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Mathemati
al Programming manus
ript No.(will be inserted by the editor)Franz Rendl, Renata Sotirov ?Bounds for the Quadrati
 AssignmentProblem Using the Bundle Methodthe date of re
eipt and a

eptan
e should be inserted laterAbstra
t. Semide�nite Programming (SDP) has re
ently turned out to be a very power-ful tool for approximating some NP-hard problems. The nature of the Quadrati
 AssignmentProblem suggests SDP as a way to derive tra
table relaxations. We re
all some SDP relax-ations of QAP and solve them approximately using the Bundle Method. The 
omputationalresults demonstrate the eÆ
ien
y of the approa
h. Our bounds are the 
urrently strongest onesavailable for QAP. We investigate their potential for Bran
h and Bound settings by lookingalso at the bounds in the �rst levels of the bran
hing tree.Key Words. quadrati
 assignment problem, semide�nite programming relax-ation, bundle method, interior point method.AMS Subje
t Classi�
ations. 90C22, 90C27, 90C57, 90C51; Se
ondary 90C06.1. Introdu
tionThe Quadrati
 Assignment Problem (QAP) was introdu
ed in 1957 by Koop-mans and Be
kmann as a model for lo
ation problems, that takes into a

ountthe 
ost of pla
ing a new fa
ility on a 
ertain site as well as the intera
tion withother fa
ilities. Nowadays, the QAP is widely 
onsidered as a 
lassi
al 
ombi-natorial optimization problem. The QAP is also known as a generi
 model forvarious real{life problems, see C�ela [6℄ for a list of appli
ations.Let A;B and C be real n� n matri
es, and � the set of n� n permutationmatri
es. (We assume n � 3 to avoid trivialities.) The QAP 
an be stated asfollows (QAP) �� := minX2� tr (AXBT + C)XT : (1)The formulation (1) is 
alled the tra
e formulation and it was introdu
ed byEdwards in 1977. A QAP is 
alled symmetri
, if both matri
es A and B aresymmetri
. Throughout we assume that A and B are symmetri
. The QAP isUniversity of KlagenfurtDepartment of MathematikA - 9020 Klagenfurt, Austria? Finan
ial support from the Proje
t P12660-MAT, (Austrian S
ien
e Foundation FWF),until 2001 is gratefully a
knowledged. In addition we thank Gerhard Woeginger for furthersupport by START program Y43{MAT (again FWF) during 2002. Finally we thank the Uni-versity of Klagenfurt for a s
holarship during the a
ademi
 year 2002/2003.



2 Franz Rendl, Renata Sotirovwell known to be an NP{hard 
ombinatorial optimization problem (Sahni andGonzales [21℄) and even �nding an �{approximation of QAP is an NP{hardproblem.Bran
h and Bound (B&B) algorithms are among the most su

essful ap-proa
hes to get optimal solutions for a 
ombinatorial optimization problem. The
hoi
e of the bounding method is the most important fa
tor in the performan
eof B&B methods. The �rst B&B algorithms for QAP utilize the well knownGilmore{Lawler bound that is 
heap to 
ompute but in general not very tight.It is known (see [7℄) that the time needed to solve a problem using the B&Balgorithm based on the Gilmore{Lawler bound in
reases with a fa
tor four ifthe problem dimension is in
reased by one. Stronger lower bounds for the QAPin
lude bounds based on linear programming relaxations and are used by Adamsand Johnson [1℄, by Resende et al. [20℄, and by Hahn et al. [13,14℄. Eigenvalue{based bounds are investigated by Finke et al. [8℄, Hadley et al. [12℄, and Rendland Wolkowi
z [19℄.The re
ent developments in algorithms as well as in 
omputational platformshave resulted in a large improvement in the 
apability to solve QAPs exa
tly.Anstrei
her et al. [4℄ made a break{through by solving a number of previously{unsolved large QAPs from QAPLIB [5℄, in
luding the Nug30, Kra30b and Tho30problems. They in
orporated a quadrati
 programming bound (QPB) that wasintrodu
ed by Anstrei
her and Brixius in [3℄, into a bran
h and bound frame-work. and were running their bran
h and bound algorithm on a 
omputationalgrid, see [10℄. Their 
omputations are 
onsidered to be among the most extensive
omputations ever performed to solve dis
rete optimization problems. The 
om-putational work to solve a problem of size n = 30 (Nug30) took the equivalentof nearly 7 years of 
omputation time on a single HP9000 C3000 workstation,see [4℄. A summary of re
ent advan
es in the solution of QAP by B&B is givenin the survey arti
le by Anstrei
her [2℄.In this paper, we re
all semide�nite programming (SDP) relaxations of QAP.Semide�nite programming studies [16,18,24℄ show that it is a very promisingmethod for providing tight relaxations for hard 
ombinatorial problems, notablyQAP. In Se
tion 2, we re
all and summarize the approa
h from [24℄ to derive SDPrelaxations for QAP. All relaxations are formulated in the spa
e of symmetri
matri
es of order (n � 1)2 + 1. The simplest relaxation has n2 + 1 equality
onstraints. Two further re�nements of this relaxation are obtained by (�rst)in
luding O(n3) additional equations and then O(n4) sign 
onstraints. Standardinterior-point methods are not adequate to solve these latter models.In Se
tion 3, we propose a variant of the bundle method to solve these re-laxations at least approximately with reasonable 
omputational e�ort. Usingour version of the bundle method, we 
ompute bounds of our relaxations forsome of the instan
es from QAPLIB [5℄. The 
omputational results presentedin Se
tion 4 demonstrate the eÆ
ien
y of 
ombining the basi
 SDP relaxationwith the bundle method. The resulting lower bounds are the 
urrently strongestbounds for QAP. We also show how these bounds behave in the �rst levels of theBran
h and Bound tree. Smaller problems (n � 15) lead to bran
hing trees withonly a few dozen nodes. For larger problems, the redu
tion of the gap between



