂ [c]β for all inputs x from Qn

a . The constants of these
inequalities are the coordinates of all inputs x ∈ Qn

a , the parameters of the activation
functions γ in N , the constants −1, 1 that occur in N̂ as weights of edges between
computation nodes, and the constants 1 that arise from the replacement of strict
inequalities “s1 < s2” by “s1 + 1 ≤ s2.”

For each fixed input x ∈ Qn
a one places into the system Az ≤ b up to two linear

inequalities for each gate g in N . These inequalities are defined by induction on the
depth of g. If g has depth 1, t1 < · · · < tk are the thresholds of its activation functions
γ in N , and its input

∑n

i=1 αixi + α0 in N̂ [c]β satisfies c · tj ≤ ∑n

i=1 αixi + α0 and
∑n

i=1 αixi+α0 +1 ≤ c ·tj+1, then one adds these two inequalities to the system (more
precisely, if j = 0 or j = k then only one inequality is needed since the other one is
automatically true).

If g′ is a successor gate of g, it receives from g for some specific j ∈ {0, . . . , k}
an output of the form aj · (

∑n

i=1 αixi + α0) + c · bj (where c is the scaling factor of
gate g). Note that this term is linear, since aj , bj are fixed parameters of gate g′.
In this way one can express for circuit input x the input I(x) of gate g′ as a linear
term in the weights, biases, and scaling factors of its preceding gates. (We exploit
here that in N̂ the weight on the edge between g′ and each predecessor gate is a fixed
parameter from {−1, 0, 1}, not a variable.) If this input I(x) satisfies in N̂ [c]β the
inequalities c′ · t′j′ ≤ I(x) and I(x) + 1 ≤ c′ · t′j′+1 (where t′1 < · · · < t′k′ are the

thresholds of g′ in N , and c′ is the scaling factor of g′ in N̂ ), then one adds these two
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inequalities to the system Az ≤ b (respectively, only one if j′ = 0 or j′ = k′). Note
that all resulting inequalities are linear, in spite of the fact that the system contains
variables for the biases of all gates. It should also be pointed out that the definition
of this system of inequalities is more involved than it may first appear, since the sum
of terms I(x) depends on the chosen inequalities for all predecessor gates (e.g., on j in
the example above). Hence a precise definition has to be similar to that of the proof
of Theorem 3.1.

It is clear that the resulting system Az ≤ b has a solution in Rw, since z := 〈β, c〉
is a solution. Hence we can apply Lemma 2.4, which provides a solution z′ of the
form 〈 si

t
〉i=1,...,w with integers s1, . . . , sw, t of absolute value ≤ (2w + 1)! 22a(2w+1).

Let N̂ [c′]β
′

be the neural net N̂ with this new assignment 〈β′, c′〉 := z′ of “small”

parameters. By definition we have ∀x ∈ Qn
a(Nα(x) = N̂ [c′]β

′

). We show that

one can transform this neural net N̂ [c′]β
′

into a net N β′

with the same activation
functions as Nα but a new assignment α′ of rational parameters (that can easily be
computed from β′, c′). This transformation proceeds inductively from the input level

towards the output level. Consider some gate g on level 1 in N̂ that uses (for the new
parameter assignment c′) the scaling factor c > 0 for its activation function γc. Then

we replace the weights α1, . . . , αn and bias α0 of gate g in N̂ [c′]β
′

by αi

c
, . . . , αn

c
, α0

c

and γc by γ. Furthermore if r ∈ {−1, 0, 1} was in N̂ , the weight on the edge between
g and its successor gate g, we assign to this edge the weight c ·r. Note that g′ receives
in this way from g the same input as in N̂ [c′]β

′

(for every circuit input). Assume now
that α′

1, . . . , α
′
m are the weights that the incoming edges of g′ get assigned in this way,

that α′
0 is the bias of g′ in the assignment z′ = 〈β′, c′〉, and that c′ > 0 is the scaling

factor of g′ in N̂ [c′]β
′

. Then we assign the new weights
α′

1

c′
, . . . ,

α′

m

c′
and the new bias

α′

0

c′
to g′, and we multiply the weight on the outgoing edge from g′ by c′.

By construction we have that ∀x ∈ Rn(Nα′

(x) = N̂ [c′]β
′

(x)); hence ∀x ∈
Qn

a(Nα′

(x) = Nα(x)).

3. Upper bounds for neural nets with piecewise-polynomial activation

functions.

Theorem 3.1. Consider an arbitrary array (Nn)n∈N of high-order network ar-
chitectures Nn of depth O(1) with n inputs and O(nO(1)) gates in which the gate
function γg of each gate g is piecewise-polynomial of degree O(1) with O(nO(1)) poly-
nomial pieces, with arbitrary reals as architectural parameters.

Then there exists an array (N̂n)n∈N of first-order network architectures N̂n of
depth O(1) with n inputs and O(nO(1)) gates such that each gate g in N̂n uses as
its activation function the Heaviside function H (i.e., g is a linear threshold gate)
and such that for each assignment αn of arbitrary reals to the programmable param-
eters in Nn there is an assignment α̃n of O(nO(1)) numbers from {−1, 0, 1} to the

programmable parameters in N̂n such that ∀x ∈ {0, 1}n(Nαn
n (x) = Ñ α̃n

n (x)).
Hence for any assignment (αn)n∈N of real-valued parameters the Boolean func-

tions that are computed by (Nαn
n )n∈N are in TC0. In particular, VC dimension

(Nn, {0, 1}n) = O(nO(1)).
Remark 3.2.
(a) The proof of Theorem 3.1 shows that one can replace in its claim the Boolean

domain {0, 1}n by {−K, . . . ,K}n for any K ∈ N.
(b) Theorem 3.1 yields no bound for the computational power of neural nets with

the activation function σ(y) = 1/(1 + e−y). However it provides bounds for
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the case where the activation functions are spline approximations to σ of
arbitrarily high degree d, provided that d ∈ N is fixed.

Proof of Theorem 3.1. This proof is quite long and involved, even for the simplest
nonlinear case where the activation functions consist of two polynomial pieces of degree
2. Note that in contrast to the model in [SS] the magnitude of the given weights in
Nn may grow arbitrarily fast as a function of n.

