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ABSTRACT.   The following types of results are obtained:   Given a poly-
hedral 2-sphere  P with rectilinear triangulation   T lying in the interior of a
solid tetrahedron   G   in   E ,  then there is a simplicial isotopy  /: G X [0, 1] -»
G   taking  P  onto a tetrahedron so that for   t  in   [0, l],f(x, t) = x  on
Bd(G)   and  f¡  is affine on each element of the triangulation  S  of  G,  where
card (S)  is a known function of   card (T).   Also, given (1)   P as above, (2) poly-
hedral disks   Dx   and   D2, where   Bd(Dj) = Bd (D2) C P and   Int (£>j) U
Int (D2) C Int (P)  and (3) a triangulation  T of  D,UD2U P, then analogous
results are found for a simplicial isotopy  / which is fixed on  P  and takes  Dx
onto  D2.  Given  G  as above and a piecewise linear homeomorphism  h: G -* G
which is fixed on   Bd (G)   and affine on each  rBR,  then analogous bounds
are found for a simplicial isotopy /: G X [0, 1] -* G   so that  /0(x) = x  and
fx(r) = h(r)  for all   r   in  R.   In the second half of this paper the normal surface
and normal equation theory of Haken is briefly explained and extended slightly.
Bounds are found in connection with nontrivial integer entried solutions of
normal equations.  Also bounds are found for the number of Simplexes used in
triangulating normal surfaces associated with certain solutions of the extended
normal equations.

1. Introduction.  The work contained in this paper has grown out of the
author's attempts to solve the following problem:  Given two oriented polygonal
knots KX,K2  in regular position in E3, show that if M is a solid tetrahedron
containing ZCj, K2  in its interior, and / is a piecewise linear homeomorphism
taking M onto M and Kx   onto K2  such that (1) / is fixed on Bd (M),
and (2) the orientation of Kx   induces that of K2, then there is a mapping g
such that (l) g has the same properties as / (2) g is affine on each simplex
of the triangulation  T of M, and (3)   card T is a known function of «j, «2
where n¡ denotes the number of straight line intervals needed to build K¡.  It is
evident that such a problem is analogous to a word problem in algebra. This
paper is designed to lay some of the needed foundations for attacking the problem.
Well-known results on simplicial isotopies [1], [4], [5] and various counting
lemmas developed by the author in the present paper and [9] are used to develop
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384 L. B. TREYBIG

various extensions and improvements of Theorem 1 of Moise [4] and the normal
surface and normal equation theory of Haken [3] and Schubert [7].

Let B(x, y) denote a function from a subset of the ordered pairs of non-
negative integers into the positive integers defined by

(0) B(x, 0) = 32z_160z, and
(1) z = 12(2x - 4)(2x - l)22x~2(2x + (2x - A)(2x - l)22x~2),
(2) B(x,y) = 322£3(3x - 2,y - 1)(32 • 60)16(2*-s>+4s<3*-2'>'-1>

for  4 <x and   1 <y.  In the present paper the proof of Theorem 1 of [4] is
extended to prove

Theorem 2.   Suppose P is a polyhedral 2-sphere which is a subset of the
interior of the solid tetrahedron  G  in E3, and that  T is a triangulation of P
whose elements are rectilinear.   Then, there is a simplicial isotopy f: G x
[0, 1] ■+ G such that (1) f(x, t) = x if t = 0 or x E Bd(G), (2)/^, 1) isa
tetrahedron and (3) there is a rectilinear triangulation  S of G such that

(a) / is affine on each s ES for each  t ES for each t E [0, 1 ],
(b) P is a subset of the 2-skeleton of S, and
(c) if « denotes the number of 0-simplexes of T and n(S3) the number

of 3-simplexes of S,  then n(S3) <Bx(n), where Bx(n) = (n, [2(n - 2)2/3]).

An extension of Theorem 3 of Sanderson [5] which is a consequence of
applying Theorem 2 is

Theorem 3. If T isa triangulation of the polyhedral 3<ell K in E3,
then there is a subdivision  T of T which can be shelled, where if n = n(TQ),
the number of 0-simplexes of T,  then n(f3) <96(32)n2(T3)Bx(n).

Among the later theorems are (1) Theorem 6, which gives bounds in con-
nection with extending a piecewise linear homeomorphism between two poly-
hedral 2-spheres to one also between their interiors, and (2) Theorem 7 which
gives bounds in connection with realizing a piecewise linear homeomorphism of a
solid tetrahedron onto itself which is fixed on the boundary as the final stage of
a simplicial isotopy.

In §6 the normal surface theory of Haken [3] is explained in an abbreviated
way.  A much more complete description is also found in Schubert [7].  In §7
the normal equation theory of Haken [3] is explained and extended slightly.  In
§ 5 numerical bounds are found in connection with finding nontrivial integer en-
tried solutions of the extended normal equations.  In § 8 bounds are found for
the number of Simplexes used in triangulating normal surfaces associated with
certain solutions of the extended normal equations.

2. Definitions. All spaces considered are subsets of Euclidean 3-space E3,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDS IN PIECEWISE LINEAR TOPOLOGY 385

and all triangulations of such spaces will be locally finite and have closed Simplexes
which are rectilinear.  A subset  S of E3  will be called a polyhedron, or be
said to be polyhedral, if it has a rectilinear triangulation.  A mapping /: S •* T
between polyhedra will be said to be piecewise linear (p.l.)  if there is a recti-
linear triangulation   W of S such that / is affine on each w E W.  If /,
f': S -*■ T are p.l. homeomorphisms, then K: S x [0, 1] ■* T is a p.l. isotopy
between / and /' if (0) K is continuous, (1) K(s, 0) =/(s) and K(s, 1) =
f'(s) for s E S   and (2) for each  t E [0, 1] Kt is a p.l. homeomorphism. Also,
K will be said to be a simplicial isotopy if some fixed triangulation   W  of S
can be found so that Kt is affine on each w E W for each t E [0, 1]; and in
this case, if n  is a positive integer and S = T, the ordered pair (K, W) will be
said to belong to M(S, n) provided the number of 3-simplexes in  W is no more
than «, and K(x, t) = x  if t = 0 or x E Bd (S).

