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Mathematial Programming manusript No.(will be inserted by the editor)Franz Rendl, Renata Sotirov ?Bounds for the Quadrati AssignmentProblem Using the Bundle Methodthe date of reeipt and aeptane should be inserted laterAbstrat. Semide�nite Programming (SDP) has reently turned out to be a very power-ful tool for approximating some NP-hard problems. The nature of the Quadrati AssignmentProblem suggests SDP as a way to derive tratable relaxations. We reall some SDP relax-ations of QAP and solve them approximately using the Bundle Method. The omputationalresults demonstrate the eÆieny of the approah. Our bounds are the urrently strongest onesavailable for QAP. We investigate their potential for Branh and Bound settings by lookingalso at the bounds in the �rst levels of the branhing tree.Key Words. quadrati assignment problem, semide�nite programming relax-ation, bundle method, interior point method.AMS Subjet Classi�ations. 90C22, 90C27, 90C57, 90C51; Seondary 90C06.1. IntrodutionThe Quadrati Assignment Problem (QAP) was introdued in 1957 by Koop-mans and Bekmann as a model for loation problems, that takes into aountthe ost of plaing a new faility on a ertain site as well as the interation withother failities. Nowadays, the QAP is widely onsidered as a lassial ombi-natorial optimization problem. The QAP is also known as a generi model forvarious real{life problems, see C�ela [6℄ for a list of appliations.Let A;B and C be real n� n matries, and � the set of n� n permutationmatries. (We assume n � 3 to avoid trivialities.) The QAP an be stated asfollows (QAP) �� := minX2� tr (AXBT + C)XT : (1)The formulation (1) is alled the trae formulation and it was introdued byEdwards in 1977. A QAP is alled symmetri, if both matries A and B aresymmetri. Throughout we assume that A and B are symmetri. The QAP isUniversity of KlagenfurtDepartment of MathematikA - 9020 Klagenfurt, Austria? Finanial support from the Projet P12660-MAT, (Austrian Siene Foundation FWF),until 2001 is gratefully aknowledged. In addition we thank Gerhard Woeginger for furthersupport by START program Y43{MAT (again FWF) during 2002. Finally we thank the Uni-versity of Klagenfurt for a sholarship during the aademi year 2002/2003.



2 Franz Rendl, Renata Sotirovwell known to be an NP{hard ombinatorial optimization problem (Sahni andGonzales [21℄) and even �nding an �{approximation of QAP is an NP{hardproblem.Branh and Bound (B&B) algorithms are among the most suessful ap-proahes to get optimal solutions for a ombinatorial optimization problem. Thehoie of the bounding method is the most important fator in the performaneof B&B methods. The �rst B&B algorithms for QAP utilize the well knownGilmore{Lawler bound that is heap to ompute but in general not very tight.It is known (see [7℄) that the time needed to solve a problem using the B&Balgorithm based on the Gilmore{Lawler bound inreases with a fator four ifthe problem dimension is inreased by one. Stronger lower bounds for the QAPinlude bounds based on linear programming relaxations and are used by Adamsand Johnson [1℄, by Resende et al. [20℄, and by Hahn et al. [13,14℄. Eigenvalue{based bounds are investigated by Finke et al. [8℄, Hadley et al. [12℄, and Rendland Wolkowiz [19℄.The reent developments in algorithms as well as in omputational platformshave resulted in a large improvement in the apability to solve QAPs exatly.Anstreiher et al. [4℄ made a break{through by solving a number of previously{unsolved large QAPs from QAPLIB [5℄, inluding the Nug30, Kra30b and Tho30problems. They inorporated a quadrati programming bound (QPB) that wasintrodued by Anstreiher and Brixius in [3℄, into a branh and bound frame-work. and were running their branh and bound algorithm on a omputationalgrid, see [10℄. Their omputations are onsidered to be among the most extensiveomputations ever performed to solve disrete optimization problems. The om-putational work to solve a problem of size n = 30 (Nug30) took the equivalentof nearly 7 years of omputation time on a single HP9000 C3000 workstation,see [4℄. A summary of reent advanes in the solution of QAP by B&B is givenin the survey artile by Anstreiher [2℄.In this paper, we reall semide�nite programming (SDP) relaxations of QAP.Semide�nite programming studies [16,18,24℄ show that it is a very promisingmethod for providing tight relaxations for hard ombinatorial problems, notablyQAP. In Setion 2, we