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Abstract. Semidefinite Programming (SDP) has recently turned out to be a very power-
ful tool for approximating some NP-hard problems. The nature of the Quadratic Assignment
Problem suggests SDP as a way to derive tractable relaxations. We recall some SDP relax-
ations of QAP and solve them approximately using the Bundle Method. The computational
results demonstrate the efficiency of the approach. Our bounds are the currently strongest ones
available for QAP. We investigate their potential for Branch and Bound settings by looking
also at the bounds in the first levels of the branching tree.

Key Words. quadratic assignment problem, semidefinite programming relax-
ation, bundle method, interior point method.
AMS Subject Classifications. 90C22,90C27,90C57,90C51; Secondary 90C06.

1. Introduction

The Quadratic Assignment Problem (QAP) was introduced in 1957 by Koop-
mans and Beckmann as a model for location problems, that takes into account
the cost of placing a new facility on a certain site as well as the interaction with
other facilities. Nowadays, the QAP is widely considered as a classical combi-
natorial optimization problem. The QAP is also known as a generic model for
various real-life problems, see Cela [6] for a list of applications.

Let A, B and C be real n X n matrices, and I the set of n X n permutation
matrices. (We assume n > 3 to avoid trivialities.) The QAP can be stated as
follows

(QAP) pu*:= min tr (AXBT + 0)x™. (1)

The formulation (1) is called the t¢race formulation and it was introduced by
Edwards in 1977. A QAP is called symmetric, if both matrices A and B are
symmetric. Throughout we assume that A and B are symmetric. The QAP is
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well known to be an NP-hard combinatorial optimization problem (Sahni and
Gonzales [21]) and even finding an e—approximation of QAP is an NP-hard
problem.

Branch and Bound (B&B) algorithms are among the most successful ap-
proaches to get optimal solutions for a combinatorial optimization problem. The
choice of the bounding method is the most important factor in the performance
of B&B methods. The first B&B algorithms for QAP utilize the well known
Gilmore-Lawler bound that is cheap to compute but in general not very tight.
It is known (see [7]) that the time needed to solve a problem using the B&B
algorithm based on the Gilmore-Lawler bound increases with a factor four if
the problem dimension is increased by one. Stronger lower bounds for the QAP
include bounds based on linear programming relaxations and are used by Adams
and Johnson [1], by Resende et al. [20], and by Hahn et al. [13,14]. Eigenvalue—
based bounds are investigated by Finke et al. [8], Hadley et al. [12], and Rendl
and Wolkowicz [19].

The recent developments in algorithms as well as in computational platforms
have resulted in a large improvement in the capability to solve QAPs exactly.
Anstreicher et al. [4] made a break—through by solving a number of previously—
unsolved large QAPs from QAPLIB [5], including the Nug30, Kra30b and Tho30
problems. They incorporated a quadratic programming bound (QPB) that was
introduced by Anstreicher and Brixius in [3], into a branch and bound frame-
work. and were running their branch and bound algorithm on a computational
grid, see [10]. Their computations are considered to be among the most extensive
computations ever performed to solve discrete optimization problems. The com-
putational work to solve a problem of size n = 30 (Nug30) took the equivalent
of nearly 7 years of computation time on a single HP9000 C3000 workstation,
see [4]. A summary of recent advances in the solution of QAP by B&B is given
in the survey article by Anstreicher [2].

In this paper, we recall semidefinite programming (SDP) relaxations of QAP.
Semidefinite programming studies [16,18,24] show that it is a very promising
method for providing tight relaxations for hard combinatorial problems, notably
QAP. In Section 2, we recall and summarize the approach from [24] to derive SDP
relaxations for QAP. All relaxations are formulated in the space of symmetric
matrices of order (n — 1) + 1. The simplest relaxation has n® + 1 equality
constraints. Two further refinements of this relaxation are obtained by (first)
including O(n?) additional equations and then O(n*) sign constraints. Standard
interior-point methods are not adequate to solve these latter models.

In Section 3, we propose a variant of the bundle method to solve these re-
laxations at least approximately with reasonable computational effort. Using
our version of the bundle method, we compute bounds of our relaxations for
some of the instances from QAPLIB [5]. The computational results presented
in Section 4 demonstrate the efficiency of combining the basic SDP relaxation
with the bundle method. The resulting lower bounds are the currently strongest
bounds for QAP. We also show how these bounds behave in the first levels of the
Branch and Bound tree. Smaller problems (n < 15) lead to branching trees with
only a few dozen nodes. For larger problems, the reduction of the gap between
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bound and integer solution going from the root problem to the first level of the
branching tree is still significant. This makes the present bounds potential new
candidates for use in Branch and Bound methods.