Bounds for the Quadrati
 AssignmentProblem Using the Bundle Method 3bound and integer solution going from the root problem to the �rst level of thebran
hing tree is still signi�
ant. This makes the present bounds potential new
andidates for use in Bran
h and Bound methods.Notation. The spa
e of k � k real matri
es is denoted by Mk, and thespa
e of k� k symmetri
 matri
es is denoted by Sk. We use tr(A) to denote thetra
e of a square matrix A. The spa
e of symmetri
 matri
es is 
onsidered withthe tra
e inner produ
t hA;Bi = tr(AB). For A;B 2 Sk, A � 0 (resp.A � 0)denotes positive semide�niteness (resp. positive de�niteness), and A � B denotesA � B � 0. For two matri
es A;B 2 Mk, A � B, (A > B) means aij � bij ,(aij > bij) for all i; j.For X 2 Mk, ve
(X) denotes the ve
tor in IRk2 that is formed from the
olumns of the matrix X . The 
onne
tion between operators ve
 and tr is givenwith the following relation; see e. g. [11℄,tr(AB) = (ve
(AT ))T ve
B; A;B 2Mk: (2)Diag(x) is the diagonal matrix with diagonal entries equal to the 
omponents ofx, and 
onversely, diag(X) is the ve
tor of the diagonal elements of the matrixX . Diag(x) is the adjoint operator of diag(X).The Hadamard produ
t of two matri
es U = (uij) and V = (vij) of the samesize is denoted by U Æ V , (U Æ V )ij = uij � vij for all i; j. The Krone
ker produ
tof matri
es A and B isA
B = (aijbkl) = (aijB) 8i; j; k; l;i. e. the matrix formed from all possible produ
ts of elements from A and B.The following identity will be used several times, see e. g. [11℄,ve
(AXB) = (BT 
A)ve
(X): (3)We use ei to denote the 
olumn i of the identity matrix, e is the ve
tor withea
h 
omponent equal to one, and E = eeT denotes the matrix of ones. Whenthere is no 
onfusion with the unit ve
tors ei, we use en to indi
ate the size ofthe ve
tor of all ones.2. SDP Relaxations of QAPIn this se
tion we summarize and simplify the approa
h from [24℄ to get SDPrelaxations for QAP. The key idea is to reformulate the problem in terms ofx = ve
(X) and linearize the quadrati
 term xxT in the 
ost fun
tion.In order to rewrite the 
ost fun
tion from QAP we use (2) and (3) and obtainthe following form of the obje
tive fun
tiontr (AXB + C)XT = hx; ve
(AXB + C)i = xT (B 
 A)x+ xT 
;where x = ve
(X) and 
 = ve
(C). Therefore QAP be
omesminfxT (B 
A)x+ xT 
 : x = ve
(X); X 2 �g; (4)



