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Abstract

Bounds are presented for the modulus of the complex growth rate p of an arbitrary
oscillatory perturbation, neutral or unstable, in some double-diffusive problems of rele-
vance in oceanography, astrophysics and non-Newtonian fluid mechanics.

1. Introduction

Strong motivation exists for the investigation of thermohaline convection owing
to its interesting complexities as a double-diffusive phenomenon as well as its
direct relevance to the hydrodynamics of oceans [2]. The bounds for the growth
rate of a perturbation in thermohaline convection is an important problem
especially when the boundaries (one or both) are dynamically rigid so that exact
solutions in closed form are not obtainable. Recently, a new scheme of combining
the governing equations of conservation of mass, momentum, heat and salt was
proposed, [1], that leads to the following bounds on the modulus of the complex
growth rate/; of an arbitrary oscillatory perturbation, neutral or unstable:

\p p < Rsa for Veronis thermohaline configuration [4],

\pf < -Ra for Stern thermohaline configuration [3],
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|21 Growth rate in thermohaline convection 277

where R and Rs are the thermal and concentration Rayleigh numbers respectively

and a is the Prandtl number.

In this work we extend the above scheme to rotatory and hydromagnetic

configurations and to viscoelastic fluids. If a rotation and/or a magnetic field is

applied to the above configurations instability may occur first as an overstable,

that is, time dependent, maintained, perturbation. This type of instability arises

because a steady type of motion may be too restrictive in the sense that it cannot

make use of the sources of potential energy that are available to a time-dependent

motion. Besides, it is known that Ihese overstable motions, when they do occur,

are generally less efficient in transporting heat and mass and in altering the mean

gradients than are the steady convective motions. Hence, one expects that, when

the determining parameter (usually a Rayleigh number) exceeds the critical value,

the overstable motions will occur at first; as the parameter is further increased so

that steady convective instability can occur, the observed motions will be the

latter.

In Section 3 of this paper we obtain bounds for \p\ in rotatory and/or

hydromagnetic configurations in the form of four semicircle theorems; in Section

4 the treatement is extended to viscoelastic fluids. These results are new and valid

for all combinations of dynamically free and rigid boundaries. They are sum-

marised below:

a ) \P\2 <greater of (Rso, To2) for rotatory, Veronis thermohaline configura-

tion (VTC),

b) \p |2 < greater of (-Ro, To2) for rotatory, Stern thermohaline configuration

(STC),

c) \P\2 < greater of (Rso, Q2a2) for hydromagnetic VTC with perfectly con-

ducting boundarieS,

d) \p\2 < greater of (-Ro, Q2o2) for hydromagnetic STC with perfectly con-

ducting boundaries,

e) |/>|2 < greater of [i{(4/?sa + R2a2T2y/2 + RoT}2, To2] for rotatory VTC

for a viscoelastic fluid,

0 \p\2 < greater of [^{(-4Ro + R2
so

2T2)]/2 - RsaT}2, To2] for rotatory STC

for a viscoelastic fluid,

g) \p\2 < greater of [i{(4Rso + R2o2T2y/2 + RoT}2, Q2a2] for hydromag-

netic VTC with perfectly conducting boundaries for a viscoelastic

fluid,

h) \p\2 < greater of [i{(-4Ro + R2o2T2)x/2 - R.oT}2, Q2a2] for hydromag-

netic STC with perfectly conducting boundaries for a viscoelastic

fluid,
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where the complex growth rate is p = pr + ipt with pr > 0, /;, ^ 0, T is the Taylor

number, Q is the Chandrasekhar number and T is an elastic parameter. These

results are valid for all combinations of dynamically free and rigid boundaries

and hence are applicable to most realistic situations.