reall and summarize the approah from [24℄ to derive SDPrelaxations for QAP. All relaxations are formulated in the spae of symmetrimatries of order (n � 1)2 + 1. The simplest relaxation has n2 + 1 equalityonstraints. Two further re�nements of this relaxation are obtained by (�rst)inluding O(n3) additional equations and then O(n4) sign onstraints. Standardinterior-point methods are not adequate to solve these latter models.In Setion 3, we propose a variant of the bundle method to solve these re-laxations at least approximately with reasonable omputational e�ort. Usingour version of the bundle method, we ompute bounds of our relaxations forsome of the instanes from QAPLIB [5℄. The omputational results presentedin Setion 4 demonstrate the eÆieny of ombining the basi SDP relaxationwith the bundle method. The resulting lower bounds are the urrently strongestbounds for QAP. We also show how these bounds behave in the �rst levels of theBranh and Bound tree. Smaller problems (n � 15) lead to branhing trees withonly a few dozen nodes. For larger problems, the redution of the gap between



Bounds for the Quadrati AssignmentProblem Using the Bundle Method 3bound and integer solution going from the root problem to the �rst level of thebranhing tree is still signi�ant. This makes the present bounds potential newandidates for use in Branh and Bound methods.Notation. The spae of k � k real matries is denoted by Mk, and thespae of k� k symmetri matries is denoted by Sk. We use tr(A) to denote thetrae of a square matrix A. The spae of symmetri matries is onsidered withthe trae inner produt hA;Bi = tr(AB). For A;B 2 Sk, A � 0 (resp.A � 0)denotes positive semide�niteness (resp. positive de�niteness), and A � B denotesA � B � 0. For two matries A;B 2 Mk, A � B, (A > B) means aij � bij ,(aij > bij) for all i; j.For X 2 Mk, ve(X) denotes the vetor in IRk2 that is formed from theolumns of the matrix X . The onnetion between operators ve and tr is givenwith the following relation; see e. g. [11℄,tr(AB) = (ve(AT ))T veB; A;B 2Mk: (2)Diag(x) is the diagonal matrix with diagonal entries equal to the omponents ofx, and onversely, diag(X) is the vetor of the diagonal elements of the matrixX . Diag(x) is the adjoint operator of diag(X).The Hadamard produt of two matries U = (uij) and V = (vij) of the samesize is denoted by U Æ V , (U Æ V )ij = uij � vij for all i; j. The Kroneker produtof matries A and B isA
B = (aijbkl) = (aijB) 8i; j; k; l;i. e. the matrix formed from all possible produts of elements from A and B.The following identity will be used several times, see e. g. [11℄,ve(AXB) = (BT 
A)ve(X): (3)We use ei to denote the olumn i of the identity matrix, e is the vetor witheah omponent equal to one, and E = eeT denotes the matrix of ones. Whenthere is no onfusion with the unit vetors ei, we use en to indiate the size ofthe vetor of all ones.2. SDP Relaxations of QAPIn this setion we summarize and simplify the approah from [24℄ to get SDPrelaxations for QAP. The key idea is to reformulate the problem in terms ofx = ve(X) and linearize the quadrati term xxT in the ost funtion.In order to rewrite the ost funtion from QAP we use (2) and (3) and obtainthe following form of the objetive funtiontr (AXB + C)XT = hx; ve(AXB + C)i = xT (B 
 A)x+ xT ;where x = ve(X) and  = ve(C). Therefore QAP beomesminfxT (B 
A)x+ xT  : x = ve(X); X 2 �g; (4)



4 Franz Rendl, Renata Sotirovwhih is equivalent tominftr(B 
 A+Diag())xxT : x = ve(X); X 2 �g;beause Tx = T (x Æx) = trDiag()(xxT ). To derive semide�nite relaxations ofQAP we linearize the objetive funtion and obtain the following feasible set ofQAP. P := onvfxxT : x = ve(X); X 2 �g:In order to obtain tratable relaxations for QAP we need to approximate theset P by larger sets ontaining P . We �rst impose a semide�niteness onstrainton elements Y 2 P . The verties Y of P satisfy the (nonlinear and nononvex)onstraint Y�diag(Y )diag(Y )T = 0, whih we weaken to Y �diag(Y )diag(Y )T �0. This ondition is well known to be equivalent to the onvex onstraint� 1 ~yT~y Y � � 0; ~y = diag(Y ): (5)We next exploit the fat that the row and olumn sums of permutation matriesare one.Lemma 1 [12℄ Let V be an n�(n�1)matrix with V T e = 0 and rank(V ) = n�1.Then �X 2Mn : Xe = XT e = e	 = � 1neeT + VMV T :M 2 Mn�1� :Matrix V from the previous Lemma ould be any basis of e?. Our hoie forV is V =  In�1�eTn�1! : (6)The following Lemma gives some more struture of the elements in P .Lemma 2 Let Y 2 P and W := � 1ne