Notation. The space of k x k real matrices is denoted by My, and the
space of k X k symmetric matrices is denoted by Si. We use tr(A) to denote the
trace of a square matrix A. The space of symmetric matrices is considered with
the trace inner product (A, B) = tr(AB). For A,B € S, A = 0 (resp. A = 0)
denotes positive semidefiniteness (resp. positive definiteness), and A > B denotes
A — B » 0. For two matrices A,B € My, A > B, (A > B) means a;; > b;j,
(ai; > by;) for all 4, 5.

For X € My, vec(X) denotes the vector in RR* that is formed from the
columns of the matrix X. The connection between operators vec and tr is given
with the following relation; see e.g. [11],

tr(AB) = (vec(AT))TvecB, A,B € M,,. (2)

Diag(z) is the diagonal matrix with diagonal entries equal to the components of
x, and conversely, diag(X) is the vector of the diagonal elements of the matrix
X. Diag(x) is the adjoint operator of diag(X).

The Hadamard product of two matrices U = (u;;) and V' = (v;;) of the same
size is denoted by U oV, (U o V);; = uyj - vy for all ¢, j. The Kronecker product
of matrices A and B is

A® B = (aijb) = (aijB) Vi, j,k,l,

i.e. the matrix formed from all possible products of elements from A and B.
The following identity will be used several times, see e. g. [11],

vec(AX B) = (BT @ A)vec(X). (3)

We use e; to denote the column i of the identity matrix, e is the vector with
each component equal to one, and E = ee! denotes the matrix of ones. When
there is no confusion with the unit vectors e;, we use e, to indicate the size of
the vector of all ones.

2. SDP Relaxations of QAP

In this section we summarize and simplify the approach from [24] to get SDP
relaxations for QAP. The key idea is to reformulate the problem in terms of
x = vec(X) and linearize the quadratic term zz” in the cost function.

In order to rewrite the cost function from QAP we use (2) and (3) and obtain
the following form of the objective function

tr (AXB+ C)XT = (z,vec(AXB + C)) =21 (B® A)x + 27¢,
where z = vec(X) and ¢ = vec(C). Therefore QAP becomes

min{z? (B ® A)z + z’¢: = = vec(X), X € IT}, (4)
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which is equivalent to
min{tr(B ® A + Diag(c))zz” : = = vec(X), X € IT},

because ¢!z = ¢! (z o x) = trDiag(c)(zz?). To derive semidefinite relaxations of
QAP we linearize the objective function and obtain the following feasible set of
QAP.

P :=conv{zz! : z = vec(X), X € IT}.

In order to obtain tractable relaxations for QAP we need to approximate the
set P by larger sets containing P. We first impose a semidefiniteness constraint
on elements Y € P. The vertices Y of P satisfy the (nonlinear and nonconvex)
constraint ¥ —diag(Y)diag(Y)? = 0, which we weaken to Y —diag(Y)diag(Y)? =
0. This condition is well known to be equivalent to the convex constraint

(3% ) =0 o= diagr), 6)

We next exploit the fact that the row and column sums of permutation matrices
are one.

Lemma 1 [12] Let V be annx (n—1) matriz with Ve = 0 and rank(V) = n—1.
Then

1
{XGMn:Xe:XTe:e} = {—eeT+VMVT:M€Mn1}.
n

|
Matrix V from the previous Lemma could be any basis of e*. Our choice for

V is
b (6)
V= . 6
_6571

The following Lemma gives some more structure of the elements in P.

Lemma 2 LetY € P and
1
W = <—e®e,V®V> ,
n
where V is given in (6). Then there exists a symmetric matriz R of order (n —
1)2 + 1, indezed from 0 to (n — 1), such that
R*0, Rp=1andY = WRWT.

PROOF. (See also [24].) First we look at the extreme points of P. Let Y be one
of them, i.e. Y = zz” for some permutation matrix X. From Lemma 1 it follows
that for the permutation matrix X there exists some matrix M € M, _; such
that X = Lee? + VMVT. With the use of (3), we get

1
z = vec(X) = E(e®6)+(V®V)m:Wz,
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where m = vec(M) and z = (7711> Now

YV =2zl =wztw? =wRw?,

with R = z2”. Hence, R is symmetric positive semidefinite and Rgo = 1. The
same holds for convex combinations formed from several permutation matrices.
|

Lemma 2 and condition (5) suggest the following set P containing P.

P:={y eS8, 3R st. R=0, Rpp=1, Y = WRWT,

_ ~ (1 gt
§ = diag(WRWT), (17 WRWT | = 0}

In [24] it is shown that P has interior points. For instance

N 1 0
k= <0 m(nln—lEn—l) ® (nIn—lEn—1)> =0
is such that WRWT is the barycenter of P, i.e.

WRWT = % Z (:C:UT)

Czell

We arrive at the basic SDP relazation of QAP
(QAPR,) min{tr (B ® A + Diag(c))Y : Y € P}.