2. Maiheiiiaiicai formulation

The relevant governing equations and the boundary conditions in non-dimen-

sional forms for the various configurations are given below:

Rotatory Veronis thermohaline configuration

(D2 - a2)(D2 - a2 - p/o)W = Ra26 - Rsa
2<t> + +TD£, (2.1)

{D2 - a2 - p)0 = -W, (2.2)

(D2-a2-p/r)<t> = -W/T, (2.3)

(D2 - a2 - p/a)S = -DW, (2.4)

and

PF=0 = 8 = <j> = D2W = D£ atz = 0andz = l, (2.5)

(both boundaries dynamically free), or

W = O = 0 = 4> = DW = { atz = 0 a n d z = l , (2.6)

(both boundaries rigid), or

W = 0 = 6 = <}> = D 2 W = £ > f a t z = f

(upper boundary dynamically free), and

W= 0 = 0 - <£ = DW = f atz = 0

(lower boundary rigid).

(2.7)

Hydromagnetic Veronis thermohaline configuration

(D2 - a2)(D2 - a 2 - p/a)W= Ra26 - Rsa
2<t> - QD(D2 - a2)hz, (2.8)

(D2 - a2 - p)0 =-W, (2.9)

(D2-a2-p/r)<t> = -W/T, (2.10)

{D2 - a2 -pa{/a)h. = -DW, (2.11)

and (2.5) or (2.6) or (2.7), with

hz = 0 atz = 0 a n d z = 1 (2.12)

(both boundaries perfectly conducting).
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Rotatory viscoelastic Veronis thermohaline configuration

(D2 - az)[D2 - a2 - p(\ +Yp)/o]W

= Ra2(\ + Tp)6 - Rsa
2(\ + Tp)<}> + T(\ + Tp)DZ, (2.13)

{D2 - a2 - p)6= -W, (2.14)

(D2 - a2 - p/r)<t> = -W/r, (2.15)

[D2 - a 2 - p{\ + Tp)/o]£ = - (1 + Tp)DW, (2.16)

with (2.5) or (2.6) or (2.7).

Hydromagnetic viscoelastic Veronis thermohaline configuration

(D2 - a2)[D2 - a2-p{\ + Tp)/a]W

= Ra2(\ + Tp)6 - Rsa
2{\ + Tp)<t> ~ Q{\ + Tp)D{D2 - a2)h:, (2.17)

(D2-a2-p)0= -W. (2.18)

(D2 - a2 - p/r)<t> = -W/r, (2.19)

(D2- a2 -pa,/a)hz = -DW, (2.20)

with (2.5) or (2.6) or (2.7) and (2.12).

In the above equations, z is the vertical coordinate and 0 < z =£ 1, D = d/dz,

a2 is the square of the wave number, T is the ratio of mass diffusivity to heat

diffusivity, W is the vertical velocity, 6 is the temperature, <£ is the concentration,

hz is the vertical magnetic field, £ is the vertical vorticity and o, is the magnetic

Prandtl number. Further, in deriving (2.13)-(2.20) it has been assumed that the

viscoelastic fluid is described by Maxwell's constitutive relation.

The corresponding Stern configurations can be obtained by changing the signs

of R and Rs in the above equations.

3. Mathematical analysis for rotatory and/or hydromagnetic

thermohaline configurations for a viscous fluid

We prove the following theorems:

THEOREM 1. For the rotatory Veronis thermohaline configuration, the complex

growth rate of an arbitrary oscillatory perturbation, neutral or unstable, must lie

inside a semicircle in the right half of the complex p-plane whose centre is the origin

and (radius)2 — greater of(Rp, To2), for all combinations of dynamically free and

rigid boundaries.
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PROOF. For an oscillatory perturbation pt ¥= 0. Therefore, it follows from (2.3)
and (2.4) that

\P\ \p f
(3.1)

\,r • - i,r ( 3 J )

Substituting from (3.1) and (3.2) in (2.1), multiplying the resulting equation by
W* (an asterisk indicates complex conjugation) and integrating over z, while
substituting for W* appropriately from (2.2) and (2.3), we obtain

f\V*{D2 - a2)[D2 -a2-£)wdz = ~Ra2jX0(D2 - a2 - p*)6*

hj7p-'o

dz

-R,a-
\p\

XW*D{D2 - a'
I n\2 Jn

W*D2Wdz (3.3)