4 Franz Rendl, Renata Sotirovwhi
h is equivalent tominftr(B 
 A+Diag(
))xxT : x = ve
(X); X 2 �g;be
ause 
Tx = 
T (x Æx) = trDiag(
)(xxT ). To derive semide�nite relaxations ofQAP we linearize the obje
tive fun
tion and obtain the following feasible set ofQAP. P := 
onvfxxT : x = ve
(X); X 2 �g:In order to obtain tra
table relaxations for QAP we need to approximate theset P by larger sets 
ontaining P . We �rst impose a semide�niteness 
onstrainton elements Y 2 P . The verti
es Y of P satisfy the (nonlinear and non
onvex)
onstraint Y�diag(Y )diag(Y )T = 0, whi
h we weaken to Y �diag(Y )diag(Y )T �0. This 
ondition is well known to be equivalent to the 
onvex 
onstraint� 1 ~yT~y Y � � 0; ~y = diag(Y ): (5)We next exploit the fa
t that the row and 
olumn sums of permutation matri
esare one.Lemma 1 [12℄ Let V be an n�(n�1)matrix with V T e = 0 and rank(V ) = n�1.Then �X 2Mn : Xe = XT e = e	 = � 1neeT + VMV T :M 2 Mn�1� :Matrix V from the previous Lemma 
ould be any basis of e?. Our 
hoi
e forV is V =  In�1�eTn�1! : (6)The following Lemma gives some more stru
ture of the elements in P .Lemma 2 Let Y 2 P and W := � 1ne
 e; V 
 V � ;where V is given in (6). Then there exists a symmetri
 matrix R of order (n�1)2 + 1, indexed from 0 to (n� 1)2, su
h thatR � 0; R00 = 1 and Y =WRW T :Proof. (See also [24℄.) First we look at the extreme points of P . Let Y be oneof them, i.e. Y = xxT for some permutation matrix X . From Lemma 1 it followsthat for the permutation matrix X there exists some matrix M 2 Mn�1 su
hthat X = 1neeT + VMV T . With the use of (3), we getx = ve
(X) = 1n (e
 e) + (V 
 V )m =Wz;



Bounds for the Quadrati
 AssignmentProblem Using the Bundle Method 5where m = ve
(M) and z = � 1m�. NowY = xxT =WzzTW T =WRW T ;with R = zzT . Hen
e, R is symmetri
 positive semide�nite and R00 = 1. Thesame holds for 
onvex 
ombinations formed from several permutation matri
es.Lemma 2 and 
ondition (5) suggest the following set P̂ 
ontaining P .P̂ := fY 2 Sn2 : 9R s.t. R � 0; R00 = 1; Y =WRW T ;~y = diag(WRW T );� 1 ~yT~y WRW T � � 0g:In [24℄ it is shown that P̂ has interior points. For instan
eR̂ = �1 00 1n2(n�1) (nIn�1En�1)
 (nIn�1En�1)� � 0is su
h that WR̂W T is the bary
enter of P , i. e.WR̂W T = 1n! Xx2� �xxT � :We arrive at the basi
 SDP relaxation of QAP(QAPR1) minftr (B 
A+Diag(
))Y : Y 2 P̂g:We 
an eliminate the matrix variable Y and formulate QAPR1 with the matrixvariable R. For that purpose, we de�ne the following set:R = fR 2 S(n�1)2+1 : R � 0; R00 = 1; ~y = diag(WRW T );� 1 ~yT~y WRW T � � 0g:Note that this set is de�ned by n2+1 equality 
onstraints of very simple stru
turein addition to the semide�niteness 
onstraint. If we de�neL :=W T (B 
A+Diag(
))W 2M(n�1)2+1; (7)then QAPR1 is equivalent to(QAPR1) ��1 := minftr LR : R 2 Rg:Unfortunately this relaxation is in general very weak. In Table 1 we give solutionsof this relaxation for some Nugent instan
es from QAPLIB [5℄ 
omputed by theprimal-dual path-following interior{point method, and 
orresponding runningtimes. The 
omputation times are obtained using an Athlon XP with 1800 GHz.Sin
e all data for these problems are nonnegative, a trivial bound on �� is �� � 0.In view of this, ��1 
an not be 
onsidered a serious approximation of QAP.