We can eliminate the matrix variable Y and formulate QAP with the matrix
variable R. For that purpose, we define the following set:

- . 1 i
R ={R€ Spn-1)241: R=0, Ryo =1, §j = diag(WRW"), <37 WIy%WT> = 0}

Note that this set is defined by n%+1 equality constraints of very simple structure
in addition to the semidefiniteness constraint. If we define

L:=W"(B® A + Diag(c))W € M(y_1)241, (7)
then QAP is equivalent to
(QAPg,) pi :=min{tr LR: Re€R}.

Unfortunately this relaxation is in general very weak. In Table 1 we give solutions
of this relaxation for some Nugent instances from QAPLIB [5] computed by the
primal-dual path-following interior—point method, and corresponding running
times. The computation times are obtained using an Athlon XP with 1800 GHz.
Since all data for these problems are nonnegative, a trivial bound on p* is p* > 0.
In view of this, u} can not be considered a serious approximation of QAP.
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Table 1. Solutions of relaxation QAP for Nugent instances and corresponding computation
times

Nugl2 Nugl5 Nug20 Nug25 Nug30
uy -216 -823 -2073 -4683  -10965
time (seconds) 1.1 4.16 19.4 69.3 198.8

QAPp, exploits the fact that matrices of order n with constant row and
column sums have essentially only (n — 1)? degrees of freedom (see Lemma, 1),
and that z;; € {0,1} gives (5).

To improve the relaxation we need to include further constraints, which are
valid for permutation matrices. We next exploit the fact that

TijTik = TjiTps =0 for j#Ek,

holds for the permutation matrix X = (z,s).

To express the zero pattern, we index the elements of the matrix Y € P by
Yrs = Yo forrys € {1,...,n} x {1,...,n}, i,5,k,1 € {1,...,n}. The zero
pattern is covered by the following equalities:

yrs =0 for r={(i,j),s = (i,k), or r={(j,i),s=(ki), j#k

We collect all these equalities in the constraint G(WRW?) = 0 which is repre-
sented by the set

G:={R:R€ S, 1211, GWRWT) =0}.

We strengthen the relaxation QAP by adding this new set of equalities and
arrive at the tighter model

(QAPg,) p3:=min{tr LR: R€ RNG},

that contains additional O(n*) equations, n® — n? to be precise. Model QAPg,
is introduced in [24] as the Gangster model. In Table 2 we give results of some
numerical experiments. The first column lists some of the larger Nugent instances
from QAPLIB [5]. The number in the name of the problem refers to the size of
the problem. The second column contains the value of the optimal solution of
QAP. In the third column we provide the solutions of the relaxation QAPg,
using the interior-point method. The number of constraints is too big to be
manageable by a standard PC. These results were obtained in collaboration
with Henry Wolkowicz in 2001 by use of the NEOS Server for Optimization.
The machine that was used at NEOS was a Sun E6500 server with 24 processors
and 24 GB of memory. All processors were 400MHz Sparc2. The fourth column
contains the running times required for one single interior—point iteration of the
algorithm. Nug30 was solved with the CSDP solver and the algorithm needed
36 iterations. The solution was obtained after about 1400 hours.

The results show that QAP g, provides very tight approximations of u*, but
it becomes also quite clear that the interior—point method is not appropriate for
solving this relaxation.
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Table 2. Solutions of relaxation QAP g, obtained by the interior-point method (using NEOS)
and by the bundle method with corresponding computation times for one iteration of the
algorithms. The interior—-point method needs about 20 iterations, the bundle method about
300 iterations.

interior—point bundle
exact  p3 time bound on u3 time
Nug20 2570 2386 1hT 2380 15.117”
Nug2l 2438 2253 1 h 45 2244 18.56 ”
Nug22 3596 3396 2 h 41’ 3372 22.01”
Nug24 3488 3235 6h 3217 35.44 7
Nug25 3744 3454 8 h 4% 3438 44.49”
Nug30 6124 5695 39 h 5651 122.35”

The relaxation QAPp, can be further tightened by adding nonnegativity
constraints

(WRWT),, >0, Vr,s=1,...,n% (8)

We collect the inequalities (8) which are not yet covered by G(WRWT) =0 in
the constraint N(WRW?) > 0. Let us define the set

N :={R:R€ Sy 1)241, N(WRWT) > 0}.
We arrive at the final relaxation, also introduced in [24]:
(QAPg,) p3:=minftr LR: RERNGNN}.

The resulting SDP has O(n*) sign constraints and O(n?) equality constraints.
The relaxation QAP can not be solved straightforward by interior-point meth-
ods for interesting instances (n > 15).