We first note that one can eliminate all nonlinear polynomials Qg as arguments
of activation functions by introducing intermediate gates with linear gate inputs and
quadratic activation functions. One exploits here the obvious fact that y · z = 1

2 ((y +
z)2 − y2 − z2). In this way one can transform the given network architectures into
first-order network architectures which still satisfy the assumptions of Theorem 3.1.
One should note, however, that this transformation does not affect the degrees of
polynomial pieces in the activation functions.

Subsequently we transform each given network architecture Nn into a normal
form N̂n of constant depth and size O(nO(1)) in which all gates g have fan-out ≤ 1
and in which all gates g use as activation functions γg piecewise-polynomial functions
of the following special type: γg consists of up to three pieces, of which at most one is
not identically 0 and in which the nontrivial piece outputs the constant 1 or computes
a power y 7→ yk (where k ∈ N satisfies k = O(1)). The preceding “normalization” of
activation functions is easy to achieve, since every activation function of a gate in Nn

can be written as linear combination of activation functions of this normalized type.
The transformation from Nn to N̂n can be carried out in such a way that for every
assignment αn of real values to the programmable parameters of Nn there exists an
assignment β

n
of real numbers to the programmable parameters of N̂n such that

∀x ∈ {0, 1}n(Nαn
n (x) = N̂ β

n
n (x)),

and such that any strict inequality “s1 < s2” that arises in the computation of N̂ β
n

n

for some input x ∈ {0, 1}n (when one compares some subresult of that computation
with a threshold of the activation function of some gate or with the outer threshold

of N̂ β
n

n ) can be replaced by the stronger inequality “s1 + 1 ≤ s2.”
It would also be possible to push all nontrivial weights to the gates on level 1

in correspondence to the construction in the proof of Theorem 2.1. However, in the
present context this additional operation does not eliminate nonlinear conditions on
the weights. Assume for example that g is a gate on level 1 with input α1x1+α2x2 and
activation function γg(y) = y2. Then this gate g outputs α2

1x
2
1 + 2α1α2x1x2 + α2

2x
2
2.

Hence the variables α1, α2 will not occur linearly in an inequality which describes the
comparison of the output of g with some threshold of a gate at the next level.

Although it does not eliminate nonlinear conditions on the weights if one pushes
all weights toward level 1, the resulting network provides some notational advantage
because all weights between computation nodes can be treated as constants (with
three possible values). This approach has therefore been chosen in [M92] and [M93a].
However, this approach is disadvantageous if one wants to apply the method of this
proof in the context of agnostic PAC learning on analog neural nets [M93c]. In
this application one has to be able to control the bit-length of the (rational) weights.
Therefore, one cannot afford to push all weights toward level 1, since this may increase
the bit-length of weights in an unbounded manner. For example, if one pushes the
weight 2 through a gate g with activation function γg(y) = y2, then this weight is
changed to

√
2 (since 2γg(y) = γg(

√
2 · y)).
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Since the nonlinearity of the conditions on the weights cannot be eliminated in
the same way as for Theorem 2.1, we have to introduce an alternative method. We
fix an arbitrary assignment β

n
of real numbers to the programmable parameters of

N̂n. We introduce for the system of inequalities L(N̂ β
n

n , {0, 1}n) (that describes

the computations of N̂ β
n

n for all inputs x ∈ {0, 1}n) new variables v for all nontrivial

parameters in N̂ β
n

n (i.e., for the weights and bias of each gate g, for the outer threshold
Tout, and for the thresholds tg1, t

g
2 of each gate g). In addition we introduce new

variables for all products of such parameters that arise in the computation of N̂ β
n

n .
We have to keep the inequalities linear in order to apply Lemma 2.4. Hence we cannot
demand in these inequalities that the value of the variable vvg

1 ,v
g
2

(that represents the

product of αg
1 and αg

2) is the product of the values of the variables vg1 and vg2 (that
represent the weights αg

1, respectively, αg
2). We solve this problem by describing in

detail in the linear inequalities L(N̂ β
n

n , {0, 1}n) which role the product of αg
1 and

αg
2 plays in the computations of N̂ β

n
n for inputs from {0, 1}n. It turns out that this

can be done in such a way that it does not matter whether a solution A of L(N̂ β
n

n ,
{0, 1}n) assigns to the variable vvg

1 ,v
g
2

a value A(vvg
1 ,v

g
2
) that is equal to the product

of the values A(vg1) and A(vg2) (that are assigned by A to the variables vg1 and vg2).
In any case A(vvg

1 ,v
g
2
) is forced to behave like the product of A(vg1) and A(vg2) in the

computations of N̂ β
n

n .

We would like to emphasize that the parameters β
n

do not occur as constants

in the system L(N̂ β
n

n , {0, 1}n) of inequalities. They are also replaced by variables.

The reason the real-valued parameters β
n

occur nevertheless in our notation L(N̂ β
n

n ,
{0, 1}n) of inequalities is the following. These inequalities consist of conditions which
demand that for any input x ∈ {0, 1}n the computation on the neural net proceeds
exactly as for the parameter assignment β

n
(i.e., the same inequalities with thresholds

of the piecewise-polynomial activation functions are satisfied and the same pieces of
the activation functions are used at each gate as in the computation with parameter
assignment β

n
).

Before we present the formal definitions and proofs, we give a high-level descrip-
tion of the proof idea and the purpose of the formal definitions. These preceding
informal remarks should be real interactively with the subsequent formal part.

In more abstract terms, one may view any solution A of L(N̂ β
n

n , {0, 1}n) as a

model of a certain linear fragment L(N̂ β
n

n , {0, 1}n) of the theory of the role of the

parameters β
n

in the computations of N̂ β
n

n on inputs from {0, 1}n. Such a model
A (which will be given by Lemma 2.4) may be viewed as some type of nonstandard

model of the theory of computations of N̂ β
n

n , since it replaces products of weights by
values that one might call nonstandard products. Such a nonstandard model A does
not provide a new assignment of (small) weights to the network architecture N̂n, only

to a nonstandard version MA
n of the neural net N̂ β

n
n . However the linear fragment

L(N̂ β
n

n , {0, 1}n) can be chosen in such a way that MA
n computes the same Boolean

function as N̂ β
n

n . Furthermore, if A consists of a solution with rational numbers as
given by Lemma 2.4, then MA

n can be simulated by a constant-depth polynomial-
size Boolean circuit whose gates g are all MAJORITY-gates (i.e., g(y1, . . . , ym) = 1 if
∑m

i=1 yi ≥ m/2; otherwise g(y1, . . . , ym) = 0). This implies that the Boolean functions
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that are computed by (MA
n )n∈N are in TC0. However, by construction these are the

same Boolean functions that are computed by (Nαn
n )n∈N.