6 Franz Rendl, Renata SotirovTable 1. Solutions of relaxation QAPR1 for Nugent instan
es and 
orresponding 
omputationtimes Nug12 Nug15 Nug20 Nug25 Nug30��1 -216 -823 -2073 -4683 -10965time (se
onds) 1.1 4.16 19.4 69.3 198.8QAPR1 exploits the fa
t that matri
es of order n with 
onstant row and
olumn sums have essentially only (n � 1)2 degrees of freedom (see Lemma 1),and that xij 2 f0; 1g gives (5).To improve the relaxation we need to in
lude further 
onstraints, whi
h arevalid for permutation matri
es. We next exploit the fa
t thatxijxik = xjixki = 0 for j 6= k;holds for the permutation matrix X = (xrs).To express the zero pattern, we index the elements of the matrix Y 2 P byyr;s = Y(i;j)(k;l) for r; s 2 f1; : : : ; ng � f1; : : : ; ng; i; j; k; l 2 f1; : : : ; ng. The zeropattern is 
overed by the following equalities:yrs = 0 for r = (i; j); s = (i; k); or r = (j; i); s = (k; i); j 6= k:We 
olle
t all these equalities in the 
onstraint G(WRW T ) = 0 whi
h is repre-sented by the set G := fR : R 2 S(n�1)2+1; G(WRW T ) = 0g:We strengthen the relaxation QAPR1 by adding this new set of equalities andarrive at the tighter model(QAPR2) ��2 := minftr LR : R 2 R \ Gg;that 
ontains additional O(n3) equations, n3 � n2 to be pre
ise. Model QAPR2is introdu
ed in [24℄ as the Gangster model. In Table 2 we give results of somenumeri
al experiments. The �rst 
olumn lists some of the larger Nugent instan
esfrom QAPLIB [5℄. The number in the name of the problem refers to the size ofthe problem. The se
ond 
olumn 
ontains the value of the optimal solution ofQAP. In the third 
olumn we provide the solutions of the relaxation QAPR2using the interior-point method. The number of 
onstraints is too big to bemanageable by a standard PC. These results were obtained in 
ollaborationwith Henry Wolkowi
z in 2001 by use of the NEOS Server for Optimization.The ma
hine that was used at NEOS was a Sun E6500 server with 24 pro
essorsand 24 GB of memory. All pro
essors were 400MHz Spar
2. The fourth 
olumn
ontains the running times required for one single interior{point iteration of thealgorithm. Nug30 was solved with the CSDP solver and the algorithm needed36 iterations. The solution was obtained after about 1400 hours.The results show that QAPR2 provides very tight approximations of ��, butit be
omes also quite 
lear that the interior{point method is not appropriate forsolving this relaxation.



Bounds for the Quadrati
 AssignmentProblem Using the Bundle Method 7Table 2. Solutions of relaxation QAPR2 obtained by the interior-point method (using NEOS)and by the bundle method with 
orresponding 
omputation times for one iteration of thealgorithms. The interior{point method needs about 20 iterations, the bundle method about300 iterations. interior{point bundleexa
t ��2 time bound on ��2 timeNug20 2570 2386 1 h 7' 2380 15.11 "Nug21 2438 2253 1 h 45' 2244 18.56 "Nug22 3596 3396 2 h 41' 3372 22.01 "Nug24 3488 3235 6 h 3217 35.44 "Nug25 3744 3454 8 h 48' 3438 44.49 "Nug30 6124 5695 39 h 5651 122.35 "The relaxation QAPR2 
an be further tightened by adding nonnegativity
onstraints (WRW T )rs � 0; 8r; s = 1; : : : ; n2: (8)We 
olle
t the inequalities (8) whi
h are not yet 
overed by G(WRW T ) = 0 inthe 
onstraint N(WRW T ) � 0. Let us de�ne the setN := fR : R 2 S(n�1)2+1; N(WRW T ) � 0g:We arrive at the �nal relaxation, also introdu
ed in [24℄:(QAPR3) ��3 := minftr LR : R 2 R \ G \ Ng:The resulting SDP has O(n4) sign 
onstraints and O(n3) equality 
onstraints.The relaxation QAPR3 
an not be solved straightforward by interior{point meth-ods for interesting instan
es (n � 15).Finally, we mention that further re�nements of our approximations to �� arepossible. The fa
t that P is generated by 0�1 ve
tors x = ve
(X) would suggestto in
lude the triangle inequalities0 � yrs � yrr; yrr + yss � yrs � 1;�ytt � yrs + yrt + yst � 0; ytt + yrr + yss � yrs � yrt � yst � 0;whi
h hold for all distin
t triples (r; s; t). This gives an additional O(n6) 
on-straints. Sin
e we �nd it already extremely diÆ
ult to approximate QAPR3 , wewill not pursue this latest relaxation any further, and leave it for future resear
h.Table 2 shows two things. First the bound QAPR2 yields a drasti
 im-provement 
ompared to QAPR1 and se
ondly 
lassi
al interior{point methodsare highly ineÆ
ient to 
ompute this bound. We now show how we 
an avoidstraight interior{point methods by introdu
ing the bundle method to deal withG(WRW T ) = 0; N(WRW T ) � 0.