Finally, we mention that further refinements of our approximations to pu* are
possible. The fact that P is generated by 0—1 vectors = vec(X) would suggest
to include the triangle inequalities

0 S Yrs S Yrry Yrr + Yss — Yrs S ]-7

—Ytt — Yrs + Yrt + Yst S 07 Yit + Yrr + Yss — Yrs — Yrt — Yst S 07

which hold for all distinct triples (r,s,t). This gives an additional O(n%) con-
straints. Since we find it already extremely difficult to approximate QAP p_, we
will not pursue this latest relaxation any further, and leave it for future research.

Table 2 shows two things. First the bound QAPpg, yields a drastic im-
provement compared to QAPp and secondly classical interior-point methods
are highly inefficient to compute this bound. We now show how we can avoid
straight interior—point methods by introducing the bundle method to deal with
GWWRWT) =0, NWRWT) > 0.
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3. The Bundle Method to solve the Relaxations

Interior—point methods are very useful and reliable solution methods for semidef-
inite programs of moderate size, but we have just seen that for QAPp, and
QAPpg, they are not practical. In order to efficiently compute lower bounds of
these relaxations, we need a method that is capable to deal with a huge num-
ber of constraints. The bundle method turns out to be a convenient method for
this purpose. It dates to the 1970’s (see e.g. [15,22,25]) and it was originally
developed to minimize a nonsmooth convex function f(vy) over v € IR™. The
function f is assumed to be given by an oracle which, for some input v returns
the function value f(v) and vector g contained in the subdifferential of f at

7,9 € 0f(7).
To define f, we dualize the “hard constraints”

GWRWT)=0 and N(WRWT) >0,

and maintain explicitly only the constraints from R. Introducing Lagrange multi-
pliers v and 4" > 0 for the equations and nonnegativity constraints respectively,
the Lagrangian is

L(R,y) =tr LR+ (/)YGWRWT) — ('Y ANWRWT),

where v = (7/,7").
Now we define

f(v)i=min L(R,y) = min (L + WHGET ()= NT(Y")W,R),  (9)

and the relaxation QAP is equivalent to

max f(7), (10)

where I' := {(7',7") : v > 0}. The problem (10) is also difficult to solve directly,
but weak duality shows that for any v € I we have f(vy) < p§ < p*, hence any
feasible solution 7 gives a lower bound on p*. (It is our goal to approximate u3
as close as possible.) Note that for some 7 the evaluation of f(v) amounts to
solving an SDP of the form QAP , which can be done reasonably fast.

We follow now the idea of the bundle method from [9]. For the start of the
algorithm we take some initial 7, for instance v = 0, and compute R from (9). A
pair (7, R) is called a matching pair for f,if f(y) = L(R,y). Let v* = (v"*,7"*).
If (v*, R*) is a matching pair for f then g% (y"*) = G(IWR*W7) is a subgradient
of f at 4™, and gV (y"™) = —N(WR*WT) is a subgradient of f at y"*. We

denote a currently best approximation to the maximizer of f with 4 = (§',4").

In a general step, we assume to have R = (Ry,...,Rg) and 4 := 7, with
(4, Ry) a matching pair. For each R; we calculate the corresponding subgradients
g¢ and ¢, and form matrices GY = (¢¥,...,¢%) and GN = (gI¥,...,gN). Let

A=A, )T, A={A: A >0, efXA=1},and F = (tr(LRy), ..., tr(LRg))?.
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The goal is to approximate the function f(7) in the neighborhood of the current
iterates reasonable well. The function f(v) is approximated by

k
T T T 1 .
fappr('y)—lglel? (L+WH(G () = NT(y")W, ;A1R1>
_ : T
= min Z)\ (L, R;) z;)\GWRW»
k
—(y", Y MNWR,WT))
i=1
=min F'A+ (y)TGEN + (v") TGN A (11)

A€A

Since fqppr is built of local information from the previous iterates, in order
to preserve a reasonable quality of the approximations we should stay in the
vicinity of the current point 4. Therefore we use the prozimal point idea and add
a penalty term for the displacement from the current point. We now determine a
new candidate v = (v',~") € I" from the current iterate ¥ = (',4") by solving
the concave problem

1 2
S TI 12
max foppr (1) = 5117 = A%, (12)

where ¢t > 0 is a parameter that has to be chosen by the user. Substituting (11)
into the maximization problem (12), we obtain the optimization problem

: T NT ~G MmTANy L 2
max min FEA+(7)7GTA+ ()T GTA ||7 A
= min_ max F'A+ ()TGA+ (y")"'GNA+ (/)" 77——||7 A7, (13)

AGA n>0 lo%
First—order optimality conditions for the inner maximization in (13) are