We will now describe the details of the previously sketched proof of Theorem 3.1.

We will simply write N instead of N̂ β
n

n (where β
n

is some assignment of real numbers

to the programmable parameters of the network architecture N̂n). We will define for
each gate g in N by induction on the depth of g,

(1) in Definition 3.3 a set V g of variables and a set Mg of formal terms that are
needed to describe the operation of gate g.

[The intuition is here that one writes for any network input x the output of g
as a sum of products (of programmable parameters, of architectural parameters, and
of components of x). Which of these terms will occur for a specific circuit input
x will depend on the course of the computation in N up to gate g: for different
inputs the involved gates may use different pieces of their activation function. The
set Mg contains a separate formal term for each product that may possibly occur
in this sum. Each term in Mg consists of a variable w ∈ V g (that represents a
programmable or architectural parameter of N or some product of these) and of a
product P ≡ ±x

j1
1 · . . . · x jn

n of input variables x1, . . . ,xn.]

(2) in Definition 3.4 for any fixed network input x ∈ Rn a set Lg(x) of linear
inequalities associated with gate g (with variables from V N := ∪{V g′ |g′ is a gate of
N}) that hold for the computation of N on input x if all formal terms t ∈ Mg are
replaced by their actual value W (t, x) for the given parameter assignment in N . We
also define in Definition 3.4 a set Sg(x) of formal terms whose sum represents the
input of g and a set T g(x) ⊆ Mg of formal terms whose sum represents the output of
g for circuit input x.

[Lg(x) specifies in particular which piece of γg is used by gate g for network
input x.]

(3) in Definition 3.6 for any input set S ⊆ Rn, any solution A of the resulting
system L(N , S) := ∪{Lg(x) | x ∈ S and g is a gate in N} of linear inequalities, and
any term t ∈ Mg a network architecture MA

g,t that decides for any network input
x ∈ S whether t occurs as a summand in the output of g in N .

[For any input x ∈ S the network architectures (MA
g,t)t∈Mg together compute the

characteristic function of the set T g(x) ⊆ Mg which represents the output of gate g
in N . In this way one can replace in a recursive manner the analog computations in
N by digital manipulations of formal terms, with “nonstandard products” of weights
in place of real products.]

One verifies in Lemma 3.5 that L(N , S) describes correctly the role of the pa-

rameters β
n

in the computations of N := N̂ β
n

n for inputs x ∈ S. Unfortunately,
L(N , S) does not provide a complete description of the properties of the parameters
β
n

in these computations, since it represents only a linear fragment of their theory.
Nevertheless, one can prove with the help of Lemmas 3.7 and 3.8 that for any solution
A of L(N , S) the network architectures MA

g,t carry out a truthful simulation of the
corresponding initial segments of N .

We would like to point out a difference to the proof of Theorem 2.1 regarding the
treatment of architectural parameters. In the proof of Theorem 3.1 the programmable
parameters αn of Nαn

n and the architectural parameters of the given network archi-
tecture Nn (the thresholds of activation functions γg and the coefficients of the poly-

nomial pieces of γg) are all changed simultaneously in the transformation to N̂ β
n

n .

Consequently, β
n

denotes the values of all nontrivial parameters in N̂ β
n

n (i.e., of all
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programmable and architectural parameters). As a consequence of this treatment
of parameters one can allow in the given network architectures Nn of Theorem 3.1
arbitrary reals as architectural parameters (i.e., for the thresholds and coefficients of
the polynomial pieces of the given activation functions γg).

We refer to an analog network architecture N with the properties of N̂ β
n

n as a
network architecture in normal form. This means that N is a first-order network
architecture whose gates have fan-out ≤ 1; all gates g in N use as activation function
γg a piecewise-polynomial function that consists of three pieces, of which at most one
piece is not identically 0 and in which the nontrivial piece (if it exists) outputs the
constant 1 or computes a power y 7→ yk for some k ∈ N.

In order to simplify our notation, we assume that for a network architecture N in
normal form the nontrivial piece of the activation function γg of each gate g is defined
over a half-open interval [tg1, t

g
2) with certain reals tg1 < tg2. It is easy to see that the

subsequent proof can also be carried out without this simplifying assumption. We
also assume without loss of generality (w.l.o.g.) that N is leveled, i.e., each gate g
in N has the property that all paths in N from an input node to g have the same
length.

Definition 3.3. Assume that N is a network architecture in normal form with n
input variables x1, . . . , xn, where arbitrary reals have been assigned to all parameters
of N . We define by induction on the depth of g for each gate g in N a set V g of
variables, a value W (v) for each variable v ∈ V g (that arises from the assignment β

n

in N̂ β
n

n := N ), and a set Mg of (formal) terms. Each element of Mg is of the form
v · P , where v ∈ V g is a variable and P is some formal polynomial term of the form
±x

j1
1 ·. . .·x jn

n , with j1, . . . , jn ∈ N . The here-occurring formal variables x1, . . . ,xn for
the input components should be distinguished from the concrete values x1, . . . , xn ∈ R

for these variables that are considered later (starting in Definition 3.4).
We consider first the case where g has depth 1. If γg gives on its nontrivial piece

[tg1, t
g
2) the constant 1 as output, we set

V g := {vg0 , . . . , vgn} ∪ {vgconst} ∪ {vgI , vgII} and Mg := {vgconst}.
We define W (vgi ) := αg

i for i = 0, . . . , n, W (vgconst) := αg, W (vgI ) := tg1, and W (vgII) :=
tg2 (αg

1, . . . , α
g
n are the weights and αg

0 is the bias of gate g in N , αg is the weight on
the edge that leaves g, and tg1, t

g
2 are the thresholds of the activation function γg). In

the other case γg computes a power y 7→ yk on its nontrivial piece. Then we introduce
for each ktuple 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪ {vg1 · x1, . . . , v

g
n · xn})k a new variable

vgw1,...,wk
in V g and a term vgw1,...,wk

·∏k

i=1 Pi in Mg. We assume here that a formal

multiplication P · P ′ for formal terms P , P ′ of the form ±x
j1
1 · . . . · x jn

n is defined in
the obvious way. We define

V g := {vg0 , . . . , vgn} ∪ {vgI , vgII} ∪ {vgw1,...,wk
| 〈w1, . . . , wk〉 ∈ {vg0 , . . . , vgn}k}.

