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Abstract

In a recent paper Melman ���� derived upper bounds for the smallest eigen�
value of a real symmetric Toeplitz matrix in terms of the smallest roots of
rational and polynomial approximations of the secular equation f��� � 	
 the
best of which being constructed by the ��� ���Pad�e approximation of f � In this
paper we prove that this bound is the smallest eigenvalue of the projection
of the given eigenvalue problem onto a Krylov space of T��

n of dimension �
This interpretation of the bound suggests enhanced bounds of increasing ac�
curacy� They can be substantially improved further by exploiting symmetry
properties of the principal eigenvector of Tn�

Keywords� Toeplitz matrix� eigenvalue problem� symmetry

� Introduction

The problem of �nding the smallest eigenvalue of a real symmetric� positive de�nite
Toeplitz matrix �RSPDT� is of considerable interest in signal processing� Given the
covariance sequence of the observed data� Pisarenko ���	 suggested a method which
determines the sinusoidal frequencies from the eigenvector of the covariance matrix
associated with its minimum eigenvalue�

The computation of the minimum eigenvalue �� of an RSPDT Tn was considered
in� e�g� �
	� ��	� ��	� �	� ���	� ���	� ���	� ���	� Cybenko and Van Loan �
	 presented
an algorithm which is a combination of bisection and Newton�s method for the
secular equation� By replacing Newton�s method with a root �nding method based
on rational Hermitian interpolation of the secular equation� Mackens and the present
author in ���	 improved this approach substantially� In ���	 it was shown that the
algorithm from ���	 is equivalent to a projection method where in every step the

�



eigenvalue problem is projected onto a two�dimensional space� This interpretation
suggested a further enhancement to the method of Cybenko and Van Loan� Finally�
by exploiting symmetry properties of the principal eigenvector� the methods in ���	
and ���	 were accelerated in ���	�

If the bisection scheme in a method of the last paragraph is started with a poor
upper bound for ��� a large number of bisection steps may be necessary to get a
suitable initial value for the subsequent root �nding method� Usually the dominant
share of the cost occurs in the bisection phase� and a good upper bound for �� is
of predominant importance� Cybenko and Van Loan �
	 presented an upper bound
for �� which can be obtained from the data determined in Durbin�s algorithm for
the Yule�Walker system� Dembo ��	 derived tighter bounds by using �linear and
quadratic� Taylor expansions of the secular equation� In a recent paper Melman
��
	 improved these bounds in two ways� �rst by considering rational approxima�
tions of the secular equation and� secondly� by exploiting symmetry properties of
the principal eigenvector in a similar way as in ���	� Apparently� because of the
somewhat complicated nature of their analysis� he restricted his investigations to
rational approximations of at most third order�

In this paper we prove that Melman�s bounds obtained by �rst and third order
rational approximations can be interpreted as the smallest eigenvalues of projected
problems of dimension 
 and �� respectively� where the matrix Tn is projected onto a
Krylov space of T��

n � This interpretation again proves the fact that the smallest roots
of the approximating rational functions are upper bounds of the smallest eigenvalue�
avoiding the somewhat complicated analysis of the rational functions� Moreover� it
suggests a method to obtain improved bounds in a systematic way by increasing the
dimension of the Krylov space�

The paper is organized as follows� In Section 
 we brie�y sketch the approaches
of Dembo and Melman and prove that Melman�s bounds can be obtained from a
projected eigenproblem� In Section � we consider secular equations characterizing the
smallest odd and even eigenvalue of Tn and take advantage of symmetry properties
of the principal eigenvector to improve the eigenvalue bounds� Finally� in Section �
we present numerical results�

� Rational approximation and projection

Let
Tn � �tji�jj�i�j�������n � IR�n�n�

be a real and symmetric Toeplitz matrix� We denote by Tj � IR�j�j� its j�th principal

submatrix� and by t the vector t � �t�� � � � � tn���T � If �
�j�
� � �

�j�
� � � � � � �

�j�
j are the

eigenvalues of Tj then the interlacing property �
�k�
j�� � �

�k���
j�� � �

�k�
j � 
 � j � k � n�

holds�






We brie�y sketch the approaches of Dembo and Melman� To this end we additionally
assume that Tn is positive de�nite� If � is not in the spectrum of Tn�� then block
Gauss elimination of the variables x�� � � � � xn of the system�

t� � � tT

t Tn�� � �I

�
x � �

that characterizes the eigenvalues of Tn yields

�t� � �� tT �Tn�� � �I���t�x� � ��

We assume that �
�n�
� � �

�n���
� � Then x� �� �� and �

�n�
� is the smallest positive root of

the secular equation

f��� �� �t� � � � tT �Tn�� � �I���t � � ���

which may be rewritten in modal coordinates as

f��� � �t� � � �
n��X
j��

�tTvj��

�
�n���
j � �

� �� �
�

where vj denotes the eigenvector of Tn�� corresponding to �
�n���
j

From

f��� � �t� � tTT��
n��t � �����t

TT��
n���

�
t� tT

t Tn��
�

��
�

�T��
n��t

�
� �

and f �j���� � � for every j � IN and every � � ��� ��n���� 	 it follows that the Taylor

polynomial pj of degree j such that f �k���� � p
�k�
j ���� k � �� �� � � � � j� satis�es

f��� � pj��� for every � � �
�n���
� and pj��� � pj����� for every � � ��

Hence� the smallest positive root �j of pj is an upper bound of ��n�� and �j�� � �j�
For j � � and j � 
 these upper bounds were presented by Dembo ��	� for j � � it
is contained in Melman ��
	�

Improved bounds were obtained by Melman ��
	 by approximating the secular equa�
tion by rational functions� The idea of a rational approximation of the secular equa�
tion is not new� Dongarra and Sorensen ��	 used it in a parallel divide and conquer
method for symmetric eigenvalue problems� while in ���	 it was used in an algorithm
for computing the smallest eigenvalue of a Toeplitz matrix�

Melman considered rational approximations

rj��� � �t� � �� �j���

of f where

����� ��
a

b� �
� ����� �� a�

b

c� �
� ����� ��

a

b� �
�

c

d� �
�

�



and the parameters a� b� c� d are determined such that

�
�k�
j ��� �

dk

d�k
tT �Tn�� � �I���t

���
���

� k� tTT
��k���
n�� t� k � �� �� � � � � j� ���

Thus ��� �� and ��� respectively� are the ��� ���� ��� ��� and ��� 
��Pad�e approximations
of ���� �� tT �Tn�� � �I���t �cf� Braess ��	�

For the rational approximations rj it holds that �cf� Melman ��
	� Theorem ����

r���� � r���� � r���� � f��� for � � �
�n���
� �

and with the arguments from Melman one can infer that for j � 
 and j � � the
inequality rj����� � rj��� even holds for every � less than the smallest pole of rj�
Hence� if �j denotes the smallest positive root of rj��� � � then

�
�n�
� � �� � �� � ���

The rational approximations r���� and r���� to f��� are of the form of a secular
equation of an eigenvalue problem of dimensions 
 and �� respectively� Hence� there is
some evidence that the roots of r� and r� are eigenvalues of projected eigenproblems�
In the following we prove that this conjecture actually holds true� Notice that our
approach does not presume that the matrix Tn is positive de�nite�

Lemma ��� Let Tn be a real symmetric Toeplitz matrix such that � is not in
the spectrum of Tn and Tn��� Let e� �� ��� �� � � � � ��T � IRn� and denote by
V� �� spanfe�� T��

n e�� � � � � T��
n e�g the Krylov space of T��

n corresponding to the ini�
tial vector e�� Then �

e��

�
�

T��
n��t

�
� � � � �

�
�

T��
n��t

��
���

is a basis of V�� and the projected eigenproblem of Tnx � �x onto V� can be written
as

�By ��

�
t� sT

s B

�
y � �

�
� �T

� C

�
y �� �Cy ���

where

B �

�
BB�

�� � � � ��

��� � � �
���

�� � � � �����

�
CCA � C �

�
BB�

�� � � � ����
��� � � �

���
���� � � � ���

�
CCA � s �

�
BB�

��
���
��

�
CCA

and
�j � tTT

�j
n��t� ���

Proof For 	 � � the Lemma is trivial� Since

T��
n e� �

�



v

�
��

�

t� � tTv � �

t� Tn��v � �

for 	 � � a basis of V� is given in ����

�



Assume that ��� de�nes a basis of V� for some 	 � IN� then T��
n e� may be represented