0

1 N N
a—ryl(')zo¢>GG)\—g(’)/I—’)/I):0©’)/I:’)/I+tGG)\, (14)
0

1
R ()=0& GVA- ;(7" —§" +n=0&9"=49"+tln+G ). (15)

We now insert equations for 7' and +" obtained in (14) and (15) respectively,
into (13) and obtain the optimization problem

t t R ~ .
§|IGGAII2 + 5|IGNA+77II2 +H(EF+E)ET+EFNGN N+ (3", ). (16)
n>0

The minimization problem (16) can be easily solved if one set of the variables
is kept constant, see [9,23]. Keeping 7 constant results in a convex quadratic
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problem in A, which can be easily solved by the interior—point method. Keeping
A constant in the minimization problem (16) results in

ot .
min —(n,n) + t(n, GNA) + (3", n).
n>0 2

This problem can be solved coordinatewise. Thus we start with = 0, solve for
A which we then keep constant to solve for 7 and iterate this process several
times to get (approximate) solutions n, A of (16). Using these estimates A and
n in (14) and (15) we arrive with the next trial point Yiest = (Viests Viest): 10
finish one iteration, we need to evaluate the function f at the new point Yeese,
which amounts to solving an SDP of the form QAP . This is in fact the most
time-consuming operation in each iteration of the bundle method. Finally, it
should be mentioned that the asymptotic convergence of this approach is rather
slow, so we set, as an additional stopping condition a maximum number of bundle
iterations, which we have set somewhat arbitrarily to 300. The final bound is
therefore only a lower approximation to either uj or uj. For a more detailed
survey of the bundle method see [9,15,23].

To see how good the bundle method approximates pj, we provide some rep-
resentative results in Table 2. In the fifth column of Table 2 we give the bound
of relaxation QAP for different Nugent instances computed with the bundle
method. The sixth column shows the running time required for one single itera-
tion of the bundle algorithm (on our PC). We conclude that the bundle method
approximates the true value pj reasonably well, at significantly smaller compu-
tational cost. We do not have a similar comparison for QAP g_, because we do
not know how to solve this relaxation exactly for problems of interesting size.

4. Computational Results

In this Section we present computational results. First, we compare the lower
bounds QAPg, and QAPg  obtained with the bundle method, with several
existing bounding strategies. We use the same test problems as in [3] and [24].
All instances have no linear term, i. e. they are pure quadratic and they are taken
from the current version of QAPLIB [5]. We also investigate the lower bounds
for some QAPLIB instances in the first and second level of the branching tree.
The implementation of our bounds was done in MATLAB and performed on a
PC (Athlon XP processor 1800 GHz).

4.1. Comparison With Other Bounds

Tables 3 and 4 collect some instances from QAPLIB [5], their optimum values,
lower bounds from the literature, and our bounds. More precisely, the Tables 3
and 4 read as follows. The first column gives the problem instances and their
sizes, e. g. Had30 refers to the Hadley instance of the size 30. In the second col-
umn we provide the optimum value for each instance. The remaining columns
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give lower bounds in the following order: GLB is the Gilmore—Lawler bound;
KCCEB is the dual LP-based bound from [17]; PB is the projected eigenvalue
bound from Hadley, Rendl and Wolkowicz [12], and QPB1 is the quadratic pro-
gramming bound from Anstreicher and Brixius [3]. The last two columns present
the bounds QAPgR, and QAPgR, that are described in Section 2 and computed
by the bundle method. 'n.a.” means that the value of the bound is not available
for a particular problem. All bounds are rounded up to the next integer.

Tables 3 and 4 demonstrate the efficiency of the relaxations QAPg, and
QAPgR,. These two relaxations were already proposed in [24]. Here we propose
a practical way to approximate them within reasonable computation time. The
Tables show that the relaxation QAPR, is currently the strongest bound avail-
able for QAP. The last column also gives the relative gap of this bound in %.
This gap is often quite small, only a few percentage points. We also point out
that we get positive bounds on the Eschermann instances Escl6d and Escl6i,
where most of the other bounds are less than 0.

The bounds QAPR, and QAPg, from Table 3 and 4 are obtained after 300 it-
erations of the bundle algorithm. To give an impression how the bound improves
in the course of the bundle iterations, we present in Table 5 QAPg, bounds for
the Nugent type instances obtained after 10, 20, 50, 100, 200 and 300 bundle
iterations. The results show that after fast initial progress (first 100 iterations),
there is a strong tailing—off effect. Figure 1 gives a graphical representation of
the results from Table 5. We have plotted the relative gap in % to the optimal
value. Note the similar behavior for all instances: after 50 iterations the gap is
below 20 %, after 150 iterations it is below 10 %, and it approaches 5 % after
300 iterations.