We set W (vgw1,...,wk
) := αg ·∏k

i=1 W (wi), and we define W (v) for the other variables
as before. We define

Mg :=

{

vgw1,...,wk
·

k
∏

i=1

Pi | 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪ {vg1 · x1, . . . , v
g
n · xn})k

}

.

[The terms in Mg denote the summands that one gets from the output (αg
0+

∑m

i=1 α
g
i ·

xi)
k of γg by multiplying this output with the weight αg on the next edge and then

rewriting it as a sum of products.]
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We now consider the case where g is a gate on level l+1, with edges from the gates
g1, . . . , gm on level l leading into g. Assume that αg

1, . . . , α
g
m are in N , the weights on

these edges, that αg is the weight on the edge out of g, and that αg
0 is the bias of g.

If g is an output gate (i.e., g has fan-out 0) then we set αg := 1. If γg outputs the
constant 1 on its nontrivial piece, we set

V g := {vg0 , vgconst} ∪ {vgI , vgII} and Mg := {vgconst}.

We set W (vg0) := αg
0, W (vgconst) := αg,W (vgI ) := tg1, and W (vgII) := tg2. If γg computes

the power y 7→ yk on its nontrivial piece, we introduce for each ktuple

〈w1 · P1, . . . , wk · Pk〉 ∈



{vg0} ∪
m
⋃

j=1

Mgj





k

a new variable vgw1,...,wk
in V g and a term vgw1,...,wk

·∏k

i=1 Pi in Mg. Thus we set

V g := {vg0} ∪ {vgI , vgII}

∪ {vgw1,...,wk
| 〈w1 · P1, . . . , wk · Pk〉 ∈



{vg0} ∪
m
⋃

j=1

Mgj





k

,

for arbitrary polynomial termsP1, . . . , Pk and variables

wi ∈ ({vg0} ∪
⋃m

j=1 V
gj )}.

We define W (vgw1,...,wk
) := αg·∏k

i=1 W (wi), W (vg0) := αg
0, W (vgI ) := tg1, W (vgII) :=

tg2.
We set

Mg :=











vgw1,...,wk
·

k
∏

i=1

Pi | 〈w1 · P1, . . . , wk · Pk〉 ∈



{vg0} ∪
m
⋃

j=1

Mgj





k










.

[The argument of γg is a sum of αg
0 and of summands that are denoted by terms

in ∪m
j=1M

gj . Hence the terms in Mg correspond to the summands that one gets by
multiplying the output of γg with the weight on the next edge and then rewriting this
product as a sum of products by multiplying out.]

Finally, for the output gate gout of N , we place into V g in addition the variable
vgout . We define W (vgout) as the value of the outer threshold of N .

Definition 3.4. Assume that N is a network architecture in normal form with
n input variables and some fixed assignment of reals to its parameters. Let x ∈ Rn

be a fixed input for N . We define for each gate g in N by simultaneous induction on
the depth of g

(1) a set Lg(x) of inequalities (that are linear in the variables from V G),
(2) a set Sg(x) of formal terms (whose sum represents the argument of γg for

network input x),
(3) a set T g(x) ⊆ Mg (whose sum represents the output of g for network input

x after multiplication with the weight on the next edge).
Since x is now a fixed element of Rn, one can assign a specific value W (P, x) ∈ R

to each term P of the form ±x
j1
1 · . . . ·x jn

n that occurs in a formal term of the preceding
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definition. Hence one can assign to any formal term t = v · P (that belongs to some
Mg) a specific value W (t, x) := W (v) ·W (P, x). For a set S of formal terms we define
W (S, x) :=

∑

t∈S W (t, x). For the case S = φ we set W (φ, x) := 0.
The value W (t, x) of a formal term t reflects the value of this term for network

input x under the fixed parameter assignment in N . These values W (t, x) are needed
for the definition of the systems Lg(x) and L(N , x) of linear inequalities that describe
the computation of N .

If g has depth 1, then we define

Sg(x) := {vg0} ∪ {vgi · xi | i = 1, . . . , n}.
Assume that g is a gate on level l + 1 with edges from gates g1, . . . , gm on level l
leading into g. Then we set

Sg(x) := {vg0} ∪
m
⋃

j=1

T gj (x).

We define Lg(x) and T g(x) as follows for any gate g in N . If W (Sg(x), x) < tg1,
then Lg(x) contains the inequality [

∑

Sg(x) + 1]x [x] ≤ vgI . If W (Sg(x), x) ≥ tg2, then
Lg(x) contains the inequality [

∑

Sg(x)]x [x] ≥ vgII. In either case we set T g(x) := φ.
[We use here and in the following the notation [H]x [x] for any sum H of formal

terms to indicate that each variable xi in H is replaced by the value of the ith
coordinate xi of the concrete input x ∈ Rn. Note that the only variables that are
left in [H]x [x] are the variables of the form vgconst, v

g
i , or vgw1,...,wk

. This substitution
is necessary to make sure that the only variables that occur in the resulting system
L(N , S) of linear inequalities are of this type or are variables of the form vgI , v

g
II.]

If tg1 ≤ W (Sg(x), x) < tg2, then Lg(x) contains the inequalities vgI ≤ [
∑

Sg(x)]x [x]
and [

∑

Sg(x)+1]x [x] ≤ vgII. If γg gives on its nontrivial piece a constant ag as output,
we set in this case T g(x) := {vgconst}. If γg computes on its nontrivial piece a power
y 7→ yk, we set

T g(x) :=

{

vgw1,...,wk
·

k
∏

i=1

Pi | 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪ {vg1 · x1, . . . , v
g
n · xn})k

}

if g has depth 1, and in the general case

T g(x) :=











vgw1,...,wk
·

k
∏

i=1

Pi | 〈w1 · P1, . . . , wk · Pk〉 ∈



{vg0} ∪
m
⋃

j=1

T gj (x)





k










.