as

T��
n e� �

�
�

T��
n��z

�
� z �

���X
j��

�jT
�j
n��t�

Hence

T����
n e� � T��

n

�
�

T��
n��z

�
� �T��

n e� � T��
n

�
�

T��
n��z

�
�� �T��

n e� �

�


w

�
�

where �
t� tT

t Tn��

��


w

�
�

�
�

T��
n��z

�
��

�
t� � tTw � �

t� Tn��w � T��
n��z

The second equation is equivalent to

w � T��
n��z � T��

n��t �
���X
j��

�jT
�j��
n�� t� T��

n��t � spanfT��
n��t� � � � � T

����
n�� tg�

and ��� de�nes a basis of V��� for 	 � ��

Using the basis of V� in ��� it is easily seen that eq� ��� is the matrix representation
of the projection of the eigenvalue problem Tnx � �x onto the Krylov space V�� �

Lemma ��� Let B�C� s� �B and �C be de�ned as in Lemma ���� Then the eigenvalues
of the projected problem �By � � �Cy which are not in the spectrum of the subpencil
Bw � �Cw are the roots of the secular equation

g���� �� �t� � �� sT �B � �C���s� ���

For F �� �T��
n��t� � � � � T

��
n��t� the secular equation can be rewritten as

g���� � �t� � �� tTF �F T �Tn�� � �I�F ���F T t� ���

Proof� The secular equation in ��� is obtained in the same way as the secular
equation f��� � � of Tnx � �x at the beginning of this section by block Gauss
elimination� The representation ��� is obtained from B � F TTn��F � C � F TF and
s � F T t� �

Lemma ��� Let B�C� s be de�ned in Lemma ���� and let

����� � sT �B � �C���s�

Then the k�th derivative of �� is given by

�
�k�
� ��� � k� tT �F �F T�Tn�� � �I�F ���F T �k��t� k � �� ��

�



Proof� Let
G��� �� �F T�Tn�� � �I�F ����

Then
d

d�
G��� � G���F TFG���� ����

yields

��
���� � tTFG����F T t

� tTF �F T�Tn�� � �I�F ���F TF �F T �Tn�� � �I�F ���F T t

� tT �F �F T�Tn�� � �I�F ���F T��t�

i�e� eq� �� for k � ��

Assume that eq� �� holds for some k � IN� Then it follows from eq� ����

�
�k���
� ��� � k� tT

d

d�
f�F �F T�Tn�� � �I�F ���F T �k��gt

� �k � ��� tT �F �F T�Tn�� � �I�F ���F T �k
d

d�
�F �F T�Tn�� � �I�F ���F T �t

� �k � ��� tT �F �F T�Tn�� � �I�F ���F T �kF
d

d�
G���F T t

� �k � ��� tT �F �F T�Tn�� � �I�F ���F T �kFG���F TFG���F T t

� �k � ��� tT �F �F T�Tn�� � �I�F ���F T �k��t�

which completes the proof� �

Lemma ��� Let F �� �T��
n��t� � � � � T

��
n��t�� Then it holds that

�F �F TTn��F �
��F T �kt � T�k

n��t for k � �� �� � � � � 	� ����

and
tT �F �F TTn��F �

��F T�kt � tTT�k
n��t for k � �� �� � � � � 
	� ��
�

Proof For k � � the statement ���� is trivial� Let

H �� F �F TTn��F �
��FTn���

Then for every x � spanF � x �� Fy� y � IR�

Hx � F �F TTn��F �
��F TTn��Fy � Fy � x�

and T��
n��t � spanF yields

F �F TTn��F �
��F T t � HT��

n��t � T��
n��t�

i�e� eq� ���� for k � ��

�



If eq� ���� holds for some k � 	 then it follows from T
��k���
n�� t � spanF

�F �F TTn��F �
��F T �k��t � �F �F TTn��F �

��F T ��F �F TTn��F �
��F T �kt

� �F �F TTn��F �
��F T �T�k

n��t

� �F �F TTn��F �
��F T �Tn��T

��k���
n�� t

� HT
��k���
n�� t � T

��k���
n�� t

which proves eq� �����

Eq� ��
� follows immediately from eq� ���� for k � �� �� � � � � 	� For 	 � k � 
	 it is
obtained from

tT �F �F TTn��F �
��F T �kt � ��F �F TTn��F �

��F T ��t�T ��F �F TTn��F �
��F T�k��t�

� �T��
n��t�

T �T
��k��
n�� t� � tTT�kt� �

We are now ready to prove our main result�

Theorem ���� Let Tn be a real symmetric Toeplitz matrix such that Tn and Tn��

are nonsingular� Let the matrices B and C be de�ned in Lemma ���� and let

g���� � �t� � � � sT �B � �C���s �� �t� � � � �����

be the secular equation of the projected eigenproblem ��	 considered in Lemma ����
Then ����� is the �	 � �� 	��Pad
e approximation of the rational function