If T is a triangulation of a polyhedron S, let Tp (p = 0, 1, 2 or 3) de-
note the collection of p-simplexes in  T and let n(T ) = card (T ).  Also for
any  T' ET let   lr'1 denote the union of the elements of T'. Given MES,
let  st(M, T) denote the collection of all Simplexes of T which contain M.

If M is an n-manifold with boundary, then  Bd(A/) will denote the set of
all points of M which do not have a neighborhood in M homeomorphic to
E". If M is an n-cell, then an «-cell NEM will be said to be free in M
provided M = N or An Bd(M) is an « - 1   cell.  If T is a cellular sub-
division of the n-cell M then M can be shelled relative to the elements of T
provided they can be labeled  tx,t2, . . . ,tm   so that if 1 <p < m, then
U™p t¡ is an n-cell in which tp  is free.  (Such an order is called a shelling
order.)

If PEE3  and MEE3, then the cone over M from P (denoted by PM)
is the union of all intervals Pm, where  m EM. Unless otherwise stated, interval
means straight line interval, and solid tetrahedron means a tetrahedron plus its
interior.

3. Two lemmas and another definition.  In the remainder of this paper the
following situation occurs frequently.

Lemma 1. In E3  let X and   Y be solid tetrahedra, where X C Int (Y).
Let /j, f2  be nonintersecting faces of X such that the sum of their dimensions
is two, and let p¡ be the barycenter of f¡ (i = 1, 2). Let q¡ (i = 1, 2) be
points on the line pxp2  in the order qxpxp2q2  such that the set Z which is
the union of the cones q¡X(i =1,2) isa subset of Int (Y). Then there exists
(f, T) EM(Y, 60) such that (1) f(x, f) = x if t = 0 or xEY- Int (Z), and
(2)/(pj,l) = p2.
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386 L. B. TREYBIG

Proof.   The transformation is defined as in Theorem 5 of Sanderson [5].
First define f(px, f) = (1 - f)pj + tp2  for t E [0, 1], then define / so that
if z E Bd(Z) then ft takes interval zpj   linearly onto zft(px), and finally
define ft(x) = x  for xEY - Int(Z).

Let Q denote a triangulation of Bd(Z) with a minimal number of 2-
simplexes.  Let  C denote the union of all rays qxz where qxzC\X= {z} and
let  Cx   and  C2, respectively, denote the two components of Int(Y) - (Z U C).
Use of Lemma 2 of [9] gives triangulations I* (i = 1, 2) of Bd(Q so that (1)
V agrees with g on Bd(Z) (i = 1, 2), and (2) n(T'2) < 26. The triangulation
T is defined so that if s is a 3-simplex of 7\ then s is of the form PjW  for
w EQ2, or of the form 5,-w, where s¡ is a fixed element of C¡ on line
PjP2  and w is an element of T2  lying in Bd(Cf).  Since Z contains at most 8
3-simplexes of T, the bound above is evident.

Definition. Let a simplicial isotopy / defined as above be called an S-
isotopy.

Lemma 2. Suppose X is a solid tetrahedron and (f¡, T) E M(X, m¡),
i = 1, . . . , «.  Then the transformation f = fnfn_x • ' 'fx   defined by

fix, t) -/,(/,_,(• • ■f2iflix, 1), 1)- • • 1), nt-(q-l))   for x EX
and   (q - \)/n < t < qln   has the property that there exists   (f, S) E
M(X, 32"-1mxm2 . . . mn).

Proof for « = 2. By lemma 4 of [9] there is a subdivision S of Tl
suchthat n(S3) <32mxm2  and   {fx(s, 1): s E S} is a refinement of t2.
Clearly  (f, S) is the desired pah.

4. The proofs of the theorems.

Theorem 1. Suppose D is a polyhedral 2-cell with triangulation  T and
that t ET2 such that (1) t ¥= D and (2) there is s 0-simplex Q of t in
Bd(D).  Then, if e > 0 there is a one-to-one function f: T0 -* E1   such that (1)
xETq  implies e >f(x) > 0, but f(Q) = 0,  (2) if vET0f) Bd(D) and
v^Q,  then there exists vw E Tx   such that f(w) <f(v), and (3) if vET0C\
lnt(D), then there exist elements vw and vu of Tx   such that fiu) < f(v)
<f(w).

Proof. The proof is by induction n = n(7*2).
Case 1:   D = \st(Q, T)\ or n = 2.  In this case let the simple closed curve

Bd(D) be denoted by Qvxv2 . . . vn+xQ where v¡ET0, i = 1,. . . , « + 1.
Define / so that 0 = f(Q) <f(vx) < . . . <f(vn+x) < e.  Clearly, / satisfies
the conclusion of the theorem.

Case 2: D =£ \st(Q, 7)1.  Let n  be such that if D' satisfies the hypothesis
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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of the theorem for a triangulation having no more thah « - 1   2-simplexes, and
the simple closed curve  Bd(D') is labeled ßüjt>2- • mv¡Q, and a function g is
defined such that 0 = g(Q) <g(vx) < . . . <g(?,) < e, then g may be extended
to a function / satisfying the conclusion of the theorem.  By Lemma 3 of
Sanderson [5] there exist w ET2  such that  Q ^ w and w is free in D.  Let
w = abc.