 e; V 
 V � ;where V is given in (6). Then there exists a symmetri matrix R of order (n�1)2 + 1, indexed from 0 to (n� 1)2, suh thatR � 0; R00 = 1 and Y =WRW T :Proof. (See also [24℄.) First we look at the extreme points of P . Let Y be oneof them, i.e. Y = xxT for some permutation matrix X . From Lemma 1 it followsthat for the permutation matrix X there exists some matrix M 2 Mn�1 suhthat X = 1neeT + VMV T . With the use of (3), we getx = ve(X) = 1n (e
 e) + (V 
 V )m =Wz;



Bounds for the Quadrati AssignmentProblem Using the Bundle Method 5where m = ve(M) and z = � 1m�. NowY = xxT =WzzTW T =WRW T ;with R = zzT . Hene, R is symmetri positive semide�nite and R00 = 1. Thesame holds for onvex ombinations formed from several permutation matries.Lemma 2 and ondition (5) suggest the following set P̂ ontaining P .P̂ := fY 2 Sn2 : 9R s.t. R � 0; R00 = 1; Y =WRW T ;~y = diag(WRW T );� 1 ~yT~y WRW T � � 0g:In [24℄ it is shown that P̂ has interior points. For instaneR̂ = �1 00 1n2(n�1) (nIn�1En�1)
 (nIn�1En�1)� � 0is suh that WR̂W T is the baryenter of P , i. e.WR̂W T = 1n! Xx2� �xxT � :We arrive at the basi SDP relaxation of QAP(QAPR1) minftr (B 
A+Diag())Y : Y 2 P̂g:We an eliminate the matrix variable Y and formulate QAPR1 with the matrixvariable R. For that purpose, we de�ne the following set:R = fR 2 S(n�1)2+1 : R � 0; R00 = 1; ~y = diag(WRW T );� 1 ~yT~y WRW T � � 0g:Note that this set is de�ned by n2+1 equality onstraints of very simple struturein addition to the semide�niteness onstraint. If we de�neL :=W T (B 
A+Diag())W 2M(n�1)2+1; (7)then QAPR1 is equivalent to(QAPR1) ��1 := minftr LR : R 2 Rg:Unfortunately this relaxation is in general very weak. In Table 1 we give solutionsof this relaxation for some Nugent instanes from QAPLIB [5℄ omputed by theprimal-dual path-following interior{point method, and orresponding runningtimes. The omputation times are obtained using an Athlon XP with 1800 GHz.Sine all data for these problems are nonnegative, a trivial bound on �� is �� � 0.In view of this, ��1 an not be onsidered a serious approximation of QAP.



6 Franz Rendl, Renata SotirovTable 1. Solutions of relaxation QAPR1 for Nugent instanes and orresponding omputationtimes Nug12 Nug15 Nug20 Nug25 Nug30��1 -216 -823 -2073 -4683 -10965time (seonds) 1.1 4.16 19.4 69.3 198.8QAPR1 exploits the fat that matries of order n with onstant row andolumn sums have essentially only (n � 1)2 degrees of freedom (see Lemma 1),and that xij 2 f0; 1g gives (5).To improve the relaxation we need to inlude further onstraints, whih arevalid for permutation matries. We next exploit the fat thatxijxik = xjixki = 0 for j 6= k;holds for the permutation matrix X = (xrs).To express the zero pattern, we index the elements of the matrix Y 2 P byyr;s = Y(i;j)(k;l) for r; s 2 f1; : : : ; ng � f1; : : : ; ng; i; j; k; l 2 f1; : : : ; ng. The zeropattern is overed by the following equalities:yrs = 0 for r = (i; j); s = (i; k); or r = (j; i); s = (k; i); j 6= k:We ollet all these equalities in the onstraint G(WRW T ) = 0 whih is repre-sented by the set G := fR : R 2 S(n�1)2+1; G(WRW T ) = 0g:We strengthen the relaxation QAPR1 by adding this new set of equalities andarrive at the tighter model(QAPR2) ��2 := minftr LR : R 2 R \ Gg;that ontains additional O(n3) equations, n3 � n2 to be preise. Model QAPR2is introdued in [24℄ as the Gangster model. In Table 2 we give results of somenumerial experiments. The �rst olumn lists some of the larger Nugent instanesfrom QAPLIB [5℄. The number in the name of the problem refers to the size ofthe problem. The seond olumn ontains the value of the optimal solution ofQAP. In the third olumn we provide the solutions of the relaxation QAPR2using the interior-point method. The number of onstraints is too big to bemanageable by a standard PC. These results were obtained in ollaborationwith Henry Wolkowiz in 2001 by use of the NEOS Server for Optimization.The mahine that was used at NEOS was a Sun E6500 server with 24 proessorsand 24 GB of memory. All proessors were 400MHz Spar2. The fourth olumnontains the running times required for one single interior{point iteration of thealgorithm. Nug30 was solved with the CSDP solver and the algorithm needed36 iterations. The solution was obtained after about 1400 hours.The results show that QAPR2 provides very tight approximations of ��, butit beomes also quite lear that the interior{point method is not appropriate forsolving this relaxation.