8 Franz Rendl, Renata Sotirov3. The Bundle Method to solve the RelaxationsInterior{point methods are very useful and reliable solution methods for semidef-inite programs of moderate size, but we have just seen that for QAPR2 andQAPR3 they are not pra
ti
al. In order to eÆ
iently 
ompute lower bounds ofthese relaxations, we need a method that is 
apable to deal with a huge num-ber of 
onstraints. The bundle method turns out to be a 
onvenient method forthis purpose. It dates to the 1970's (see e. g. [15,22,25℄) and it was originallydeveloped to minimize a nonsmooth 
onvex fun
tion f(
) over 
 2 IRn. Thefun
tion f is assumed to be given by an ora
le whi
h, for some input 
 returnsthe fun
tion value f(
) and ve
tor g 
ontained in the subdi�erential of f at
; g 2 �f(
).To de�ne f , we dualize the \hard 
onstraints"G(WRW T ) = 0 and N(WRW T ) � 0;and maintain expli
itly only the 
onstraints fromR. Introdu
ing Lagrange multi-pliers 
0 and 
00 � 0 for the equations and nonnegativity 
onstraints respe
tively,the Lagrangian isL(R; 
) = tr LR+ (
0)TG(WRW T )� (
00)TN(WRW T );where 
 = (
0; 
00).Now we de�nef(
) := minR2R L(R; 
) = minR2R hL+W T (GT (
0)�NT (
00))W;Ri; (9)and the relaxation QAPR3 is equivalent tomax
2� f(
); (10)where � := f(
0; 
00) : 
00 � 0g. The problem (10) is also diÆ
ult to solve dire
tly,but weak duality shows that for any 
 2 � we have f(
) � ��3 � ��, hen
e anyfeasible solution 
 gives a lower bound on ��. (It is our goal to approximate ��3as 
lose as possible.) Note that for some 
 the evaluation of f(
) amounts tosolving an SDP of the form QAPR1 , whi
h 
an be done reasonably fast.We follow now the idea of the bundle method from [9℄. For the start of thealgorithm we take some initial 
, for instan
e 
 = 0, and 
ompute R from (9). Apair (
;R) is 
alled a mat
hing pair for f , if f(
) = L(R; 
). Let 
� = (
0�; 
00�).If (
�; R�) is a mat
hing pair for f then gG(
0�) = G(WR�W T ) is a subgradientof f at 
0�, and gN (
00�) = �N(WR�W T ) is a subgradient of f at 
00�. Wedenote a 
urrently best approximation to the maximizer of f with 
̂ = (
̂0; 
̂00).In a general step, we assume to have �R = (R1; : : : ; Rk) and 
̂ := 
k, with(
̂; Rk) a mat
hing pair. For ea
h Ri we 
al
ulate the 
orresponding subgradientsgGi and gNi , and form matri
es GG = (gG1 ; : : : ; gGk ) and GN = (gN1 ; : : : ; gNk ). Let� = (�1; : : : ; �k)T , � = f� : � � 0; eT� = 1g, and F = (tr(LR1); : : : ; tr(LRk))T .



Bounds for the Quadrati
 AssignmentProblem Using the Bundle Method 9The goal is to approximate the fun
tion f(
) in the neighborhood of the 
urrentiterates reasonable well. The fun
tion f(
) is approximated byfappr(
) = min�2� hL+W T (GT (
0)�NT (
00))W; kXi=1 �iRii= min�2� kXi=1 �i hL; Rii+ h
0; kXi=1 �iG(WRiW T )i�h
00; kXi=1 �iN(WRiW T )i= min�2� F T�+ (
0)TGG�+ (
00)TGN�: (11)Sin
e fappr is built of lo
al information from the previous iterates, in orderto preserve a reasonable quality of the approximations we should stay in thevi
inity of the 
urrent point 
̂. Therefore we use the proximal point idea and adda penalty term for the displa
ement from the 
urrent point. We now determine anew 
andidate 
 = (
0; 
00) 2 � from the 
urrent iterate 
̂ = (
̂0; 
̂00) by solvingthe 
on
ave problem max
2� fappr(
)� 12t jj
 � 
̂jj2; (12)where t > 0 is a parameter that has to be 
hosen by the user. Substituting (11)into the maximization problem (12), we obtain the optimization problemmax
2� min�2� F T�+ (
0)TGG�+ (
00)TGN�� 12t jj
 � 
̂jj2= min�2�; ��0 max
 F T�+ (
0)TGG�+ (
00)TGN�+ (
00)T � � 12t jj
 � 
̂jj2: (13)First{order optimality 
onditions for the inner maximization in (13) are��
0 (�) = 0 , GG�� 1t (
0 � 
̂0) = 0, 
0 = 
̂0 + tGG�; (14)��
00 (�) = 0 , GN�� 1t (
00 � 
̂00) + � = 0, 
00 = 
̂00 + t(� +GN�): (15)We now insert equations for 
0 and 
00 obtained in (14) and (15) respe
tively,into (13) and obtain the optimization problemmin� 2 �� � 0 t2 jjGG�jj2+ t2 jjGN�+�jj2+ hF +(
̂0)TGG+(
̂00)TGN ; �i+ h
̂00; �i: (16)The minimization problem (16) 
an be easily solved if one set of the variablesis kept 
onstant, see [9,23℄. Keeping � 
onstant results in a 
onvex quadrati