Suppose w n Bd(D) = ab.  Let the simple closed curve  Bd(D) be labeled
Qvx . . .ab . . . vQ and let g map these 0-simplexes into Ex   such that 0 =
g(Q) < s(vx )<...< g(Pj) < e.  Extend the domain of g to c so that g(a) <
g(c) < g(b). By the induction hypothesis there is an extension of g to a function
/ satisfying the conclusion of the theorem for  T restricted to  Cl(D - w).
However, / is the desired function since fia) <f(c) <f(b).

Suppose w n Bd(D) = ca U ba. Let  Bd(D) be labeled ßUj .. .cab ...
VjQ and suppose g maps these 0-simplexes into E1   so that 0 = g(Q) <
g(vx) < . . . <g(Vj) < e. The restriction of g to  T0 - {a} can be extended to
a function n  satisfying the conclusion of the theorem for  C1(D — w), where «
is modified slightly so that «(x) =£ g(a) if x E T0 - {a}. The required function
/ is defined by f(x) = h(x) if xET0 - {a} and f(a) =g(a).

Proof of Theorem 2. In portions of the following the proof of Theorem 1 of
[4] is followed closely.  In E3  a family L(u) of planes, all normal to a given
unit vector u, is called admissible if the 0-simplexes of T lie in different planes
of L(u). A typical plane L  of L(u) will normally intersect P in the union of
a finite collection of disjoint simple closed polygons, but an exceptional plane of
L(u) will intersect P in either (1) the union of an isolated point  Q and a finite
collection of disjoint simple closed polygons, or (2) np(L) simple closed polygons,
HI  of which (1 < k < np(L)) have in common a singular point  Q, the
polygons being otherwise disjoint.  Since the isolated and singular points are 0-
simplexes of T, there are only a finite number of exeptional planes in L(u).
Define np(u) to be  2 np(L), the summation being over planes of L(u) con-
taining singular points.  The admissible L(u)\ are determined by the «'s on the
unit sphere 52  which he in the complement  C of the union of a certain finite
collection of great circles. Thus,  C is the union of a finite collection of connected
open subsets of S2, where if u, u belong to the same component of C, then
np(u) = np(u).  Let s = min {np(u), uEQ. The proof of the theorem is by
double induction on s and n = n(T0).

In case s = 0, the minimum for n  is 4, so the triangulation S may be
chosen such that s(S3) < 13.  Now suppose the theorem holds for all cases
(n, s') where   1 < n < « - 1  and s' = 0, and let u be such that np(u) = 0.
Let   W denote the set of all planes in E3  which contain a 2-simplex of T, and
let K = {k: k= w, where w is a component of E3 -U W lying in IntZ*}.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Each k EK is a convex 3-cell with at most q = n(T2) flat faces F, and each
such F is a convex 2-cell bounded by the union of no more than q - 1 straight
line intervals.

Now let X be a triangulation of PU IntP formed as follows:   If F is a
flat face of a A: above, and F is bounded by the union of / straight line inter-
vals (but no fewer), then triangulate F into / - 2  2-cells, and then after tri-
angulating all such Fs, triangulate each k radially from some interior point of
k (see Theorem 2 of [5]) so that the new 3-simplexes are cones over the new 2-
simplexes in the Z*"s above.

Now let u   be a close approximation of u lying in the same component of
C, where no plane of L(u) contains two 0-simplexes of TUX. There are two
exceptional planes L' and Z,"  of L(u), each containing only one point of P,
and every plane of L(u) between Z,' and Z," intersects P in a simple closed
polygon.  Let l! = L0, Lx, . . . , L, = L" be a sequence of planes of L(u)
arranged in then natural order so that (1) for each i = 1./ exactly one of
L¡ and L{_x   contains a 0-simplex of TUX, and (2)  T0 U X0 E U{=0 Lv
Let Y= {c: c is a component of x -\J'¡=QL¡ for some x E X3}. Sanderson's
proof of Theorem 2 [5] suffices to show how to find a shelling order of P U IntP
relative to the cellular subdivision  Y. A triangulation Z of P U IntP is now con-
structed by subdividing each element z of Z into no more than 12 3-simplexes,
after first triangulating all flat faces of such z's with a minimal number of 2-sim-
plexes. The shelling order of Y is then used as in Sanderson [5] to help induce a
shelling mx, m2, • • ; mz of P U IntP relative to Z3.

A simple calculation using the Euler characteristic yields q = n(T2) =
2(n - 2).  The following inequalities may now be established.

(3) n(X3)<q(q-3)2q,
(A) n(X0)<q(q-3)2q + 2,
(5) / < 2(n(T0) + n(X0)),
(6) n(Y3) <q(q - 3)2q(2n + q(q - 3)2' + 2),
(7) n(Z3) = z< 12 n(Y3).
For each i (1< / <z - 1) there exists (f¡, S') E M(G, 60) such that (1)

f¡ is an 5-isotopy, and (2) f¡(\JP-¡ mp, 1) = UP=f+i mP- Lemma 2 is applied
to yield  (f, S) EM(G, B(n, 0)) where f=fz_xfz_2...fx.

Now suppose the bound B(n , t) has been established for all cases where
0 < t < s - 1.  Again using Moise's proof as a guide, let « be a unit vector such
that np(u) = S.  Let L be a singular plane of L(u) and let  Q be a singular
point of P in L.  Select a simple closed polygon J of P n L which bounds a
disk D in L, where  Int(D) and P are disjoint. J may or may not contain
Q, but the proof is analogous if it does not. J divides P into two disks Dx
and D2, so let P¡ = DU D¡ (i = 1, 2).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let the simple closed curve  Bd(D) be denoted by axa2 . . . ap.x, where
ax = Q if Q E Bd(D), and where the a¡'s are the intersections of D with
elements of Tx.  If Bd(D) is a triangle, no further constructions are needed at
this stage, so suppose  Bd(D) is not a triangle.