���� � tT �Tn�� � �I���t�

Conversely� if ����� denotes the �	 � �� 	��Pad
e approximation of ���� and �
���
� �

�
���
� � � � � are the roots of the rational function � �	 �t� � � � ����� ordered by

magnitude� then
�
�n�
j � �

�����
j � �

���
j ����

for every 	 � n and j � f�� � � � � 	 � �g�

Proof� Using modal coordinates of the pencil Bw � �Cw the rational function
����� may be rewritten as

����� �
�X

j��

��
j

�j � �

where �j denotes the eigenvalues of this pencil� Hence �� is a rational function
where the degree of the numerator and denominator is not greater than 	 � � and
	� respectively�

From Lemma 
�� and Lemma 
�� it follows that

�
�k�
� ��� � k� tT �F �F TTn��F �

��F T �k��t � k� tTT
��k���
n�� t � ��k����

for every k � �� �� � � � � 
	 � �� Hence �� is the �	 � �� 	��Pad�e approximation of ��

�



From the uniqueness of the Pad�e approximation it follows that �� � ��� Hence
�
���
� � �

���
� � � � � are the eigenvalues of the projection of problem Tnx � �x onto V��

and ���� follows from the minimax principle� �

Some remarks are in order�
�� The rational functions �� and �� constructed by Melman ��
	 coincide with �� and
��� respectively� Hence� Theorem 
�� contains the bounds of Melman� Moreover it
provides a method to compute these bounds which is much more transparent than
the approach of Melman�


� Obviously the considerations above apply to every shifted problem Tn � �I such
that � is not in the spectra of Tn and Tn��� Notice that the analysis of Melman ��
	
is only valid if � is a lower bound of ���Tn��

�� In the same way lower bounds of the maximumeigenvalue of Tn can be determined�
These generalize the corresponding results by Melman ��
	 where we do not need an
upper bound of the largest eigenvalue of Tn�

� Exploiting symmetry of the principal eigenvec�

tor

If Tn � IR�n�n� is a real and symmetric Toeplitz matrix and En denotes the n�
dimensional �ipmatrix with ones in its secondary diagonal and zeros elsewhere�
then E�

n � I and Tn � EnTnEn� Hence Tnx � �x if and only if

Tn�Enx� � EnTnE
�
nx � �Enx�

and x is an eigenvector of Tn if and only if Enx is� If � is a simple eigenvalue of
Tn then from kxk� � kEnxk� we obtain x � Enx or x � �Enx� We say that an
eigenvector x is symmetric and the corresponding eigenvalue � is even if x � Enx�
and x is called skew�symmetric and � is odd if x � �Enx�

One disadvantage of the projection scheme in Section 
 is that it does not re�ect the
symmetry properties of the principal eigenvector� In this section we present a variant
which takes advantage of the symmetry of the eigenvector and which essentially is
of equal cost to the method considered in Section 
�

To take into account the symmetry properties of the eigenvector we eliminate the
variables x�� � � � � xn�� from the system

�
B� t� � � �tT tn��

�t Tn�� � �I En���t
tn�� �tTEn�� t� � �

�
CAx � � ����

where �t � �t�� � � � � tn���T �

�



Then every eigenvalue � of Tn which is not in the spectrum of Tn�� is an eigenvalue
of the two�dimensional nonlinear eigenvalue problem

�
t� � �� �tT �Tn�� � �I����t tn�� � �tT �Tn�� � �I���En��

�t
tn�� � �tTEn���Tn�� � �I����t t� � �� �tT �Tn�� � �I����t

��
x�
xn

�
� ��

����
Moreover� if � is an even eigenvalue of Tn� then ��� ��T is the corresponding eigen�
vector of problem ����� and if � is an odd eigenvalue of Tn then ������T is the
corresponding eigenvector of system �����

Hence� if the smallest eigenvalue �
�n�
� is even� then it is the smallest root of the

rational function

f���� �� �t� � tn�� � �� �tT �Tn�� � �I�����t� En���t�� ����

and if �
�n�
� is an odd eigenvalue of Tn then it is the smallest root of

f���� �� �t� � tn�� � � � �tT �Tn�� � �I�����t� En���t�� ����

Analogously to the proofs given in Section 
� we obtain the following results for the
odd and even secular equations�

Theorem ��� Let Tn be a real symmetric Toeplitz matrix such that � is not in the
spectrum of Tn and of Tn��� Let t� �� �t
En���t� and let

V�� �� span
n
e�� T

��
n e�� � � � � T

��
n e�

o

be the Krylov space of T��
n corresponding to the initial vector e� �� ��� � � � �
��T �

Then 	
�

�e��

�
B� �

T��
n��t�
�

�
CA � � � � �

�
B�

�
T��
n��t�
�

�
CA

�

�

is a basis of V���

The projection of the eigenproblem Tnx � �x onto V�� can be written as

�B�y ��

�
t� 
 tn�� sT�

s� B�

�
y � �

�
� �T

� C�

�
y �� �C�y ����

where

B� �

�
BB�

��� � � � ���
��� � � �

���
��� � � � ������

�
CCA � C� �

�
BB�

��� � � � �����
��� � � �

���
����� � � � ����

�
CCA � s� �

�
BB�

���
���
���

�
CCA ���

and
��j � ����tT�T

�j
n��

�t� � ��t
 En���t�
TT

�j
n��

�t� �
��





The eigenvalues of the projected problem ���	 which are not in the spectrum of the
subpencil B�w � �C�w are the roots of the secular equation

g���� � �t�� tn�� � �� sT��B�� �C��
��s� �� �t�
 tn��� �� ������ � �� �
��

Here� ������ is the �	 � �� 	��Pad
e approximation of the rational function

����� �� �tT �Tn�� � �I�����t
 En���t��

Conversely� if ������ denotes the �	� �� 	��Pad
e approximation of ����� and �
���
�� is

the smallest root of the rational function

� �	 t� 
 tn�� � �� ������ � ��

then
�
�n�
� � min��

�����
�� � �

�����
�� � � min��

���
��� �

���
����

As in the prvious section� for 	 � � and 	 � 
 Theorem ��� contains the bounds
which were already presented by Melman ��
	 using rational approximations of the
even and odd secular equations ���� and �����

� Numerical results

To establish the projected eigenvalue problem ��� one has to compute expressions
of the form

�j � tTT�j
n��t� j � �� � � � � 
	�

For 	 � � the quantities �� and �� are obtained from the solution z� of the Yule�
Walker system Tn��z

� � �t which can be solved e�ciently by Durbin�s algorithm
�cf� ��	� p� ��� requiring 
n� �ops� Once z� is known �� � tTz� and �� � kz�k���

To increase the dimension of the projected problem by one we have to solve the
linear system

Tn��z
��� � z�� �

�

and we have to compute two scalar products ����� � �z����T z� and ����� � kz���k���

System �

� can be solved e�ciently in one of the following two ways� Durbin�s
algorithm for the Yule�Walker system supplies a decomposition LTn��L

T � D where
L is a lower triangular matrix �with ones in its diagonal� and D is a diagonal matrix�
Hence� for every 	 the solution of eq� �

� requires 
n� �ops� This method for �

�
is called Levinson�Durbin algorithm�

For large dimensions n eq� �

� can be solved using the Gohberg�Semencul formula
for the inverse T��

n�� �cf� ��	�

T��
n�� �

�

�� yT t�� � n� 
�
�GGT �HHT � �
��

��



where

G ��

�
BBBBBBB�

� � � � � � �
y� � � � � � �
y� y� � � � � �
���

���
���

� � �
���

yn�� yn�� yn�	 � � � �

�
CCCCCCCA

and H ��

�
BBBBBBB�

� � � � � � �
yn�� � � � � � �
yn�� yn�� � � � � �
���

���
���

� � �
���

y� y� y� � � � �

�
CCCCCCCA

are Toeplitz matrices and y denotes the solution of the Yule�Walker system Tn��y �
t�� � n� 
��

The advantages associated with eq� �
�� are at hand� Firstly� the representation of
the inverse of Tn�� requires only n storage elements� Secondly� the matrices G� GT �
H and HT are Toeplitz matrices� and hence the solution Tn��z

� can be calculated
in only O�n log n� �ops using fast Fourier transform� Experiments show that when
n � ��
 this approach is actually more e�cient than the Levinson�Durbin algorithm�

In the method of Section � we also have to solve a Yule�Walker system Tn��z
� � �t by