Integrating (3.3) by parts a suitable number of times and making use of the
boundary conditions and the equality

(3.4)

f f
^=W ( n = 1,2) o r * = 9,$,t (n=l),

we may rewrite (3.3) in the form

f\\D2W\2 + 2a2\DW\2 + aA\W\2)dz + ̂  (\\DWf + a2\W\2)dz

= Ra2fl(\D6\2 +a2\e\2+p*\6\2)dz

-R.a'
2
P*T P

\P\2
\(D2-a2)<t>\2dz

\P\ Jo

\P\2
flDW*(D2 - a2)ldz - ?2-- C\DW\2 dz

Jo \pr Jo
(3.5)

Further, calculating the value of /0' DW*{D2 — a2)$dz from (2.4) and substitut-
ing in (3.5), equating the imaginary part of the resulting equation and cancelling
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pt (=£ 0) throughout, we obtain after a little rearrangement of terms

" ?2> \\nwUz + a ^ -
\p\2 V a\p\2

«2 in2) dz = o. (3.6)

But, since pr > 0, R > 0, Rs > 0 and T > 0, we have from (3.6) that

\p\2 < greater of ( f l ^ T a 2 ) , (3.7)

which proves the theorem.

THEOREM 2. For rotatory Stern thermohaline configuration, the complex growth

rate of an arbitrary oscillatory perturbation, neutral or unstable, must lie inside a

semicircle in the right half of the complex p-plane whose centre is the origin and

{radius)2 = greater of (-Ra, To2), for all combinations of dynamically free and

rigid boundaries.

PROOF. For the Stern configuration R < 0, Rs < 0. Let R = -R, R^ = -Rs so

that R > 0 and Rs > 0. Rewriting (2.2) of the governing equations in the form

0 = -(D2-a2)e + —,
P P

and proceeding as in Theorem 1 (details omitted here) we obtain

|/>|2 < greater of {-Ra, To2), (3.8)

for all combinations of dynamically free and rigid boundaries and this proves the

theorem.

THEOREM 3. For hydromagnetic Veronis thermohaline configuration, the complex

growth rate of an arbitrary oscillatory perturbation, neutral or unstable, must lie

inside a semicircle in the right half of the complex p-plane whose centre is the origin

and {radius)2 = greater of {Rso,Q2o2), for all combinations of rigid or free

perfectly conducting boundaries.

https://doi.org/10.1017/S0334270000004069 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004069


282 J. R. Gupta et al. 17]

PROOF. Multiplying (2.8) by IV*, integrating over z and proceeding as in
Theorem 1 we get

(\\D2W\2 + 2a2\DW\2 + a4| W\2) dz

+ - fl(\DW\2 + a2\W\2)dz + QC\V*D{D2 - a2)hzdz
a Jo JQ

= Ra2 (\\D0\2 + a2\0\2 + p*\0\2) dz
•'n

-T-jpr0{D2-a2)<t>l2dz-RM2

rp *2

\P\ Jo

Integrating the last term on the left hand side of (3.9) by parts once, substituting
for DW* from (2.11) and using (2.12) we obtain

Cw*D(D2 - a2)hzdz

- a2)hz\
2dz a2\hz\

2) dz. (3.10)

Substituting from (3.10) in (3.9) and equating the imaginary parts of the resulting
equation we have

- f]\DW\2 dz + a2l - - -^-
a Jo \ a \p\

dz

^ [ r 2 / o ' | ( Z > 2 - a2)4>\2dz + 2rprj\\D<t>\2

(3.11)

Now

f\\Dh,\2 + a2\h,\2) dz= - Chz{D2 - a2)h* dz

<f\hz\\{D2-a2)hz\dz
Jo

(3.12)
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(by Schwarz 's inequality). Fur ther from (2.11) we have