Bounds for the Quadrati AssignmentProblem Using the Bundle Method 7Table 2. Solutions of relaxation QAPR2 obtained by the interior-point method (using NEOS)and by the bundle method with orresponding omputation times for one iteration of thealgorithms. The interior{point method needs about 20 iterations, the bundle method about300 iterations. interior{point bundleexat ��2 time bound on ��2 timeNug20 2570 2386 1 h 7' 2380 15.11 "Nug21 2438 2253 1 h 45' 2244 18.56 "Nug22 3596 3396 2 h 41' 3372 22.01 "Nug24 3488 3235 6 h 3217 35.44 "Nug25 3744 3454 8 h 48' 3438 44.49 "Nug30 6124 5695 39 h 5651 122.35 "The relaxation QAPR2 an be further tightened by adding nonnegativityonstraints (WRW T )rs � 0; 8r; s = 1; : : : ; n2: (8)We ollet the inequalities (8) whih are not yet overed by G(WRW T ) = 0 inthe onstraint N(WRW T ) � 0. Let us de�ne the setN := fR : R 2 S(n�1)2+1; N(WRW T ) � 0g:We arrive at the �nal relaxation, also introdued in [24℄:(QAPR3) ��3 := minftr LR : R 2 R \ G \ Ng:The resulting SDP has O(n4) sign onstraints and O(n3) equality onstraints.The relaxation QAPR3 an not be solved straightforward by interior{point meth-ods for interesting instanes (n � 15).Finally, we mention that further re�nements of our approximations to �� arepossible. The fat that P is generated by 0�1 vetors x = ve(X) would suggestto inlude the triangle inequalities0 � yrs � yrr; yrr + yss � yrs � 1;�ytt � yrs + yrt + yst � 0; ytt + yrr + yss � yrs � yrt � yst � 0;whih hold for all distint triples (r; s; t). This gives an additional O(n6) on-straints. Sine we �nd it already extremely diÆult to approximate QAPR3 , wewill not pursue this latest relaxation any further, and leave it for future researh.Table 2 shows two things. First the bound QAPR2 yields a drasti im-provement ompared to QAPR1 and seondly lassial interior{point methodsare highly ineÆient to ompute this bound. We now show how we an avoidstraight interior{point methods by introduing the bundle method to deal withG(WRW T ) = 0; N(WRW T ) � 0.