Let a]+x   be a point of Int(£>) such that angle a2axaJ+x   is acute and
axa2aj+x n Bd(D) = àxa2.  Since / < 2(« - 2), by Lemma 2 of [9] there is
a triangulation R  of D so that  (0)aja2a/+j ER2, (1) {ax, . . . ,aJ+x} =
R0, and (2) n(R2) < 2(n - 2).  Let  e > 0 be such that if y EL  and vy
is an interval which is a subset of a 1-simplex of P or perpendicular to L and
the distance from v to Z, is e, then the length of vy  is less than 1/10 the
distance between (a) any two planes of L(u) containing 0-simplexes of T, and
(b) any two a¡'s.

Theorem 1 is now applied to find points bx.b.+x, cx,. . . , c,+ 1
such that (0) cx = bx = ax, (1) the b¡'s (i > 1) lie on one side of L and the
Cj.'s (i > 1) on the other, (2) the distances from the b¡'s to L satisfy the con-
clusion of Theorem 1 for the values of /, where  Q = ax ; analogously for the
Cj's, (3) if a i E Int(D) then interval bf¡ contains a¡ and is normal to L,
and (4) if a¡ E Bd(D) (i> 1) then b¡c¡ is a subset of the 1-simplex of T con-
taining at. Given an element s = a a ar of R2   define the polyhedral 3-cell
A(s) to be the set bounded

Wr U VA U Vp*<7 u bPbqaqu *aA u VA,u Va
U a^i,,   where d(aq, bq) < d(ar, br) < d(ap, bp),

and define B(s) analogously using the a ¡'s and c¡'s.
By Lemma 3 of [5] the elements of R2 - {axa2a/+x} can be shelled from

D in some order rx,r2, . . . ,rv, and the 3-cells A(rx), . . . , A(rv),
B(rx), . . . , B(rv) can be shelled from P U IntP in that order.  If each A(r¡)
and B(r¡) is triangulated so that the 3-simplexes are formed in each case by
starring from some interior point over the triangular disks used to form the
boundary, then the shelling order above may be used (see Theorem 2 of [5]) to
shell the new tetrahedra from P U IntP. Therefore there exist  (m¡, R') E
M(G, 60), i = 1, . . . , z, such that (1) each m¡ is an 5-isotopy, (2) z < 16K,
and (3) m2 . . . mx(P, 1) = P, where P = Bd(IntP - Uî= i W'/) u B(r¡))).
Also, P has a triangulation  f such that  T"q = (P n P n T0) U
{b j, . . . , bj+ j, cx,. . . , Cj+ j}, and the point  u yields an admissible family
for P  and has an associated integer pair  (n , s'), where n < 3« - 2 and
s <s.

The disk axa2aJ+x divides P into two open polyhedral 2-cells, Ux and
U2, so let Pj denote axa2aj+x U U¡ (i = 1, 2). The situation Moise develops
at this stage in his proof of Theorem 1 [3] now holds, so it may be seen thatLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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P'i (i= 1, 2) satisfies the induction hypothesis for the case  (n, s) where n <
3« - 2 and s' < s — 1. The use of Theorem 1 is to avoid the addition of new
singular points.  Since one of Pj   and P"2  is not contained in the 3-cell bounded
by the other, suppose P2 (} P'x U IntPj.

By the induction hypothesis there exists (f¡, S'*) E M(G, B(3n - 2, s - 1))
(i =1,2) suchthat f¡(F¡, 1) is a tetrahedron. The number y of 2-simplexes
of Sx   on Pj   satisfies y < An(S3). By Lemma 3 of [4] there is an ordering
Ax,. . . ,Ay  of  f/j(s, 1):  s is a 2-simplex of Sj   on Pj} such that (1)
A2,. . . ,Ay  is a shelling of CK/jiPj, 1) -Ax), and (2) A¡ which are sub-
sets of /j(axa2a+i, 1) are shelled last  (Ax   is not among these).  Let  V¡ =
Int/j(Pj, 1) (i = 1, 2), let xEVx, and let B¡ be the solid tetrahedron
XA¡ (i = 1, . . . ,.y).  There exist (g¡, P)EM(G, 60) (i = 1, ... ,y) such that
(1) each g¡ is an S-isotopy, and    (2)   g¡(v2 U U¿=i Bq, 1) = V2 U
Uqy=i+iBq  for 1-1....,*

Lemma 2 is now applied to f = f2j\lgy . . . gxfxmz . . . mx   to obtain
a pair (f,S)E M(G, 322(32 • 60)*+zP3(3n - 2, s - 1)) where y <
4Z?(3n - 2, s - 1) and z < 16(2n - 5). A simple calculation using the Euler
characteristic shows that np(u) < 2/3 (n - 2)2. Therefore «(S3) <Bx(ri). This
completes the proof of Theorem 2.

Proof of Theorem 3. Let X be a solid tetrahedron such that K C
Int(X).  By Theorem 2 there is a pair  (/, S) EM(X, Bx(n)) such that f(K, 1)
is a solid tetrahedron.  By Lemma 4 of [9] there is a common refinement R  of
T, and S restricted to K such that  n(R3) < 32n(P3)n(53).  Sanderson's proof
in Theorem 2 of [4] may be used to find a refinement  W of  {f(r, 1): r ER}
which can be shelled, where  «(H^) < 96n2(Z?3).  The desired triangulation of K
is   ^(wy.wEW}.

Theorem 4.   Suppose   Q   is a polyhedral   2-sphere in   E3   and   P¡
(i = 1, 2) is a polyhedral disk such that

(0)Bd(Pj) = Bd(P2)Cß,
(1) Pj nP2 = Bd(Pj),
(2) Int(Pj) U Int(P2) C Int(ß) (bounded complementary domain), and
(3) T is a triangulation of PXUP2U Q.