Finally, if g is the output gate gout of N and W (T gout(x), x) < W (vgout), we add to
Lgout(x) also the inequality [

∑

T gout(x)+1]x [x] ≤ vgout . If W (T gout(x), x) ≥ W (vgout),
we add to Lgout(x) also the inequality [

∑

T gout(x)]x [x] ≥ vgout .
We define

L(N , x) :=
⋃

{Lg(x) | g is a gate of N},

and for S ⊆ Rn

L(N , S) :=
⋃

{L(N , x) | x ∈ S}.

The following lemma verifies that for any x ∈ Rn the system L(N , x) of inequal-
ities provides a truthful description of the computation of N for input x.
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Lemma 3.5. Assume that N is a network architecture in normal form with n
input variables and some arbitrary assignment to its parameters and that x ∈ Rn is
an arbitrary concrete input.

Then we have for any gate g in N that W (Sg(x), x) is the input and W (T g(x), x)
is the output of gate g (multiplied with the weight on the next edge) in the computation
of N for input x. Furthermore,

W (Sg(x), x) < tg1 ⇔ “[Sg(x) + 1]x [x] ≤ vgI ” ∈ L(N , x)

W (Sg(x), x) < tg2 ⇔ “[Sg(x) + 1]x [x] ≤ vgII” ∈ L(N , x)

W (Sg(x), x) ≥ tg1 ⇔ “[Sg(x)]x [x] ≥ vgI ” ∈ L(N , x)

W (Sg(x), x) ≥ tg2 ⇔ “[Sg(x)]x [x] ≥ vgII” ∈ L(N , x).

Proof. The claim about L(N , x) follows immediately from the definition of
L(N , x) in Definition 3.4.

One shows by induction on g that for any network input x the input of g in N is
equal to W (Sg(x), x), and the output of g in N (after multiplication with the weight
on the next edge) is equal to W (T g(x), x).

If g is of depth 1 then we have by the definition of Sg(x) in Definition 3.4 and by
the definition of the values W (t, x) for terms t in Definition 3.3 that W (Sg(x), x) =
αg

0+
∑n

i=1 α
g
i ·xi, where α1, . . . , α

g
n are the weights and αg

0 is the bias of gate g in N un-
der the given parameter assignment in N . Hence W (Sg(x), x) is equal to the input of g
in N for network input x. Furthermore if αg

0+
∑n

i=1 α
g
i ·xi < tg1 or αg

0+
∑n

i=1 α
g
i ·xi ≥ tg2

then T g(x) = φ; hence W (T g(x), x) = 0. If tg1 ≤ αg
0 +

∑n

i=1 α
g
i · xi < tg2 then

W (T g(x), x) = αg if γg outputs the constant 1 on its nontrivial piece (where αg

is the weight on the edge out of g). If γg computes y 7→ yk on its nontrivial
piece, then W (T g(x), x) = αg · ∑({αg

0} ∪ {αg
i · xi | i = 1, . . . , n})k. In either

case W (T g(x), x) is equal to the output of g in N (multiplied with αg) for network
input x.

If g is of depth l + 1 with immediate predecessors g1, . . . , gm then W (Sg(x), x) =
αg

0 +
∑m

j=1 W (T gj (x), x). By induction hypothesis this value is equal to the input
of gate g in N for network input x. In the most interesting case, where gate g ap-
plies the polynomial piece y 7→ yk to this input, its output (multiplied with αg) is
equal to

αg ·



αg
0 +

m
∑

j=1

W (T gj (x), x)





k

= αg ·
∑











k
∑

i=1

W (wi · Pi, x)|〈w1 · P1, . . . , wk · Pk〉 ∈



{vg0} ∪
m
⋃

j=1

T gj (x)





k










=
∑











W (vgw1,...,wk
) ·

k
∏

i=1

W (Pi, x)|〈w1 · P1, . . . , wk · Pk〉 ∈



{vg0} ∪
m
⋃

j=1

T gj (x)





k










= W (T g(x), x).
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Definition 3.6. Assume that N is a neural act in normal form with n inputs.
Furthermore, assume that S ⊆ Rn and A : V N → R is an arbitrary solution of the
system L(N , S) of inequalities with the variable set V N :=

⋃{V g | g is a gate in N}.
We define by induction on the depth of gate g in N for each term t ∈ Mg a

first-order network architecture MA
g,t. Together the network architectures (MA

g,t)t∈Mg

mimic the initial segment of N between the input and gate g. The first-order network
architecture MA

g,t consists of gates with activation functions from the class {Heaviside,

y 7→ y, y 7→ y2}. For any circuit input x ∈ S the output of the first-order network
architecture MA

g,t will be 1 if t ∈ T g(x); otherwise it will be 0.

One associates with each network architecture MA
g,t for t ∈ Mg of the form t ≡

v ·P another network architecture M̃A
g,t that outputs for any network input x ∈ S the

real number

A(t, x) :=

{

A(v) ·W (P, x) if MA
g,t(x) = 1,

0 if MA
g,t(x) = 0.

The extension from MA
g,t to M̃A

g,t is done in a canonical manner with the help of

subcircuits that simulate product gates via the equality y · z = 1
2 ((y + z)2 − y2 − z2).

Obviously, M̃A
g,t just has to compute the product of A(v), W (P, x) and of the output

of MA
g,t for network input x.

The definition of a value A(t, x) for each term t and each x ∈ S is extended in a
canonical way to arbitrary sets M of terms

A(M,x) :=
∑

t∈M

A(t, x), A(φ, x) := 0.

We consider first the case where g has depth 1. Let Hg
1 be a linear threshold gate that

checks whether A(vgI ) ≤ A(Sg(x), x), and let Hg
2 be a linear threshold gate that checks

whether A(Sg(x), x) + 1 ≤ A(vgII). For each term t ∈ Mg we define MA
g,t to be the

AND of Hg
1 and Hg

2 .