10 Franz Rendl, Renata Sotirovproblem in �, whi
h 
an be easily solved by the interior{point method. Keeping� 
onstant in the minimization problem (16) results inmin��0 t2h�; �i+ th�;GN�i+ h
̂00; �i:This problem 
an be solved 
oordinatewise. Thus we start with � = 0, solve for� whi
h we then keep 
onstant to solve for � and iterate this pro
ess severaltimes to get (approximate) solutions �; � of (16). Using these estimates � and� in (14) and (15) we arrive with the next trial point 
test = (
0test; 
00test). To�nish one iteration, we need to evaluate the fun
tion f at the new point 
test,whi
h amounts to solving an SDP of the form QAPR1 . This is in fa
t the mosttime-
onsuming operation in ea
h iteration of the bundle method. Finally, itshould be mentioned that the asymptoti
 
onvergen
e of this approa
h is ratherslow, so we set as an additional stopping 
ondition a maximum number of bundleiterations, whi
h we have set somewhat arbitrarily to 300. The �nal bound istherefore only a lower approximation to either ��2 or ��3. For a more detailedsurvey of the bundle method see [9,15,23℄.To see how good the bundle method approximates ��2, we provide some rep-resentative results in Table 2. In the �fth 
olumn of Table 2 we give the boundof relaxation QAPR2 for di�erent Nugent instan
es 
omputed with the bundlemethod. The sixth 
olumn shows the running time required for one single itera-tion of the bundle algorithm (on our PC). We 
on
lude that the bundle methodapproximates the true value ��2 reasonably well, at signi�
antly smaller 
ompu-tational 
ost. We do not have a similar 
omparison for QAPR3 , be
ause we donot know how to solve this relaxation exa
tly for problems of interesting size.4. Computational ResultsIn this Se
tion we present 
omputational results. First, we 
ompare the lowerbounds QAPR2 and QAPR3 obtained with the bundle method, with severalexisting bounding strategies. We use the same test problems as in [3℄ and [24℄.All instan
es have no linear term, i. e. they are pure quadrati
 and they are takenfrom the 
urrent version of QAPLIB [5℄. We also investigate the lower boundsfor some QAPLIB instan
es in the �rst and se
ond level of the bran
hing tree.The implementation of our bounds was done in MATLAB and performed on aPC (Athlon XP pro
essor 1800 GHz).4.1. Comparison With Other BoundsTables 3 and 4 
olle
t some instan
es from QAPLIB [5℄, their optimum values,lower bounds from the literature, and our bounds. More pre
isely, the Tables 3and 4 read as follows. The �rst 
olumn gives the problem instan
es and theirsizes, e. g. Had30 refers to the Hadley instan
e of the size 30. In the se
ond 
ol-umn we provide the optimum value for ea
h instan
e. The remaining 
olumns



Bounds for the Quadrati
 AssignmentProblem Using the Bundle Method 11give lower bounds in the following order: GLB is the Gilmore{Lawler bound;KCCEB is the dual LP{based bound from [17℄; PB is the proje
ted eigenvaluebound from Hadley, Rendl and Wolkowi
z [12℄, and QPB1 is the quadrati
 pro-gramming bound from Anstrei
her and Brixius [3℄. The last two 
olumns presentthe bounds QAPR2 and QAPR3 that are des
ribed in Se
tion 2 and 
omputedby the bundle method. 'n. a.' means that the value of the bound is not availablefor a parti
ular problem. All bounds are rounded up to the next integer.Tables 3 and 4 demonstrate the eÆ
ien
y of the relaxations QAPR2 andQAPR3 . These two relaxations were already proposed in [24℄. Here we proposea pra
ti
al way to approximate them within reasonable 
omputation time. TheTables show that the relaxation QAPR3 is 
urrently the strongest bound avail-able for QAP. The last 
olumn also gives the relative gap of this bound in %.This gap is often quite small, only a few per
entage points. We also point outthat we get positive bounds on the Es
hermann instan
es Es
16d and Es
16i,where most of the other bounds are less than 0.The bounds QAPR2 and QAPR3 from Table 3 and 4 are obtained after 300 it-erations of the bundle algorithm. To give an impression how the bound improvesin the 
ourse of the bundle iterations, we present in Table 5 QAPR3 bounds forthe Nugent type instan
es obtained after 10, 20, 50, 100, 200 and 300 bundleiterations. The results show that after fast initial progress (�rst 100 iterations),there is a strong tailing{o� e�e
t. Figure 1 gives a graphi
al representation ofthe results from Table 5. We have plotted the relative gap in % to the optimalvalue. Note the similar behavior for all instan
es: after 50 iterations the gap isbelow 20 %, after 150 iterations it is below 10 %, and it approa
hes 5 % after300 iterations.4.2. The Bounds After Bran
hingFor the purpose of applying the bound QAPR3 within a bran
h and boundframework we investigate the e�e
t on the bound after �xing an assignmentxij = 1. A 
onsiderable growth of the bound by stepping down one level in thebran
hing tree is a desirable feature for a bounding pro
edure in a Bran
h andBound setting. In order to evaluate the growth rate of QAPR3 , we �rst 
ompareour results for Had12 with results presented in [3℄. Table 6 gives lower boundsfor Had12 in the �rst level of the bran
hing tree. The �rst 
olumn lists theroot problem and all 12 
hild problems. With Had12:j we denote jth \
hild"problem obtained by setting x1j = 1; j = 1; : : : ; 12. The meaning of the restof the 
olumns is as follows; the se
ond 
olumn presents exa
t solutions of the\
hild" problems; PB and QPB are proje
ted eigenvalue bound and quadrati
programming bound respe
tively, and QAPR3 is the bound presented in Se
tion2. Table 6 shows that the performan
e of QPB is far superior to that of PB,and that the performan
e of QAPR3 is far superior to that of QPB. Note thatthe value of QPB is suÆ
ient to fathom Had12.7 and Had12.12, but the valueof QAPR3 is suÆ
ient to fathom all "
hild" problems, proving optimality at the�rst level of the bran
hing tree.