Then, there exists (f,S)EM(QU\nt(Q),32x-x(ßx) suchthat
(1) Pj U P2 C I52 I,
(2) /(Pj,l) = P2,  and
(3) 96((32(60))16ßl(n)Pj(n))2 =x and « = n(T0).

Furthermore, if AXfi (i = 1, 2) is an arc such that AX¡B EP¡C\ \TX\ and
AX¡B n Q = {A,B\ then there exists (f, S) E M(Q U Int(ß), 32x+>'-160x+^)
suchthat (1) and (2) abovehold, (3)f(AXxB, 1) = AX2B, and j\Xx, 1) = X2, and
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(4) Aj = 28(7 4- 1)(16/ + 12),/= 2s53n2(53) (n - l)2   and   y =
(J - l)(2Aj + 10) + 9/2Z + 6/Aj.

Proof. Let X be a solid tetrahedron such that  ß C Int(X).  By Theorem
2 there exists  (h,R) EM(X, Bx(n)) such that (1) n(Pj UP2, 1) is the boundary
of a solid tetrahedron abed, and (2) Px U P2 C lP21.

Let rx,r2, . . . ,rw  denote an ordering of   {h(r, 1): r ER2   and r E Px U
P2} such that (1) rx C n(Pj, 1) but the face of abed which contains rx   does
not contain h(P2, 1), and (2) r2.rw  is a shelling of U,^=2 ri-  Suppose,
for example, that  Int(aZ>c) intersects n(P2, 1) but not rx.  Let p denote the
largest integer t suchthat  \J^-tr¡ contains rácU«(P2,l), let r    , . . . ,r
denote a shelling of   C\(\J%p r¡ - h(P2, I))   from     U/=pr/> and let
rni,...,rnk  denote a shelling of   C1(U£=P r¡ - abc) from \J%pr¡. There
exist elements (g¡, Rl) of M(X, 32(60)2), i = 1, ...,/ + k, such that

(1) g ¡(abed, 1) = abed,  1 < i <f + k,
(2) ¿WdJk rm) U ̂ 2. O, O = VUs-i 'm) u *(P2. !).!<«<

7 + 1,
(3) W< U 2-, »"»P U tóc, 1) - ( (J *,,+! rHt) U abc, 1 < s < *, and
(4) each #f is an 5-isotopy or the "composition" of two such,  1 < i <

j + k.
By Lemma 2 there exists  (g, V) E M(X, (32 • 60)16Bl(n)Pj(n)) such that

s(Pi UP2, 1) = Bd(abcd) and g(P2, 1) = abc, where g = gj+kgj+k-i ■ ■ ■
8j+ i8\82 • ' • 8jn- Tne techniques of Sanderson in Theorems 2 and 4 of [5] are
now applied to find a refinement  U of  V = {g(v, l):'v E V andg(i>,l) Eabcd}
whose 3-simplexes can be shelled from Cl(g(lnt(Px U P3)), 1), where P3  is the
closure of the component   C of ß - Bd(Pj ) which is separated from Int(Pj )
by  Int(P2) in Cl(Int(ß)) - Bd(Pj), and where n(f73) <96n2(K3).  Let
ux,. . . ,ux  denote such a shelling and let fx.fx  denote S-isotopies such
that there exist elements (f¡, Z') of M(X, 60), 1 < i < x, such that

ft(à8~i(-u»i) u a (im (i>2 u P3)i i)

=  U  ^-1("s.i)ua(int(p2up3))
s=/+l

and f((y, t)=y if y E P3  and tE [0, 1], 1 < i < x.  By Lemma 2 there is a
pair (f,S)EM(X,32x-l60x), where f = fxfx_x ...fx. The function /
satisfies the conclusions of the first part of the theorem.

By Lemma 4 of [9] there is a triangulation Z?  of P¡ (i = 1, 2) such that
(1) AX¡B C IZT'j I, (2) each simplex of E1 is a subset of a simplex of S, and
(3) n(P2) < 5 • n(T2)An(S3).  Likewise there is a common refinement E of E2
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and   {fie, 1): e EE1} such that n(E2) < 5n(Ex2)n(E2).
The idea is to now move f(AXxB, 1) onto AX2B by means of a "com-

position" of 5-isotopies so as to move j\Xx, 1) onto X2.  It is straightforward
to show the existence of arcs  Yx = f(AXxB, 1), Y2, . . . , Yj = AX2B such
that (1) J < 2n(E2), (2) Y, E\EX\, Y¡ n Bd(P2) = {A, B}, and   Y¡ is an arc
from A  to B, 1 < i < J, and (3) there is a sequence F,, . . . , Fj_x   of ele-
ments of E2   such that   Y¡ - F¡ = Yi+X - F¡ and  Bd(Ff) cr(uyj+1,K
i < / - 1.   Consider some fixed  i, 1 < i < J - 1, and let F¡ = abc.

Case 1.  Suppose   Y¡ C\F¡ = ab  and   Y¡+ x n F¡ = acU be.  There exist
elements abd, acd, and bcd2   of F2, all distinct from Ff.  Let e = H(a + è)
and let  e > 0 be such that the solid ball of radius e centered at c is a subset
of Int(ß) and intersects no simplex of E - st(c, E).  Let  G denote the set of
all triangular disks D such that there is a 2-simplex a'b'c in  st(c, E) such that
D = a"b"c, where a"cEa'c and is of length e, and b"cEb'c   and is of
length e.  Let  ex,e2   denote points of line ec in the order exee2c, where
exabd n (P2 U Q) = abd, and e2 E Int(ajijc), where ax E ac, bx E be, and
axbxcEG. Let e\ = 1/3(a +b +d).