4.2. The Bounds After Branching

For the purpose of applying the bound QAPg, within a branch and bound
framework we investigate the effect on the bound after fixing an assignment
z;; = 1. A considerable growth of the bound by stepping down one level in the
branching tree is a desirable feature for a bounding procedure in a Branch and
Bound setting. In order to evaluate the growth rate of QAPg,, we first compare
our results for Had12 with results presented in [3]. Table 6 gives lower bounds
for Had12 in the first level of the branching tree. The first column lists the
root problem and all 12 child problems. With Had12.; we denote jth “child”
problem obtained by setting z1; = 1, 7 = 1,...,12. The meaning of the rest
of the columns is as follows; the second column presents exact solutions of the
“child” problems; PB and QPB are projected eigenvalue bound and quadratic
programming bound respectively, and QAP R, is the bound presented in Section
2. Table 6 shows that the performance of QPB is far superior to that of PB,
and that the performance of QAP is far superior to that of QPB. Note that
the value of QPB is sufficient to fathom Had12.7 and Had12.12, but the value
of QAP R, is sufficient to fathom all ”child” problems, proving optimality at the
first level of the branching tree.
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Table 3. Comparing bounds for QAPLIB instances I

OPT GLB KCCEB PB QPBl QAPg, QAPg, gap (%)

Escl6a 68 38 41 47 55 49 59 13.24
Escl6b 292 220 274 250 250 275 288 1.37
Escl6c 160 83 91 95 95 111 142 11.25
Escl6d 16 3 4 - 19 -19 -13 8 50.00
Escl6e 28 12 12 6 6 11 23 17.86
Esclég 26 12 12 9 9 10 20 23.08
Escl6h 996 625 704 708 708 905 970 2.61
Escl6i 14 0 0 -25 -25 -22 9 35.71
Escl6j 8 1 2 -6 -6 -5 7 12.50
Had12 1652 1536 1619 1573 1592 1639 1643 0.54
Had14 2724 2492 2661 2609 2630 2707 2715 0.33
Hadl6 3720 3358 3553 3560 3595 3675 3699 0.56
Had18 5358 4776 5078 5104 5143 5282 5317 0.77
Had20 6922 6166 6567 6625 6677 6843 6885 0.53

Kra30a 88900 68360 75566 63717 68572 68526 77647 12.66
Kra30b 91420 69065 76235 63818 69021 71429 81156 10.79
Kra32 88700 67390 n.a. 59735 n.a. 75848 79659 10.19

Nugl2 578 493 521 472 482 528 557 3.63
Nugl4 1014 852 n.a. 871 891 958 992 2.17
Nuglb 1150 963 1033 973 996 1069 1122 2.43
Nugl6a 1610 1314 1419 1403 1448 1526 1570 2.48
Nugl6b 1240 1022 1082 1046 1071 1136 1188 4.19
Nugl?7 1732 1388 1498 1487 1529 1619 1669 3.64
Nugl8 1930 1554 1656 1663 1705 1798 1852 4.04
Nug20 2570 2057 2173 2196 2254 2380 2451 4.63
Nug21 2438 1833 2008 1979 2055 2244 2323 4.72
Nug22 3596 2483 2834 2966 3080 3372 3440 4.34
Nug24 3488 2676 2857 2960 3028 3217 3310 5.10
Nug25 3744 2869 3064 3190 3272 3438 3535 5.58
Nug27 5234 3701 n.a. 4493 n.a. 4887 4965 5.14
Nug28 5166 3786 n.a. 4433 n.a. 4780 4901 5.13
Nug30 6124 4539 4785 5266 5365 5651 5803 5.24

Further branching experiments are done on the Nugent set of problems.

Since the Nugxx instances possess inherent symmetries due to their distance
matrices, only four subproblems are to be considered in the first level of Nugl2
problem and six subproblems in the first level of Nuglb problem. With Nugxx.j
we denote jth “child” problem obtained by setting z;; = 1. Table 7 gives results
for the first level in the branching tree of Nugl2. The first column contains again
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Table 4. Comparing bounds for QAPLIB instances I1

OPT GLB KCCEB  PB QPBI  QAPgr, QAPg, gap(%)

Roul2 235528 202272 223543 200024 206102 219018 223680 5.03
Rould 354210 298548 323589 296705 303777 220567 333287 5.91
Rou20 725522 599948 641425 597045 607822 641577 663833 8.50

Scrl2 31410 27858 29538 4727 8585 23844 29321 6.65
Scrlb 51140 44737 48547 10355 12479 41881 48836 4.51
Scr20 110030 86766 94489 16113 23960 82106 94998 13.90

Tail2a 224416 195918 220804 193124 199597 215241 222784 0.73
Tailba 388214 327501 351938 325019 330310 349179 364761 6.04
Tail7a 491812 412722 441501 408910 416033 440333 451317 8.23
Tai20a 703482 580674 616644 575831 585139 617630 637300 9.41
Tai25a 1167256 962417 1005978 956657 983456 1008248 1041337 10.79
Tai30a 1818146 1504688 1565313 1500407 1518059 1573580 1652186 9.13

Tho30 149936 90578 99855 119254 124684 134368 136059 9.26

Table 5. QAPr, bounds in dependence of number of iterations of the bundle algorithm

exact 10it. 20it. 50it. 100 it. 200 it. 300 it.