Assume then that g is a gate on level l + 1 with edges from the gates g1, . . . , gm
on level l leading into g. According to Definition 3.4 we have in this case Sg(x) =
{vg0} ∪

⋃m

j=1 T
gj (x) for every x ∈ S. By induction hypothesis we have already defined

network architectures MA
gj ,t

, and hence also network architectures M̃A
gj ,t

for all t ∈
Mgj , j = 1, . . . ,m. For each term t ∈ Mg the network architecture MA

g,t employs
two linear threshold gates Hg

1 and Hg
2 , which receive their inputs from the network

architectures M̃A
gj ,t

for t ∈ Mgj , j = 1, . . . ,m. The linear threshold gate Hg
1 has

the task to check for any x ∈ S whether A(vgI ) ≤ A(Sg(x), x). Obviously it can

easily accomplish this task provided that for input x the network architectures M̃A
gj ,t

for t ∈ Mgj (j = 1, . . . ,m) give as output the value A(t, x). Analogously the linear
threshold gate Hg

2 has the task to check whether A(Sg(x), x) + 1 ≤ A(vgII).

If γg outputs the constant 1 on its nontrivial piece, MA
g,v

g
const

is defined as the

AND of Hg
1 and Hg

2 .

If γg computes y 7→ yk on its nontrivial piece, then each t ∈ Mg is of the form
vgw1,...,wk

· ∏k

i=1 Pi for some ktuple 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪ ⋃m

j=1 M
gj )k. In

this case MA
g,t is defined as the AND of Hg

1 , Hg
2 and of the outputs of the network

architectures MA
gj ,wi·Pi

for all i ∈ {1, . . . , k} and j ∈ {1, . . . ,m} with wi · Pi ∈ Mgj .
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[A word of caution: Although the variable vgw1,...,wk
is supposed to play the role

of the product of w1, . . . , wk and αg (where αg is the weight on the edge out of g),

the assignment A will in general not satisfy A(vgw1,...,wk
) = A(αg) ·∏k

i=1 A(wi).]

Finally we define the network architecture MA by using as components the net-
work architectures MA

gout,t
for all t ∈ Mgout . The output of MA is given by a linear

threshold gate H that checks whether
∑

t:MA
gout,t

(x)=1 A(t, x) ≥ A(vgout).

Lemma 3.7. Assume that S ⊆ Rn and A is an arbitrary solution of L(N , S).
Then the following holds for any gate g in N , for any term t ∈ Mg, and any input
x ∈ S:

(a) For network input x the gate Hg
1 in MA

g,t outputs 1 if and only if tg1 ≤
W (Sg(x), x). Similarly the output of the gate Hg

2 in MA
g,t is 1 if and only if

W (Sg(x), x) + 1 ≤ tg2.
(b) t ∈ T g(x) ⇔ (MA

g,t outputs 1 for network input x).

(c) M̃A
g,t outputs A(t, x) for network input x.

Proof. The proof proceeds by induction on the depth of gate g. The claim is
obvious from the definition if g is of depth 1. If g is of depth l + 1 > 1 we exploit the
induction hypothesis for the network architectures MA

gj ,t
and M̃A

gj ,t
with t ∈ Mgj (for

the immediate predecessors gj of gate g). Hence we may assume that gate Hg
1 in MA

g,t

outputs 1 if and only if A(vgI ) ≤ A(Sg(x), x). Since A is a solution of L(N , S), the
latter inequality holds if and only if L(N , S) contains the inequality vgI ≤ [Sg(x)]x[x].
By Lemma 3.5 this holds if and only if tg1 ≤ W (Sg(x), x). The claim for Hg

2 is verified
analogously.

The least trivial case for part (b) of the claim is the case where γg computes

y 7→ yk on its nontrivial piece. Then each t ∈ Mg is of the form vw1,...,wk
· ∏k

i=1 Pi

for some ktuple 〈w1 · P1, . . . , wk · Pk〉 ∈ ({vg0} ∪
⋃m

j=1 M
gj )k. By definition of T g(x)

we have t ∈ T g(x) if and only if tg1 ≤ W (Sg(x), x) < tg2 and wi · Pi ∈ T gj (t) for all
i ∈ {1, . . . , k} and j ∈ {1, . . . ,m} with wi · Pi ∈ Mgj . By construction of MA

g,t and

by the induction hypothesis we have that MA
g,t outputs 1 for network input x if and

only if all of the preceding conditions are satisfied.
Part (c) of the claim for gate g follows immediately from part (b) and the definition

of M̃A
g,t.

Lemma 3.8. Assume that N is a network architecture in normal form with n
input variables, S ⊆ Rn is an arbitrary set of inputs, and A is an arbitrary solution
of L(N , S). Then N and MA compute the same function from S into {0, 1}.

Proof. This is an immediate consequence of Lemmas 3.5 and 3.7. By the def-
inition of MA the output of MA for any network input x ∈ S is 1 if and only if
∑

t:MA
gout,t

(x)=1 A(t, x) ≥ A(vgout). By Lemma 3.7 we have that MA
gout,t

(x) = 1 ⇔
t ∈ T gout(x). Hence, since A is a solution of L(N , S), the preceding inequality holds
if and only if L(N , S) contains the inequality [

∑

T gout(x)]x [x] ≥ vgout . By defi-
nition of L(N , S) the latter holds if and only if W (T gout(x), x) ≥ W (vgout). By
Lemma 3.5 the value W (T gout(x), x) is the output of gout in N for network input
x. Hence W (T gout(x), x) ≥ W (vgout) holds if and only if N outputs 1 for network
input x.

We are now in a position where we can complete the proof of Theorem 3.1. Assume
that a given array (Nn)n∈N of neural nets satisfies the assumption of Theorem 3.1
and that (αn)n∈N is an arbitrary array of real-valued assignments αn to the variable
parameters in Nn. One can transform the given neural nets (Nαn

n )n∈N into an array

(N̂ β
n

n )n∈N of neural nets in normal form (with properties as specified above) such that
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N̂ β
n

n computes the same Boolean function as Nαn
n . We then apply the machinery from

the definition and Lemmas 3.5 to 3.8 to each neural net N := N̂ β
n

n with S := {0, 1}n.