There exist pairs (w¡, W), 1, 2, . . . , 9, such that
(0) (w¡, W1) E M(X, 60) and w¡ is an S-isotopy (1, 2, 4, 5, ... , 8),
(1) w¡(x, t) = x if xE Ext(ß) (i = 1, 2, . . . , 9),
(2) wx   moves   be'xa  affinely to bexa and is fixed on P2 - \nt(abd),
(3) w2   moves e to e2  and moves aexe,bexe,ace, and bee affinely

to aexe2,bexe2,ace2, and bce2,   respectively, and is fixed on   P2  -
Intfaôej U abc),

(A) w3  is a "composition" of no more than Aj = 28(n(F2) + 1)
•(l6n(E2) + 12) 5-isotopies such that (a) w3(\G\,l)  is a subset of plane abc
and w3(x, t) = x if x E disk abc, (b) vv3 is affine on each g E G for each t in
[0,1] (see Theorem 1 of [9]), and (c) w3(x,t) = x if xEP2- \st(c,E)\,

(5) w4 moves e2 to c and moves a2e3e2 and b2e3e2 affinely onto a2e3c
and b2e3c, respectively, (where a2 =axbx C\ae2,e3 =axbx Dec, and b2 =
axbx r\be2) and w4(x,r) = x for xEw3(P2 - \G\, 1) and rG[0,1],

(6) ws and w6 play a similar role to    Wj, w2    in that    ws    moves
l/3(c+/j +d2) to a point e4 online 020/1(0+0)) close to lÁ(b +c),.and
moves no point of P2 -Int(cM2), and w6 moves Z>2 to %(/3 +c) so as to move
cb2 and ¿è2 affinely onto clA(b + c) and bWp + c), respectively, and moves
no point of P2 - \nt(ceb Dcbe4), and w7 and w8 play a similar role with regard
to cdxa,a2, and ^(a+c). The transformation

w = Wyxw8w1w71w6wsw3 xw4w3wx1w2wx

is such that (1) w(x,t) = x if xGExt(ß) or t = 0,(2) w(Y¡, 1)= /-.+ j, (3)License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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w(P2,t) = P2 if r = 0 or 1, and (4) w   is a "composition" of   10 + 2Aj
5-isotopies, where the isotopies which compose to form w3 also satisfy condition
(0) above.

Case 2: Y¡ D F¡ = acU be. The transformation defined here is simply the in-
verse of a transformation of the type used in Case 1.

After applying J -I transformations of the types above to obtain a trans-
formation u which moves Yx onto Yj, the remainder of the argument involves
moving X'x =u(f(Xx,l),l) down Yj onto X2. Briefly, the idea is to move Xx
down the appropriate 1-simplex close to the next 0-simplex, and then apply a
transformation of type w3 above which "flattens" a small star neighborhood.
Then Xx is moved across the 0-simplex into the next open 1 -simplex with the aid
of at most two 5-isotopies, where at the "turn" Xx might have to be moved off
the track with the first isotopy and back on with the next. The star neighborhood
is then returned to its original position with the inverse of the "flattening" map.
Since there are no more then 3J/2 p-simplexes (p = 0,1) of F on Y2, then the
number of 5-isotopies used to move X'x to X2 with a transformation v need be
no more than 3(3J/2)+2(3J¡2)(2NX). The desired transformation is vuf.

Theorem 4'. If the two bounds stated in Theorem A are denoted by b x (n)
and b2(n), respectively, and hypothesis (1) is omitted, then bx(n) may be re-
placed by 32b2x(w) and b2(n) by 32bx(w)b2(20wbx(w)), where w = 2 • 62 •
21 -n(n-l)2.

Proof . There is a polyhedral 2 cell P3 with triangulation R so that (1) P3
is "close" to one of the components of ß - Bd(Pt ), (2) Int(P3) C Intß, (3) P3 n
P¡ = Bd(Pj ) (i = 1, 2), (4) R and T agree on Bd(Pj ) and (5) the number of 0-
simplexes of R U T on (Pj U P2 U P3 U Q) - Int(P,) (i = 1,2) is < w. Now
apply Theorem 4 twice and then Lemma 2.

Theorem 5. Suppose P is a polyhedral 2-sphere in E3, g = abed is a solid
tetrahedron, and f: Bd(g) -*• P isa p.l homeomorphism that is affine on each ele-
ment of the triangulation T of Bd(g). Then, there is an onto p.l. homeomorphism
h:g-*PUM(P) and a triangulation S of g such that (l)fix) = h(x) if xE
Bd(g), (2) h is affine on each s E 5, and (3) n(S3) < 5 • 32 • 42 (« - 1 )2Pj (n),
where n = n(T0).

Proof. By Theorem 2 there is an onto p.l. homeomorphism fx : g -*■ P U
IntiP) and a triangulation W of g so that (l)fx is affine on each wEW and (2)
n(W3)<Bx(n). Let   W2  denote the restriction of W2 to Bd(g). Then n(W2)<
An(W3). By Lemma 4 of [9] there is a refinement ß of T suchthat f7lf: Bd(g)
-*Bd(g) is affine on each qEQ and n(Q2) < 5n(T2)n(W2). Let xElnt(g) and
let Q' denote the triangulation of g whose 3-simplexes are of the form xq, whereLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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qEQ2. Let h:g-*P be defined such that if xq EQ'3, then h(xq)=fx(xfx~xf(q)).
By Lemma 4 of [9] there isa common refinement 5 of W and Q' suchthat
n(53) <32n(lV3)n(ß3). Clearly, ft is affine on each s ES, and if sES and
sCBdijr), then h(s)=fxf7lfis)=f(s).