(X\DW?dz = C\{D2-a2)hz\
2dz

O O 0

It follows from (3.13) that

(\(D2 - a2)hzfdz < (l\DW\2dz, (3.14)
•'o Jo

and

f £ f z . (3.15)
•>o o?\p\

Combining (3.12), (3.14) and (3.15), we get

f\\Dhz\
2 + a2\h2\

2)dz<~^lf\DW\2dz. (3.16)

Using (3.11) and (3.16), we have

\p\2 < greater of (Rso,Q2o2), (3.17)

which proves the theorem.

THEOREM 4. For hydromagnetic Stern thermohaline configuration, the complex

growth rate of an arbitrary oscillatory perturbation, neutral or unstable, must lie

inside a semicircle in the right half of the complex p-plane whose centre is the origin

and {radius)2 — greater of (-Ra, Q2a2), for all combinations of rigid or free

perfectly conducting boundaries.

PROOF. For the Stern configuration R < 0, Rs < 0. Let R = -R, Rs = -Rs so

that R > 0 and Rs > 0. Rewriting (2.9) of the governing equations in the form

and proceeding as in Theorem 3 (details omitted here) we obtain

\p |2 < greater of (-Ro,Q2o2), (3.18)

for all combinations of rigid or free perfectly conducting boundaries, and this

proves the theorem.
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4. Mathematical analysis for rotatory and/or hydromagnetic

thermohaline configuration for a viscoelastic fluid

THEOREM 5. For rotatory Veronis thermohaline configuration for a viscoelastic

fluid, the complex growth rate of an arbitrary oscillatory perturbation, neutral or

unstable, must lie inside a semicircle in the right half of the complex p-plane whose

centre is the origin and

{radius)2 = greater of I {(4Rso + R2o2Y2)*/2 + ROT}2/4, TO2],

for all combinations of dynamically free and rigid boundaries.

PROOF. It follows by proceeding as in Theorem 1 and using

f\\D6\2+a2\e\2)dz<±f\w\2dz, (4.1)

which is derived in a manner similar to the derivation of (3.16).

THEOREM 6. For rotatory Stern thermohaline configuration for a viscoelastic fluid,

the complex growth rate of an arbitrary oscillatory perturbation, neutral or unstable,

must lie inside a semicircle in the right half of the complex p-plane whose centre is

the origin and

{radius)2 = greater of U(-4Ro + R2o2T2)l/2 - RsoV]2/4, ToA,

for all combinations of dynamically free and rigid boundaries.

PROOF. It follows by proceeding as in Theorem 2 and using

f(\D<t>\2 + a2\<t>\2) dz <-}- f\W\2 dz, (4.2)
•'o T\P\Jo

which is derived in a manner similar to the derivation of (3.16).

THEOREM 7. For hydromagnetic Veronis thermohaline configuration for a visco-

elastic fluid, the complex growth rate of an arbitrary oscillatory perturbation, neutral

or unstable, must lie inside a semicircle in the right half of the complex p-plane

whose centre is the origin and

{radius)2 = greater o/[{{4Rsa + R2o2T2)l/2 + RoV}2/4, e 2 o 2 ] ,

for all combinations of rigid or free perfectly conducting boundaries.

PROOF. It follows by proceeding exactly as in Theorem 3 and using (4.1).
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THEOREM 8. For hydromagnetic Stern thermohaline configuration for a viscoelas-

tic fluid, the complex growth rate of an arbitrary oscillatory perturbation, neutral or

unstable, must lie inside a semicircle in the right half of the complex p-plane whose

centre is the origin and

{radiusf = greatero/[{(-4Ko + «2o2r2) ' / 2 - RsoT}2/4, 0 2 O 2 ] ,

for all combinations of rigid or free perfectly conducting boundaries.

PROOF. It follows by proceeding as in Theorem 4 and using (4.2).
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