8 Franz Rendl, Renata Sotirov3. The Bundle Method to solve the RelaxationsInterior{point methods are very useful and reliable solution methods for semidef-inite programs of moderate size, but we have just seen that for QAPR2 andQAPR3 they are not pratial. In order to eÆiently ompute lower bounds ofthese relaxations, we need a method that is apable to deal with a huge num-ber of onstraints. The bundle method turns out to be a onvenient method forthis purpose. It dates to the 1970's (see e. g. [15,22,25℄) and it was originallydeveloped to minimize a nonsmooth onvex funtion f() over  2 IRn. Thefuntion f is assumed to be given by an orale whih, for some input  returnsthe funtion value f() and vetor g ontained in the subdi�erential of f at; g 2 �f().To de�ne f , we dualize the \hard onstraints"G(WRW T ) = 0 and N(WRW T ) � 0;and maintain expliitly only the onstraints fromR. Introduing Lagrange multi-pliers 0 and 00 � 0 for the equations and nonnegativity onstraints respetively,the Lagrangian isL(R; ) = tr LR+ (0)TG(WRW T )� (00)TN(WRW T );where  = (0; 00).Now we de�nef() := minR2R L(R; ) = minR2R hL+W T (GT (0)�NT (00))W;Ri; (9)and the relaxation QAPR3 is equivalent tomax2� f(); (10)where � := f(0; 00) : 00 � 0g. The problem (10) is also diÆult to solve diretly,but weak duality shows that for any  2 � we have f() � ��3 � ��, hene anyfeasible solution  gives a lower bound on ��. (It is our goal to approximate ��3as lose as possible.) Note that for some  the evaluation of f() amounts tosolving an SDP of the form QAPR1 , whih an be done reasonably fast.We follow now the idea of the bundle method from [9℄. For the start of thealgorithm we take some initial , for instane  = 0, and ompute R from (9). Apair (;R) is alled a mathing pair for f , if f() = L(R; ). Let � = (0�; 00�).If (�; R�) is a mathing pair for f then gG(0�) = G(WR�W T ) is a subgradientof f at 0�, and gN (00�) = �N(WR�W T ) is a subgradient of f at 00�. Wedenote a urrently best approximation to the maximizer of f with ̂ = (̂0; ̂00).In a general step, we assume to have �R = (R1; : : : ; Rk) and ̂ := k, with(̂; Rk) a mathing pair. For eah Ri we alulate the orresponding subgradientsgGi and gNi , and form matries GG = (gG1 ; : : : ; gGk ) and GN = (gN1 ; : : : ; gNk ). Let� = (�1; : : : ; �k)T , � = f� : � � 0; eT� = 1g, and F = (tr(LR1); : : : ; tr(LRk))T .



Bounds for the Quadrati AssignmentProblem Using the Bundle Method 9The goal is to approximate the funtion f() in the neighborhood of the urrentiterates reasonable well. The funtion f() is approximated byfappr() = min�2� hL+W T (GT (0)�NT (00))W; kXi=1 �iRii= min�2� kXi=1 �i hL; Rii+ h0; kXi=1 �iG(WRiW T )i�h00; kXi=1 �iN(WRiW T )i= min�2� F T�+ (0)TGG�+ (00)TGN�: (11)Sine fappr is built of loal information from the previous iterates, in orderto preserve a reasonable quality of the approximations we should stay in theviinity of the urrent point ̂. Therefore we use the proximal point idea and adda penalty term for the displaement from the urrent point. We now determine anew andidate  = (0; 00) 2 � from the urrent iterate ̂ = (̂0; ̂00) by solvingthe onave problem max2� fappr()� 12t jj � ̂jj2; (12)where t > 0 is a parameter that has to be hosen by the user. Substituting (11)into the maximization problem (12), we obtain the optimization problemmax2� min�2� F T�+ (0)TGG�+ (00)TGN�� 12t jj � ̂jj2= min�2�; ��0 max F T�+ (0)TGG�+ (00)TGN�+ (00)T � � 12t jj � ̂jj2: (13)First{order optimality onditions for the inner maximization in (13) are��0 (�) = 0 , GG�� 1t (0 � ̂0) = 0, 0 = ̂0 + tGG�; (14)��00 (�) = 0 , GN�� 1t (00 � ̂00) + � = 0, 00 = ̂00 + t(� +GN�): (15)We now insert equations for 0 and 00 obtained in (14) and (15) respetively,into (13) and obtain the optimization problemmin� 2 �� � 0 t2 jjGG�jj2+ t2 jjGN�+�jj2+ hF +(̂0)TGG+(̂00)TGN ; �i+ ĥ00; �i: (16)The minimization problem (16) an be easily solved if one set of the variablesis kept onstant, see [9,23℄. Keeping � onstant results in a onvex quadrati



10 Franz Rendl, Renata Sotirovproblem in �, whih an be easily solved by the interior{point method. Keeping� onstant in the minimization problem (16) results inmin��0 t2h�; �i+ th�;GN�i+ ĥ00; �i:This problem an be solved oordinatewise. Thus we start with � = 0, solve for� whih we then keep onstant to solve for � and iterate this proess severaltimes to get (approximate) solutions �; � of (16). Using these estimates � and� in (14) and (15) we arrive with the next trial point test = (0test; 00test). To�nish one iteration, we need to evaluate the funtion f at the new point test,whih amounts to solving an SDP of the form QAPR1 . This is in fat the mosttime-onsuming operation in eah iteration of the bundle method. Finally, itshould be mentioned that the asymptoti onvergene of this approah is ratherslow, so we set as an additional stopping ondition a maximum number of bundleiterations, whih