By construction of N̂ β
n

n the resulting system L(N , {0, 1}n) of inequalities has some
solution over R. We exploit here in particular that β

n
was chosen so that all relevant

strict inequalities “s1 < s2” in computations of N̂ β
n

n on inputs x ∈ {0, 1}n were

strengthened to “s1 + 1 ≤ s2.” Since |⋃{Mg | g gate in N̂ β
n

n } |= O(nO(1)), it follows
that the number of gates in MA is bounded by O(nO(1)).

The number of variables in L(N , {0, 1}n) is polynomial in n, and it only contains
small constants. Hence by Lemma 2.4 there is a solution A of L(N , {0, 1}n) that
consists of rationals of the form s

t
(with a common integer t) such that s and t are

integers of size 2O(nO(1)). By Lemma 3.8 the constructed network architecture MA

computes the same Boolean function as N . Furthermore all constants and parame-
ters in MA are quotients of integers with polynomially in n many bits. Thus (see
[SBKH], [SR]) one can carry out all arithmetical operations in MA for inputs from
{0, 1}n by polynomial-sized digital subcircuits of constant depth with linear threshold
gates (or, equivalently, with MAJORITY-gates, see [CSV]). In the resulting circuit all
parameters from A are replaced by corresponding sequences of bits. Hence one gets
in this way neural nets Ñn which satisfy the claim of Theorem 3.1.

Remark 3.9. Sontag [S3] suggested using the quasilinearization that is achieved in
the proof of Theorem 3.1 in order to also get upper bounds for the VC dimension over
Rn by counting the number of components into which the weight space is partitioned
by the hyperplanes that are defined by some arbitrary finite set S ⊆ Rn of inputs.

By letting αn vary and keeping the neural net Nn and the input x ∈ S fixed one

gets up to 2O(nO(1)) different systems L(N̂ β
n

n , x) in the proof of Theorem 3.1. Hence
the total number ln of linear inequalities that arise in this way for different x ∈ S

and different parameters αn is bounded by |S| · 2O(nO(1)). Furthermore, the total
number wn of variables that occur in these ln inequalities is bounded by O(nO(1)).
Therefore the hyperplanes that are associated with these ln inequalities partition

the range Rwn of the variables into at most
∑wn

k=0

∑k

i=0

(

wn−i
k−i

)(

ln
wn−i

)

= |S|O(nO(1))

connected components (Theorem 1.3 in [E]). Each A ∈ Rwn gives rise to at most

2O(nO(1)) different network architectures MA when Nn and S are kept fixed, but the

parameters αn vary. Thus each A ∈ Rwn can be used to compute at most 2O(nO(1))

different functions S → {0, 1} on the resulting circuits. Furthermore, if A and Ã
belong to the same connected component of the partition of Rwn then for all αn the

network architectures MA and MÃ compute the same function S → {0, 1}. Hence
if S is shattered by Nn (i.e., any function S → {0, 1} can be computed by Nαn

n for

suitable parameters αn) then 2|S| ≤ |S|O(nO(1)) ·2O(nO(1)); hence |S| = O(nO(1)). This
implies that VC dimension (Nn,R

n) = O(nO(1)).
One can apply in a similar fashion the linearization that is achieved in the proof

of Theorem 2.1. Consider a neural net N over a graph 〈V,E〉 as in Theorem 2.1,
but allow that each activation function γg consists of ≤ p linear pieces with arbitrary
fixed real parameters. Then one can show that VC dimension (N ,Rn) = O(w2 log p),
where w := |V |+ |E|+1 is the number of variable parameters in N . It is sufficient to
observe that for different x ∈ S and different initial assignments α altogether at most
|S| · 2O(w log p) linear inequalities arise in the description of the computations of the
associated nets N̂ [c]β for input x. The associated hyperplanes partition the “weight

space” Rw for the variable parameters β, c into ≤ |S|O(w) · 2O(w2 log p) connected
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components. The vectors from each connected component can be used to compute
at most 2O(w) different functions S → {0, 1} (note that in general more than one
function S → {0, 1} can be computed because of different weights from {−1, 0, 1}
between computation nodes). Hence 2|S| ≤ |S|O(w) ·2O(w2 log p) ·2O(w) if S is shattered
by N ; thus |S| = O(w2 log p).

Subsequent to this observation from [M92] and [M93a], our polynomial upper
bound for the VC dimension of analog neural nets of constant depth has been extended
to neural nets of unbounded depth via an application of a well-known theorem of
Milnor [GJ]. In [M93c] this result has been further generalized to yield a polynomial
upper bound for the pseudodimension (see [H]) of analog neural nets of arbitrary
depth which takes over the role of the VC dimension in the case of learning on analog
neural nets with real-valued outputs.

4. PAC learning on analog neural nets. We now turn to the analysis of
learning on analog neural nets in Valiant’s model [V] for probably approximately
correct learning (PAC learning). More precisely, we consider the common extension of
this model to real-valued domains due to [BEHW]. Unfortunately, most results about
PAC learning on neural nets are negative (see [BR], [KV]). This could mean either
that learning on neural nets is impossible or that the common theoretical analysis of
learning on neural nets is not quite adequate.

We want to point to one somewhat problematic aspect of the traditional asymp-
totic analysis of PAC learning on neural nets. In analogy to the standard asymptotic
analysis of the run time of algorithms in terms of the number n of input bits one
usually formalizes PAC learning on neural nets in exactly the same fashion. However
in contrast to the common situation for computer algorithms (which typically receive
their input in digital form as a long sequence of n bits) for many important applica-
tions of neural nets the input is given in analog form as a vector of a small number n
of analog real-valued parameters. These relatively few input parameters may consist
for example of sensory data, or they may be the relevant components of a longer
feature vector (which were extracted by some other mechanism). If one analyzes PAC
learning on neural nets in this fashion, the relevant asymptotic problem becomes a
different one: can a given analog neural net with a fixed number n of analog inputs
approximate the target concept arbitrarily close after it has been shown sufficiently
many training examples?

We show that for those types of neural nets which were considered in the preceding
sections the previously discussed PAC learning problem has in fact a positive solution.

Theorem 4.1. Let N be an arbitrary network architecture of order 1 as in
Theorem 2.1, where the fixed parameters of the piecewise-linear activation functions
may now be arbitrary reals. Let CN := {C ⊆ Rn|∃α ∈ Rw ∀x ∈ Rn(χC(x) = Nα(x))}
be the associated concept class, where χC is the characteristic function of a concept
C. Then CN is properly PAC learnable.