Theorem 6. Suppose P and ß are polyhedral 2-spheres and f.P^-Q is an
onto p.l. homeomorphism which is affine on each simplex of the triangulation T of
P. Then, there is triangulation S of PU Int(P) and an onto p.l. homeomorphism
g:PU Int(P) -+ ß U Int(ß) such that g is affine on each s ES, g(x) = fix) if
xEP, and

n(S3) < 323 • 52 • 44Pj((« - l)2)Bx((v - l)2)(u2 - 2u)2(u2 - 2u)2

where u = 5(4Pj(n))(n -l)2,v = ABX(n), and n = n(T0).

Proof. By Theorem 2 there is an onto p.l. homeomorphism g: Bd(abcd)^Q
suchthat (I) abed is a solid tetrahedron and (2) g is affine on each simplex w of
a triangulation W of Bdfe), where n(W2)<ABx(n). Theorem 5 is now applied to
fg~l: Bd(abcd)-*P and g: Bd(abcd)^Q to find extensions F and G, respective-
ly. The required map is GF~x.

Theorem 1. If X is a solid tetrahedron and f: X-*X is an onto p.l. homeo-
morphism which is affine on each simplex of the triangulation T of X, then a
bound b3(n) may be stated such that there is an element (g, 5) of M(X,b3(n))
such that (1) « = n(TQ), and (2) g(r, 1) = f(r) for each r ET if fix) =x on Bd(A).

Proof. First apply Theorem 3 to find a subdivision R of T whose 3-simplexes
can be given a shelling order rx,r2,..., r¡. Then Theorem 4' is used (the second
part of the proof may need to be used twice) to pull rx onto f(fx) with a simplical
isotopy ux so that if t is an i-simplex (i = 0,1) on Bd(rj) then wx(t, l)=f(t).
Likewise Theorem 4'is used to define u2 which pulls Wj(r2,l) onto f(r2) in
such a way that 0 and 1 Simplexes are put in place and u2 is fixed on Bd(ï) U
f(fx). After ux,u2,...,u¡_x have been defined in this way, an application of
Lemma 2 completes the proof.

5. Bounds for solutions of certain matrix equations. Let Z denote the integers,
let Z' denote the nonnegative integers and let Z+ denote the positive integers.
Given a matrix A = (a¡¡) with real entries let  IL4II = sup {\a¡¡ I}.

Theorem 8. Suppose A = (a«) is an m by n matrix, B = (b¡) is an m
by 1 matrix, where each entry of A, B is in Z and IUII>0. Let b =
sup{IUII, \\B\\}andlet ci;EZ for 1 <i,j<n. Let N:Z+ x Z+x Z+ -+Z+ be
a function such that

(a) A(i, l,k) = k  and N(l,j, k)>N(\,j -l,k + k2) for i>\ and
j>2, and
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(b) if i > 1  and j > 1   then

N(i,j,k)>
sup{G = sup{A(i,/ - 1, Jfc), (1 + /W'-^i - 1./-1,2k2))N(i-\,j - 1,2k2),

(1 + jk)(jkN(i - 1, / - 1, 2fc2)) + it,
A(i, / - 1, Ä; + nfc2A(i - 1, / - 1, 2k2))}, A(i, / - 1, k + kG))}.

Then, if there is a common solution X = (x¡) of

(1) AX = B,   and

(2) W/-0   0< «'./<«),
wftere   11X11 > 0 and each x¡ E Z',  then there is such a solution   Y = (y¡),
where (a) 0 < \\Y\\ < N(m, n, b), and (b) 0<y¡< x¡ (1 < i < n).

Proof. Since any solution  Y = (y¡) of (1) above which satisfies part (b)
of the conclusion also satisfies (2), will not be mentioned in the remainder of the
proof.

If n = 1, there is an integer i so that aiX # 0. Thus afl xx = b¡ implies
that Xj = fccjK |ftf|< ILSlK/j.

Now suppose m = l, « > 1, and the theorem is valid for all cases 1, . . . ,
n - 1.  Let   Y = (y¡) denote a solution of (1) where  2"=1 y¡ is a minimum
for all solutions  Y, where   IIFII>0, and each yp <xp.  If all alf's are of
the same sign, then  Sp=1 \aXpyp= \bx\ so each yp<\bx\<b.  If two aj,-'s
are of opposite sign let axi and ax¡ be of opposite sign.  Either y¡ < \axA or
y I < lajj-l; for if not, in  Y replace y¡ by y¡ - \ax¡\ and y, by y, - \aXi\,
and contradict the minimum condition above.  Suppose then that y¡ < \axA < b,
and consider equation

(3) axxyx +... +aXJ_xy¡_x +aji/+i^.+ i + . . . +aj^„ = bx -a,¡y¡.

By the induction hypothesis, considering for the moment that in (3) the y 's
(p =£ i) as variable and y¡ as fixed, there is a solution Z = (zp), p =# i, such
that (a) 0 <zp <yp, p ± i, and (b) sup {zp}< A(l, «-1,4+ b2).  Since
y¡ <b, then  (zx.z¡_x,y¡, zi+x, . . . , zn) is the desired solution.

Before the general inductive step, a definition and lemma are necessary.
Definition.  Let S(A,B) denote the set of all solutions X= (x,) of

AX = B so that each x¡ E Z' and   llATll > 0, and let H(A) denote the set of
all solutions X = (x¡) of AX = 0  (where 0  is m by  1  if A  is «j by n)
so that each x¡ E Z' and   \\X\\ > 0.  Let HX(A) denote the set of all X = (xf)
in H(A) so that if X1 = (x[) is in ZZ(vl) and x¡ -x'¡>0 for  1 < i < «,
then X = X1.  Let 5'04, B) denote the set of all X in 5(/l, B) so that if
yEHX(A) then 1-7? SÇ4,B).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Lemma 1.   If X = (x,) is in S(A,B) (A,B as in (3) above), then there
exist  C= (c¡) in S"(A, B), elements Rf = (r;7) of HX(A) (j = 1, . . . , x),
and positive integers ax, . . . , ax  such that

(A) X=C + axRx +.. .+axRx.