we have set somewhat arbitrarily to 300. The �nal bound istherefore only a lower approximation to either ��2 or ��3. For a more detailedsurvey of the bundle method see [9,15,23℄.To see how good the bundle method approximates ��2, we provide some rep-resentative results in Table 2. In the �fth olumn of Table 2 we give the boundof relaxation QAPR2 for di�erent Nugent instanes omputed with the bundlemethod. The sixth olumn shows the running time required for one single itera-tion of the bundle algorithm (on our PC). We onlude that the bundle methodapproximates the true value ��2 reasonably well, at signi�antly smaller ompu-tational ost. We do not have a similar omparison for QAPR3 , beause we donot know how to solve this relaxation exatly for problems of interesting size.4. Computational ResultsIn this Setion we present omputational results. First, we ompare the lowerbounds QAPR2 and QAPR3 obtained with the bundle method, with severalexisting bounding strategies. We use the same test problems as in [3℄ and [24℄.All instanes have no linear term, i. e. they are pure quadrati and they are takenfrom the urrent version of QAPLIB [5℄. We also investigate the lower boundsfor some QAPLIB instanes in the �rst and seond level of the branhing tree.The implementation of our bounds was done in MATLAB and performed on aPC (Athlon XP proessor 1800 GHz).4.1. Comparison With Other BoundsTables 3 and 4 ollet some instanes from QAPLIB [5℄, their optimum values,lower bounds from the literature, and our bounds. More preisely, the Tables 3and 4 read as follows. The �rst olumn gives the problem instanes and theirsizes, e. g. Had30 refers to the Hadley instane of the size 30. In the seond ol-umn we provide the optimum value for eah instane. The remaining olumns



Bounds for the Quadrati AssignmentProblem Using the Bundle Method 11give lower bounds in the following order: GLB is the Gilmore{Lawler bound;KCCEB is the dual LP{based bound from [17℄; PB is the projeted eigenvaluebound from Hadley, Rendl and Wolkowiz [12℄, and QPB1 is the quadrati pro-gramming bound from Anstreiher and Brixius [3℄. The last two olumns presentthe bounds QAPR2 and QAPR3 that are desribed in Setion 2 and omputedby the bundle method. 'n. a.' means that the value of the bound is not availablefor a partiular problem. All bounds are rounded up to the next integer.Tables 3 and 4 demonstrate the eÆieny of the relaxations QAPR2 andQAPR3 . These two relaxations were already proposed in [24℄. Here we proposea pratial way to approximate them within reasonable omputation time. TheTables show that the relaxation QAPR3 is urrently the strongest bound avail-able for QAP. The last olumn also gives the relative gap of this bound in %.This gap is often quite small, only a few perentage points. We also point outthat we get positive bounds on the Eshermann instanes Es16d and Es16i,where most of the other bounds are less than 0.The bounds QAPR2 and QAPR3 from Table 3 and 4 are obtained after 300 it-erations of the bundle algorithm. To give an impression how the bound improvesin the ourse of the bundle iterations, we present in Table 5 QAPR3 bounds forthe Nugent type instanes obtained after 10, 20, 50, 100, 200 and 300 bundleiterations. The results show that after fast initial progress (�rst 100 iterations),there is a strong tailing{o� e�et. Figure 1 gives a graphial representation ofthe results from Table 5. We have plotted the relative gap in % to the optimalvalue. Note the similar behavior for all instanes: after 50 iterations the gap isbelow 20 %, after 150 iterations it is below 10 %, and it approahes 5 % after300 iterations.4.2. The Bounds After BranhingFor the purpose of applying the bound QAPR3 within a branh and boundframework we investigate the e�et on the bound after �xing an assignmentxij = 1. A onsiderable growth of the bound by stepping down one level in thebranhing tree is a desirable feature for a bounding proedure in a Branh andBound setting. In order to evaluate the growth rate of QAPR3 , we �rst ompareour results for Had12 with results presented in [3℄. Table 6 gives lower boundsfor Had12 in the �rst level of the branhing tree. The �rst olumn lists theroot problem and all 12 hild problems. With Had12:j we denote jth \hild"problem obtained by setting x1j = 1; j = 1; : : : ; 12. The meaning of the restof the olumns is as follows; the seond olumn presents exat solutions of the\hild" problems; PB and QPB are projeted eigenvalue bound and quadratiprogramming bound respetively, and QAPR3 is the bound presented in Setion2. Table 6 shows that the performane of QPB is far superior to that of PB,and that the performane of QAPR3 is far superior to that of QPB. Note thatthe value of QPB is suÆient to fathom Had12.7 and Had12.12, but the valueof QAPR3 is suÆient to fathom all "hild" problems, proving optimality at the�rst level of the branhing tree.