12 Franz Rendl, Renata SotirovTable 3. Comparing bounds for QAPLIB instan
es IOPT GLB KCCEB PB QPB1 QAPR2 QAPR3 gap (%)Es
16a 68 38 41 47 55 49 59 13.24Es
16b 292 220 274 250 250 275 288 1.37Es
16
 160 83 91 95 95 111 142 11.25Es
16d 16 3 4 - 19 -19 -13 8 50.00Es
16e 28 12 12 6 6 11 23 17.86Es
16g 26 12 12 9 9 10 20 23.08Es
16h 996 625 704 708 708 905 970 2.61Es
16i 14 0 0 -25 -25 -22 9 35.71Es
16j 8 1 2 -6 -6 -5 7 12.50Had12 1652 1536 1619 1573 1592 1639 1643 0.54Had14 2724 2492 2661 2609 2630 2707 2715 0.33Had16 3720 3358 3553 3560 3595 3675 3699 0.56Had18 5358 4776 5078 5104 5143 5282 5317 0.77Had20 6922 6166 6567 6625 6677 6843 6885 0.53Kra30a 88900 68360 75566 63717 68572 68526 77647 12.66Kra30b 91420 69065 76235 63818 69021 71429 81156 10.79Kra32 88700 67390 n.a. 59735 n.a. 75848 79659 10.19Nug12 578 493 521 472 482 528 557 3.63Nug14 1014 852 n.a. 871 891 958 992 2.17Nug15 1150 963 1033 973 996 1069 1122 2.43Nug16a 1610 1314 1419 1403 1448 1526 1570 2.48Nug16b 1240 1022 1082 1046 1071 1136 1188 4.19Nug17 1732 1388 1498 1487 1529 1619 1669 3.64Nug18 1930 1554 1656 1663 1705 1798 1852 4.04Nug20 2570 2057 2173 2196 2254 2380 2451 4.63Nug21 2438 1833 2008 1979 2055 2244 2323 4.72Nug22 3596 2483 2834 2966 3080 3372 3440 4.34Nug24 3488 2676 2857 2960 3028 3217 3310 5.10Nug25 3744 2869 3064 3190 3272 3438 3535 5.58Nug27 5234 3701 n.a. 4493 n.a. 4887 4965 5.14Nug28 5166 3786 n.a. 4433 n.a. 4780 4901 5.13Nug30 6124 4539 4785 5266 5365 5651 5803 5.24Further bran
hing experiments are done on the Nugent set of problems.Sin
e the Nugxx instan
es possess inherent symmetries due to their distan
ematri
es, only four subproblems are to be 
onsidered in the �rst level of Nug12problem and six subproblems in the �rst level of Nug15 problem. With Nugxx.jwe denote jth \
hild" problem obtained by setting xj1 = 1. Table 7 gives resultsfor the �rst level in the bran
hing tree of Nug12. The �rst 
olumn 
ontains again
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 AssignmentProblem Using the Bundle Method 13Table 4. Comparing bounds for QAPLIB instan
es IIOPT GLB KCCEB PB QPB1 QAPR2 QAPR3 gap(%)Rou12 235528 202272 223543 200024 206102 219018 223680 5.03Rou15 354210 298548 323589 296705 303777 220567 333287 5.91Rou20 725522 599948 641425 597045 607822 641577 663833 8.50S
r12 31410 27858 29538 4727 8585 23844 29321 6.65S
r15 51140 44737 48547 10355 12479 41881 48836 4.51S
r20 110030 86766 94489 16113 23960 82106 94998 13.90Tai12a 224416 195918 220804 193124 199597 215241 222784 0.73Tai15a 388214 327501 351938 325019 330310 349179 364761 6.04Tai17a 491812 412722 441501 408910 416033 440333 451317 8.23Tai20a 703482 580674 616644 575831 585139 617630 637300 9.41Tai25a 1167256 962417 1005978 956657 983456 1008248 1041337 10.79Tai30a 1818146 1504688 1565313 1500407 1518059 1573580 1652186 9.13Tho30 149936 90578 99855 119254 124684 134368 136059 9.26Table 5. QAPR3 bounds in dependen
e of number of iterations of the bundle algorithmexa
t 10 it. 20 it. 50 it. 100 it. 200 it. 300 it.Nug20 2570 1519 2070 2276 2412 2451 2451Nug21 2438 1163 1935 2122 2253 2320 2323Nug22 3596 1590 2757 3107 3370 3434 3440Nug24 3488 1214 2553 2953 3193 3302 3310Nug25 3744 1994 2880 3194 3394 3527 3535Nug27 5234 464 3441 4399 4767 4946 4965Nug28 5166 197 3664 4115 4580 4869 4901Nug30 6124 416 3277 4957 5249 5715 5803the problem instan
es. The remaining 
olumns give exa
t solution, QAP2, andQAP3 bounds, respe
tively.Figure 2 shows that in the �rst level of the bran
hing tree for Nug15, all\
hild" problems ex
ept Nug15.1 are fathomed. Our 
omputations of all \
hild"problems of Nug15.1 (196 sin
e there is no symmetry) resulted with only 14 notfathomed problems (see Figure 2). Hen
e, we have proved the optimal solutionof Nug15 problem in the se
ond level of the bran
hing tree.Tables 8 and 9 present the bounds in the �rst level of the bran
hing tree forNug20 and Nug30.It is instru
tive to look at the relative gap of these bounds at the root andthe �rst level of bran
hing. In Figure 3 we plot the results for Nug20 and Nug30and show the deviation in % from the integer optimum. For Nug20, the �rst levelof bran
hing redu
es the initial gap of 4.6% to 3% or lower. Turning to Nug30,we see that the initial gap of 5.2 % goes down to below 4% after bran
hing. We
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Fig. 1. QAPR3 bounds in dependen
e of number of iterations of the bundle algorithmTable 6. Results for the �rst level in the bran
hing tree for Had12exa
t PB QPB QAP3Had12 1652 1573 1592 1643Had12.1 1674 1593 1629 1673Had12.2 1690 1590 1639 1680Had12.3 1652 1573 1607 1652Had12.4 1662 1585 1616 1656Had12.5 1696 1608 1647 1694Had12.6 1706 1616 1649 1696Had12.7 1714 1601 1656 1705Had12.8 1654 1566 1610 1653Had12.9 1660 1573 1617 1655Had12.10 1672 1605 1628 1670Had12.11 1694 1601 1641 1690Had12.12 1700 1618 1656 1699