Nug20 2570 1519 2070 2276 2412 2451 2451
Nug2l 2438 1163 1935 2122 2253 2320 2323
Nug22 3596 1590 2757 3107 3370 3434 3440
Nug24 3488 1214 2553 2953 3193 3302 3310
Nug25 3744 1994 2880 3194 3394 3527 3535
Nug27 5234 464 3441 4399 4767 4946 4965
Nug28 5166 197 3664 4115 4580 4869 4901
Nug30 6124 416 3277 4957 5249 5715 5803

the problem instances. The remaining columns give exact solution, QAP2, and
QAP35 bounds, respectively.

Figure 2 shows that in the first level of the branching tree for Nugl5, all
“child” problems except Nuglh.1 are fathomed. Our computations of all “child”
problems of Nugl5.1 (196 since there is no symmetry) resulted with only 14 not
fathomed problems (see Figure 2). Hence, we have proved the optimal solution
of Nugl5 problem in the second level of the branching tree.

Tables 8 and 9 present the bounds in the first level of the branching tree for
Nug20 and Nug30.

It is instructive to look at the relative gap of these bounds at the root and
the first level of branching. In Figure 3 we plot the results for Nug20 and Nug30
and show the deviation in % from the integer optimum. For Nug20, the first level
of branching reduces the initial gap of 4.6% to 3% or lower. Turning to Nug30,
we see that the initial gap of 5.2 % goes down to below 4% after branching. We
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Fig. 1. QAPg, bounds in dependence of number of iterations of the bundle algorithm

Table 6. Results for the first level in the branching tree for Had12

exact PB QPB QAPg3

Had12 1652 1573 1592 1643
Had12.1 1674 1593 1629 1673
Had12.2 1690 1590 1639 1680
Had12.3 1652 1573 1607 1652
Had12.4 1662 1585 1616 1656
Had12.5 1696 1608 1647 1694
Had12.6 1706 1616 1649 1696
Had12.7 1714 1601 1656 1705
Had12.8 1654 1566 1610 1653
Had12.9 1660 1573 1617 1655
Had12.10 1672 1605 1628 1670
Had12.11 1694 1601 1641 1690
Had12.12 1700 1618 1656 1699
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Table 7. Results for the first level in the branching tree for Nugl2

exact QAP2 QAP3

Nugl2 578 529 557
Nugl2.1 586 551 578
Nugl2.2 586 551 577
Nugl2.5 578 552 575
Nugl2.6 600 556 584

\

Nugl15
1122 1150

Fig. 2. First and second level in the branching tree for Nugl5h

consider this a very promising feature of the relaxation for use in a Branch and
Bound framework.

5. Concluding remarks

We have shown that a basic semidefinite relaxation of QAP, combined with the
bundle method, yields very good approximations to the relaxations QAP g, and
QAP g3 which are currently the strongest bounds available for QAP.
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Table 8. Results for the first level in the branching tree for Nug20

exact QAP2 QAP3

Nug20 2570 2380 2451
Nug20.1 2612 2449 2518
Nug20.2 2570 2420 2488
Nug20.3 2586 2421 2487
Nug20.6 2592 2427 2501
Nug20.7 2584 2420 2491
Nug20.8 2604 2419 2502

Table 9. Results for the first level in the branching tree for Nug30

QAP; QAP

Nug30 5568 5803
Nug30.1 5809 5939
Nug30.2 5771 5895
Nug30.3 5756 5881
Nug30.7 5767 5900
Nug30.8 5750 5885
Nug30.9 5756 5891
Nug30.13 5756 5896
Nug30.14 5750 5883
Nug30.15 5768 5889

Further improvement is possible to speed up the bundle iterations. We have
not exploited the fact that in the course of the iterations, there are only very
small changes in the dual variables, hence the primal cost function changes only
slightly. Using sensitivity theory, it should be possible to warm-start the function
evaluation, rather than solving the basic SDP from scratch in each iteration, as

we do now.

Finally, the bundle method provides estimates of the dual variables corre-
sponding to the sign constraints. This information may be useful to guide the

branching process.

References

1. W. P. Adams and T. A. Johnson. Improved Linear Programming—Based Lower Bounds
for the Quadratic Assignment Problem. in Proceedings of the DIMACS Workshop on
Quadratic Assignment Problems, DIMACS Series in Discrete Mathematics and Theoret-
ical Computes Sciences, American Mathematical Society, 16:43-75, 1994.