12 Franz Rendl, Renata SotirovTable 3. Comparing bounds for QAPLIB instanes IOPT GLB KCCEB PB QPB1 QAPR2 QAPR3 gap (%)Es16a 68 38 41 47 55 49 59 13.24Es16b 292 220 274 250 250 275 288 1.37Es16 160 83 91 95 95 111 142 11.25Es16d 16 3 4 - 19 -19 -13 8 50.00Es16e 28 12 12 6 6 11 23 17.86Es16g 26 12 12 9 9 10 20 23.08Es16h 996 625 704 708 708 905 970 2.61Es16i 14 0 0 -25 -25 -22 9 35.71Es16j 8 1 2 -6 -6 -5 7 12.50Had12 1652 1536 1619 1573 1592 1639 1643 0.54Had14 2724 2492 2661 2609 2630 2707 2715 0.33Had16 3720 3358 3553 3560 3595 3675 3699 0.56Had18 5358 4776 5078 5104 5143 5282 5317 0.77Had20 6922 6166 6567 6625 6677 6843 6885 0.53Kra30a 88900 68360 75566 63717 68572 68526 77647 12.66Kra30b 91420 69065 76235 63818 69021 71429 81156 10.79Kra32 88700 67390 n.a. 59735 n.a. 75848 79659 10.19Nug12 578 493 521 472 482 528 557 3.63Nug14 1014 852 n.a. 871 891 958 992 2.17Nug15 1150 963 1033 973 996 1069 1122 2.43Nug16a 1610 1314 1419 1403 1448 1526 1570 2.48Nug16b 1240 1022 1082 1046 1071 1136 1188 4.19Nug17 1732 1388 1498 1487 1529 1619 1669 3.64Nug18 1930 1554 1656 1663 1705 1798 1852 4.04Nug20 2570 2057 2173 2196 2254 2380 2451 4.63Nug21 2438 1833 2008 1979 2055 2244 2323 4.72Nug22 3596 2483 2834 2966 3080 3372 3440 4.34Nug24 3488 2676 2857 2960 3028 3217 3310 5.10Nug25 3744 2869 3064 3190 3272 3438 3535 5.58Nug27 5234 3701 n.a. 4493 n.a. 4887 4965 5.14Nug28 5166 3786 n.a. 4433 n.a. 4780 4901 5.13Nug30 6124 4539 4785 5266 5365 5651 5803 5.24Further branhing experiments are done on the Nugent set of problems.Sine the Nugxx instanes possess inherent symmetries due to their distanematries, only four subproblems are to be onsidered in the �rst level of Nug12problem and six subproblems in the �rst level of Nug15 problem. With Nugxx.jwe denote jth \hild" problem obtained by setting xj1 = 1. Table 7 gives resultsfor the �rst level in the branhing tree of Nug12. The �rst olumn ontains again



Bounds for the Quadrati AssignmentProblem Using the Bundle Method 13Table 4. Comparing bounds for QAPLIB instanes IIOPT GLB KCCEB PB QPB1 QAPR2 QAPR3 gap(%)Rou12 235528 202272 223543 200024 206102 219018 223680 5.03Rou15 354210 298548 323589 296705 303777 220567 333287 5.91Rou20 725522 599948 641425 597045 607822 641577 663833 8.50Sr12 31410 27858 29538 4727 8585 23844 29321 6.65Sr15 51140 44737 48547 10355 12479 41881 48836 4.51Sr20 110030 86766 94489 16113 23960 82106 94998 13.90Tai12a 224416 195918 220804 193124 199597 215241 222784 0.73Tai15a 388214 327501 351938 325019 330310 349179 364761 6.04Tai17a 491812 412722 441501 408910 416033 440333 451317 8.23Tai20a 703482 580674 616644 575831 585139 617630 637300 9.41Tai25a 1167256 962417 1005978 956657 983456 1008248 1041337 10.79Tai30a 1818146 1504688 1565313 1500407 1518059 1573580 1652186 9.13Tho30 149936 90578 99855 119254 124684 134368 136059 9.26Table 5. QAPR3 bounds in dependene of number of iterations of the bundle algorithmexat 10 it. 20 it. 50 it. 100 it. 200 it. 300 it.Nug20 2570 1519 2070 2276 2412 2451 2451Nug21 2438 1163 1935 2122 2253 2320 2323Nug22 3596 1590 2757 3107 3370 3434 3440Nug24 3488 1214 2553 2953 3193 3302 3310Nug25 3744 1994 2880 3194 3394 3527 3535Nug27 5234 464 3441 4399 4767 4946 4965Nug28 5166 197 3664 4115 4580 4869 4901Nug30 6124 416 3277 4957 5249 5715 5803the problem instanes. The remaining olumns give exat solution, QAP2, andQAP3 bounds, respetively.Figure 2 shows that in the �rst level of the branhing tree for Nug15, all\hild" problems exept Nug15.1 are fathomed. Our omputations of all \hild"problems of Nug15.1 (196 sine there is no symmetry) resulted with