This means that one can design for the given network architecture N a learning
algorithm LAN such that for any distribution Q over Rn, any target concept CT ∈ CN ,
and any given ε, δ ∈ R+ the learning algorithm LAN with inputs ε and δ carries out
in O((1

ε
)O(1), ( 1

δ
)O(1)) computations steps (with respect to the uniform cost criterion

on a RAM) the following task: it computes a suitable number m and draws some
sequence S of m examples for CT according to distribution Q. Then it computes
from S an assignment αS ∈ Rw for the programmable parameters of N such that
Q[{x ∈ Rn|χCT

(x) 6= NαS (x)}] ≤ ε with probability ≥ 1 − δ.
Proof. We have VC dimension (CN ) < ∞ by Remark 3.9. Hence according
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to [BEHW], it suffices to show that for any given set S of m examples for CT one
can compute from S within a number of computation steps that is polynomial in
m, 1

ε
, 1
δ

an assignment αS ∈ Rw to the programmable parameters of N such that
∀x ∈ S(χCT

(x) = NαS (x)). The construction in the proof of Theorem 2.1 implies
that it is sufficient if one computes instead with polynomially in m, 1

ε
, 1

δ
computation

steps an assignment β
S
, cS of parameters for the associated neural net N̂ such that

∀x ∈ S(χCT
(x) = N̂ [cS ]βS (x)). The latter task is easier because the role of the

parameters β, c in a computation of N̂ for a specific input x can be described by
linear inequalities (provided one knows which linear piece is used at each gate).

Nevertheless, the following technical problem remains. Although we know which
output N̂ [cS ]βS should give for an input x ∈ S, we do not know in which way this
output should be produced by N̂ [cS ]βS . More specifically, we don’t know which
particular piece of each piecewise-linear activation function γg of N̂ will be used for
this computation. However, this detailed information would be needed for each x ∈ S
and for all gates g of N̂ in order to describe the resulting constraints on the parameters
β, c by a system of linear inequalities.

However, one can generate a set of polynomially in m many systems of linear
inequalities such that at least one of these systems provides for all x ∈ S satisfiable
and sufficient constraints for β, c. By definition CN we know that there are parameters

β
T
, cT such that N̂ [cT ]βT computes χCT

. Consider any inequality I(β, c, x) ≤ 0
(with I(β, c, x) linear in β, c for fixed x, and linear in x for fixed β, c) as they were
introduced in the proof of Theorem 2.1 in order to describe the comparison with a
threshold at some gate g of N̂ . The hyperplane {x ∈ Rn | I(β

T
, cT , x) = 0} defines

a partition of S into {x ∈ S | I(β
T
, c, x) ≤ 0} and {x ∈ S | I(β

T
, c, x) > 0}. Hence

it suffices to produce (e.g., with the algorithm of [EOS]) in polynomially in m many
computation steps all partitions of S that can be generated by as many hyperplanes
as there are linear inequalities I(β, c, x) ≤ 0 in the proof of Theorem 2.1. One of
these partitions will agree with the partition of S that is defined by the hyperplanes
{x ∈ Rn | I(β

T
, cT , x) = 0} for the “correct values” β

T
, cT of the parameters. Each of

these partitions corresponds to a guess which linear pieces of the activation functions
γg of N̂ are used for the different inputs x ∈ S, and hence it defines a unique system
of linear inequalities in β, c (with the inputs x ∈ S as fixed coefficients). Furthermore,
it is guaranteed that one of these guesses is correct for β

T
, cT .

For each of the resulting polynomially in m many systems of inequalities we
apply the method of the proof of Lemma 2.4 (i.e., we reduce the solution of each
system of inequalities to the solution of polynomially in m many systems of linear
equalities), or we apply Megiddo’s polynomial time algorithm for linear programming
in a fixed dimension [Me] in order to find values β

s
, cs for which N̂ [cs]

β
s gives the

desired outputs for all x ∈ S. By construction, this algorithm will succeed for at least
one of the selected system of inequalities.

Remark 4.2. Assume N is some arbitrary network architecture of order 1 accord-
ing to Definition 1.1 with arbitrary piecewise-linear activation functions, and N does
not satisfy the condition that all computation nodes of N have fan-out ≤ 1. Then
Theorem 4.1 does not show that CN is properly PAC learnable. However, it implies
that CN is PAC learnable, with CN ′ for a somewhat larger network architecture N ′

of the same depth used as hypothesis class (see Remark 2.2 for the definition of N ′).

Note that this result may lead toward a theoretical explanation of an effect that
has been observed in many experiments: one often achieves better learning results on
artificial neural nets if one uses a neural net with somewhat more units than necessary
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(i.e., necessary in order to compute the target concept on the neural net).

Theorem 4.3. Let N be an arbitrary network architecture with arbitrary piecewise-
polynomial activation functions and arbitrary polynomial gate inputs Qg(y1, . . . , ym).
Then the associated concept class CN is PAC learnable with a hypothesis class of the
form CÑ for a somewhat larger network architecture Ñ .

Proof. One can reduce this problem to the case of network architectures with
linear gate inputs as indicated at the beginning of the proof of Theorem 3.1. One
uses as hypotheses, sets which are defined by a network architecture Ñ of the same
structure as the network architecture MA in the proof of Theorem 3.1. For this
network architecture Ñ one can express the constraints on the assignment A by linear
inequalities. Remark 3.9 implies that VC dimension (Ñ ,Rn) < ∞.

One applies the method from the proof of Lemma 2.4 in a manner analogous
to the proof of Theorem 4.1 or linear programming in a fixed dimension [Me] to
polynomially in m many systems of linear inequalities. There is one small obstacle in
generating the associated partitions of S since the corresponding inequalities are not
linear in the circuit inputs x. One overcomes this difficulty by going to an input space
of higher dimension (where the variables represent monomials of bounded degree in
the original variables).

Remark 4.4. It is shown in [M93c] that the positive learning results of this
section can be extended to analog neural nets with real-valued outputs. Furthermore
it is shown in that paper that these learning results can be extended to Haussler’s
refinement [H] of Valiant’s model [V], where no a priori assumptions about the target
function are required and where arbitrary noise in the training examples is permitted.
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