2. K. Anstreicher. Recent advances in the solution of quadratic assignment problems. Math-
ematical Programming B, 97:27-42, 2003.

3. K. Anstreicher and N. Brixius. A New Bound for the Quadratic Assignment Problem Based
on Convex Quadratic Programming. Mathematical Programming, 89:341-357, 2001.



Bounds for the Quadratic AssignmentProblem Using the Bundle Method 17

01 2 37 8 9131415

Fig. 3. Gap reduction at first level of branching tree for Nug20 and Nug30. The bar labeled
0 corresponds to the root problem, the other bars give the relative gap at the first level of
branching.

10.

11.

12.

13.

14.

. K. Anstreicher, N. Brixius, J.-P. Goux and J. Linderoth. Solving Large Quadratic As-

signment Problems on Computational Grids. Mathematical Programming B, 91:563-588,
2002.

R. E. Burkard, S. Karisch and F. Rendl. QAPLIB — A Quadratic Assignment Problem
Library. European Journal of Operational Research, 55:115-119, 1991.

F. Cela. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer, Mas-
sachessets, USA, 1998.

J. Clausen and M. Perregaard. Solving Large Quadratic Assignment Problems in Parallel.
Computational Optimization and Applications, 8:111-127, 1997.

G. Finke, R. E. Burkard and F. Rendl. Quadratic Assignment Problems. Annals of
Discrete Mathematics, 31:61-82, 1987.

I. Fischer, G. Gruber, F. Rendl and R. Sotirov. The Bundle Method in Combinatorial
Optimization. University of Klagenfurt, Austria, working paper, 2003.

I. Foster and C. Kesselman. Computational Grids. In I. Foster and C. Kesselman, edi-
tors, The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San
Francisco, CA, 1999.

A. Graham. Kronecker Products and Matrix Calculus with Applications, Mathematics
and its Applications. FEllis Horwood Limited, Chichester, 1981.

S. W. Hadley F. Rendl and H. Wolkowicz. A New Lower Bound via Projection for the
Quadratic Assignment Problem. Mathematics of Operations Research, 17:727-739, 1992.
P. M. Hahn, T. Grant and N. Hall. A Branch-and-Bound Algorithm for the Quadratic
Assignment Problem Based on the Hungarian Method. European Journal of Operational
Research, 108:629-640, 1998.

P. M. Hahn, W. L. Hightower, T.. A. Johnson, M. Guignard—Spielberg and C. Roucairol.
Tree Elaboration Strategies in Branch and Bound algorithms for solving the Quadratic
Assignment Problem. Yugoslav Journal of Operations Research, 11:41-60, 2001.



18

Title Suppressed Due to Excessive Length — supply \combirunning

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. J. B. Hiriart—Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms

II. Springer Verlag, 1991.

S. E. Karisch. Nonlinear Approaches for Quadratic Assignment and Graph Partition
Problems. Dissertation, Technical University of Graz, Austria 1995.

S. E. Karisch, E. Cela, J. Clausen, and T. Espersen. A Dual Framework for Lower Bounds
of the Quadratic Assignment Problem Based on Linearization. Computing 63:351-403,
1999.

P. Pardalos and H. Wolkowicz, editors. Quadratic assignment and related problems. Ameri-
can Mathematical Society, Providence, RI, 1994. Papers from the workshop held at Rutgers
University, New Brunswick, New Jersey, May 20-21, 1993.

F. Rendl and H. Wolkowicz. Applications of Parametric Programming and Eigenvalue
Maximization to the Quadratic Assignment Problem. Mathematical Programming, 53:63—
78, 1992.

M. G. C. Resende, K. G. Ramakrishnan and Z. Drezner. Computing Lower Bounds for the
Quadratic Assignment Problem with an Interior Point Algorithm for Linear Programming.
Operations Research, 43(5):63-78, 1992.

S. Sahni and T. Gonzales. P—Complete Approximation Problems. Journal of ACM,
23:5556-565, 1976.

H. Schramm and J. Zowe. A Version of the Bundle Idea for Minimizing a Nonsmooth
Function: Conceptional Idea, Convergence Analysis, Numerical Results. SIAM Journal
on Optimization, 2:121-152, 1992.

R. Sotirov. Bundle Methods in Combinatorial Optimization. Dissertation, University of
Klagenfurt, Austria, 2003.

Q. Zhao, S. E. Karisch, F. Rendl and H. Wolkowicz. Semidefinite Programming Relax-
ations for the Quadratic Assignment Problem. Journal of Combinatorial Optimization,
2:71-109, 1998.

J. Zowe. Nondifferentiable Optimization — a Motivation and a Short Introduction Into
the Subgradient — and the Bundle Concept. NATO ASI Series, vol.f15 Computational
Mathematical Programming edited by K. Schittkowski, Springer—Verlag, Berlin Heidelberg
1985.