Durbin�s algorithm� and increasing the dimension of the projected problem by one we
have to solve one general system Tn��z

��� � z� using the Levinson�Durbin algorithm
or the Gohberg�Semencul formula� Moreover� two vector additions z��� 
 En��z

���

and � scalar products have to be determined� and 
 eigenvalue problems of very small
dimensions have to be solved� To summarize� again 
n��O�n� �ops are required to
increase the dimension of the projected problem by one�

If the gap between the smallest eigenvalue ��n�� and the second eigenvalue ��n�� is large�

the sequence of vectors

�
�
z�

�
converges very fast to the principal eigenvector of

Tn and the matrix C becomes nearly singular� In three of ��� examples that we
considered the matrix C even became �numerically� inde�nite� However� in all of
these examples the relative error of the eigenvalue approximation of the previous
step was already ���
� In a forthcoming paper we will discuss a stable version of the
projection methods in Sections 
 and ��

Example To test the bounds we considered the following class of Toeplitz matrices

T � m
nX

k��

�kT���k �
��

where m is chosen such that the diagonal of T is normalized to t� � ��

T� � �Tij� � �cos���i� j����

and �k and �k are uniformly distributed random numbers in the interval ��� �	 �cf�
Cybenko and Van Loan �
	��

Table � contains the average of the relative errors of the bounds of Section 
 in
��� test problems for each of the dimensions n � �
� ��� �
�� 
��� ��
 and ��
��
Table 
 shows the corresponding results for the bounds of Section �� In both tables

��



TABLE �� Average of relative errors� bounds of Section 


dim 	 � � 	 � 
 	 � � 	 � �
�
 ���� E � � ��
 E � 
 ���� E � � ���
 E � �
�� ���� E � � ���� E � 
 ���� E � 
 ��
� E � �
�
� 
��� E � � ���� E � 
 ���� E � 
 ��� E � �

�� ���� E � � �
� E � 
 ���� E � 
 ��
� E � �
��
 ���� E � � ���� E � � 
��� E � 
 ���� E � �
��
� ���� E � � ���� E � � 
��� E � 
 ���� E � �

TABLE 
� Average of relative errors� bounds of Section �

Dimension 	 � � 	 � 
 	 � � 	 � �
�
 ���� E � � ���� E � � ���� E � � ��
� E � �
�� �� E � � 
��� E � 
 ��
� E � � ���� E � �
�
� ��� E � � 
��� E � 
 ���� E � � ���� E � �

�� ��
� E � � ��
� E � 
 ���� E � � ���� E � �
��
 ���� E � � ���� E � 
 ��� E � � ���� E � �
��
� ���� E � � ���� E � 
 ���� E � � ���
 E � �

�




TABLE �� Average of common logarithm of relative errors� bounds of Section 


dim 	 � � 	 � 
 	 � � 	 � �
�
 ����� ����
� ���� ����� ����� �
���� ����� ������
�� ���� ���
�� ����� ����� ����� �
��� ���
� ������
�
� ���� ����� ����� ������ ����� �
��
� ����� ������

�� ���� ���

� ����� ������ �
��� ������ ����
 �����
��
 ���� ���
�� ����� ������ �
�
� ����� ����� �
�
��
��
� ���� ���
�� ����� ������ �
��� ������ ���� �
����

TABLE �� Average of common logarithm of relative errors� bounds of Section �

dim 	 � � 	 � 
 	 � � 	 � �
�
 ����� ������ ����� ������ ����� ������ ����
� ����
�
�� ���
 ������ �
��
 ������ ����� �
��� ��
� ������
�
� ���� ���
�� �
�� ������ ����� ������ ��
� �����

�� ���� ���
�� �
��
 ������ ����� �
��� ����
 ������
��
 ���� ���
�� �
��� ������ ����� �
��� ����� ���
��
��
� ��� ���
�� �
��� ������ ����� ������ ����
 ������

the �rst two columns contain the relative errors of the bounds given by Melman�
The experiments clearly show that exploiting symmetry of the principal eigenvector
leads to signi�cant improvements of the bounds�

The mean values of the relative errors do not re�ect the quality of the bounds�
Large bounds are taken into account with a much larger weight than small ones� To
demonstrate the average number of correct leading digits of the bounds in Table �
and Table � we present the mean values of the common logarithms of the relative
errors� In parenthesis we added the standard deviations�
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