only 14 notfathomed problems (see Figure 2). Hene, we have proved the optimal solutionof Nug15 problem in the seond level of the branhing tree.Tables 8 and 9 present the bounds in the �rst level of the branhing tree forNug20 and Nug30.It is instrutive to look at the relative gap of these bounds at the root andthe �rst level of branhing. In Figure 3 we plot the results for Nug20 and Nug30and show the deviation in % from the integer optimum. For Nug20, the �rst levelof branhing redues the initial gap of 4.6% to 3% or lower. Turning to Nug30,we see that the initial gap of 5.2 % goes down to below 4% after branhing. We
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Fig. 1. QAPR3 bounds in dependene of number of iterations of the bundle algorithmTable 6. Results for the �rst level in the branhing tree for Had12exat PB QPB QAP3Had12 1652 1573 1592 1643Had12.1 1674 1593 1629 1673Had12.2 1690 1590 1639 1680Had12.3 1652 1573 1607 1652Had12.4 1662 1585 1616 1656Had12.5 1696 1608 1647 1694Had12.6 1706 1616 1649 1696Had12.7 1714 1601 1656 1705Had12.8 1654 1566 1610 1653Had12.9 1660 1573 1617 1655Had12.10 1672 1605 1628 1670Had12.11 1694 1601 1641 1690Had12.12 1700 1618 1656 1699



Bounds for the Quadrati AssignmentProblem Using the Bundle Method 15Table 7. Results for the �rst level in the branhing tree for Nug12exat QAP2 QAP3Nug12 578 529 557Nug12.1 586 551 578Nug12.2 586 551 577Nug12.5 578 552 575Nug12.6 600 556 584
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Fig. 2. First and seond level in the branhing tree for Nug15onsider this a very promising feature of the relaxation for use in a Branh andBound framework.5. Conluding remarksWe have shown that a basi semide�nite relaxation of QAP, ombined with thebundle method, yields very good approximations to the relaxations QAPR2 andQAPR3 whih are urrently the strongest bounds available for QAP.



16 Franz Rendl, Renata SotirovTable 8. Results for the �rst level in the branhing tree for Nug20exat QAP2 QAP3Nug20 2570 2380 2451Nug20.1 2612 2449 2518Nug20.2 2570 2420 2488Nug20.3 2586 2421 2487Nug20.6 2592 2427 2501Nug20.7 2584 2420 2491Nug20.8 2604 2419 2502Table 9. Results for the �rst level in the branhing tree for Nug30QAP2 QAP3Nug30 5568 5803Nug30.1 5809 5939Nug30.2 5771 5895Nug30.3 5756 5881Nug30.7 5767 5900Nug30.8 5750 5885Nug30.9 5756 5891Nug30.13 5756 5896Nug30.14 5750 5883Nug30.15 5768 5889Further improvement is possible to speed up the bundle iterations. We havenot exploited the fat that in the ourse of the iterations, there are only verysmall hanges in the dual variables, hene the primal ost funtion hanges onlyslightly. Using sensitivity theory, it should be possible to warm-start the funtionevaluation, rather than solving the basi SDP from srath in eah iteration, aswe do now.Finally, the bundle method provides estimates of the dual variables orre-sponding to the sign onstraints. This information may be useful to guide thebranhing proess.Referenes1. W. P. Adams and T. A. Johnson. Improved Linear Programming{Based Lower Boundsfor the Quadrati Assignment Problem. in Proeedings of the DIMACS Workshop onQuadrati Assignment Problems, DIMACS Series in Disrete Mathematis and Theoret-ial Computes Sienes, Amerian Mathematial Soiety, 16:43-75, 1994.2. K. Anstreiher. Reent advanes in the solution of quadrati assignment problems. Math-ematial Programming B, 97:27{42, 2003.3. K. Anstreiher and N. Brixius. A New Bound for the Quadrati Assignment Problem Basedon Convex Quadrati Programming. Mathematial Programming, 89:341{357, 2001.
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