Bounds for the Quadrati
 AssignmentProblem Using the Bundle Method 15Table 7. Results for the �rst level in the bran
hing tree for Nug12exa
t QAP2 QAP3Nug12 578 529 557Nug12.1 586 551 578Nug12.2 586 551 577Nug12.5 578 552 575Nug12.6 600 556 584
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Fig. 2. First and se
ond level in the bran
hing tree for Nug15
onsider this a very promising feature of the relaxation for use in a Bran
h andBound framework.5. Con
luding remarksWe have shown that a basi
 semide�nite relaxation of QAP, 
ombined with thebundle method, yields very good approximations to the relaxations QAPR2 andQAPR3 whi
h are 
urrently the strongest bounds available for QAP.



16 Franz Rendl, Renata SotirovTable 8. Results for the �rst level in the bran
hing tree for Nug20exa
t QAP2 QAP3Nug20 2570 2380 2451Nug20.1 2612 2449 2518Nug20.2 2570 2420 2488Nug20.3 2586 2421 2487Nug20.6 2592 2427 2501Nug20.7 2584 2420 2491Nug20.8 2604 2419 2502Table 9. Results for the �rst level in the bran
hing tree for Nug30QAP2 QAP3Nug30 5568 5803Nug30.1 5809 5939Nug30.2 5771 5895Nug30.3 5756 5881Nug30.7 5767 5900Nug30.8 5750 5885Nug30.9 5756 5891Nug30.13 5756 5896Nug30.14 5750 5883Nug30.15 5768 5889Further improvement is possible to speed up the bundle iterations. We havenot exploited the fa
t that in the 
ourse of the iterations, there are only verysmall 
hanges in the dual variables, hen
e the primal 
ost fun
tion 
hanges onlyslightly. Using sensitivity theory, it should be possible to warm-start the fun
tionevaluation, rather than solving the basi
 SDP from s
rat
h in ea
h iteration, aswe do now.Finally, the bundle method provides estimates of the dual variables 
orre-sponding to the sign 
onstraints. This information may be useful to guide thebran
hing pro
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