Proof. The idea of the proof is to keep subtracting elements of HX(A)
from X as long as what remains is in S(A, B), and then collect like terms.

Now suppose m > 1, n > 1   and that the theorem has been found valid for
all cases (i,/, b) where i < m and / <n  or Km and / < n.

Now let   Y = (y¡) denote a solution of (1) in 5(4, B) so that  (1)   Il YII  is
a minimum M, and (2) given M, the number of coordinates y. for which
y¡ = M is also a minimum.  Assume for example that yx = min {yx, . . . , yn}.

First note that if the sum of the coefficients in each row'of A  is zero then
the problem may be solved by rewriting (1) as

«li(*i -*») +fli2(*2 -xv) + ...+aXn(x„ -xv) = bx

(5) :

flml(*l -xu)+am2Íx2 ~ x») + • • • + amnixn ~ xv) = bm

where xv = min {xt, . . . , x„}.  Noting that xv - xv = 0, and assuming that
each x¡ - xv (i ¥=v) is a variable for the moment, by use of the induction
hypothesis there is a solution  W = (w¡) of (5) so that each x¡ - xv> w¡ > 0
and
(5') sup {w¡} <N(m, n - 1, b).

Therefore, assume the sum of the coefficients in some row is not zero.
Now assume, for example, that axx # 0 and derive from AY = B equa-

tions
(6) «ii^i =bx -(ax2y2 +...+aXny„),

iaxxa22 -a2xaX2)y2 + ... +iaxxa2n -a2xaXn)yn =axxb2 -a2xbx

(7) ;

(allam2 -flml£f12h+"-+(flllVn-amlalnK=flll6m  ~amlbl-

Let (7) be written as a matrix equation

(8) A'Y = B'.
By Lemma 1 and the induction hypothesis
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(9) y = C + axRx + ... +axRx

where (1)  C = (c¡), i = 2, . . . , n, is in S'(A', B'), (2) Rx, . . . , Rx   are dis-
tinct elements of Z/j(>l') such that Rp = (rp¡), i = 2, . . . , n, (3) sup {IICll,
ll/?i II, ... , \\RX II, xj(m - 1)} < N(m - 1, « - 1, 262) and (4) each ap  is a
positive integer.

Now suppose for the moment that y¡ = sup {yx, . . . ,yn} and every Rp
(1 <p <x) for which rpi > 0  is such that ap < lajj I. Then y¡ <
(1 +xlajjl)A(m - 1,« - 1,262) or
(10) y¡<(l + Z>Am-1(m - 1,« -l,2b2))N(m - l,n - 1,2ft2).

Now suppose that y¡ = sup{yj, . . . , yn}   and, for example, that rx ¡ > 0
and at > lajjl.  Thus, replace aj   by ax - \axx\   to obtain a new element
Y" " Op)» P = 2, . . . , n, of 504', fi') and note that Z" = OÏ, >»2, . . . , 7„)
is a solution of (6) where y"x = yx + (ax2rx2 + . . . + aXnrXn), where  + is
used if at j > 0, and  - is used if axx < 0.

There are three cases to consider.
Case 1: 0 ^y"x <y¡. In this case Z" is a solution of AX = B such that

(1) sup {y"} = y i and the number of elements taking on the maximum value is
less than the number of Y or (2) sup {y"} <y¡.  Either case leads to a con-
tradiction.

Case 2: y¡^y'[. Pick an integer q so that the qth row of A  does not
sum to zero.

(ID ¿2 aop(yP -yi)
p=i

< Z KPo„-j>',)i.p=i

(12)

(13)

(14)

(15)

(16)

bq - Z Wi
p=i

< Z i*,«, i- \yP ->t'i
p=i

2>p=iqp̂ i< Z   \aqp\-\yp-yx\+\bq\,
p=\

yi < Z Kp'- ̂ p-^i'+i^i.p=i
y"l   <   (l +  Z    '^p') lff12r12 + ---+«ln'ln1 + 'V'

>-,. </j'   < (1 + nb)(nbN(m - 1, n - 1, 2fe2)) + ft.
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Case 3: y"x < 0.  Thus yx < \ai2rX2 + . . . + aXnrXn\, or

(17) yx <nbN(m - 1, n - 1, 2ô2).
Then by considering

«12^2 +---+<Wn = ¿i -«iiA'i

(18) :

am2y2    +---+amnyn = bm -amiyi

and assuming for the moment that y2, . . . ,yn  are variable, then application of
the induction hypothesis to (18) yields a solution w2, . . . ,wn  so that 0 <
wp <yp,p = 2, . . . ,n, and
Ci9,   suPÍyp) = SUP wp < A(w, n - 1, b + b(nbN(m - 1, « - 1, 2ft2))).

It has now been established that there is a solution   Y = (y¡) of (1) so that
sup(yf) is less than the  sup G of the bounds established in (5'), (10), (16), and
(19).

Returning to the original problem in the case  (m, n, b) let   Y = (y¡) E
S(A, B) so that (1) y¡ <x¡,i = 1,. . . ,n, and (2) Hill is a minimum for all
Ys satisfying (1).  Let   W = (w¡) E 5(4, B) be a solution satisfying   II Ml < G.
If w¡<:y¡ for all i   the bound is established, so suppose yx <wx, for ex-
ample.  Then yx < G, so consider (18) where y2, . . . ,yn  are assumed variable
and apply the induction hypothesis to obtain a solution  Y' = (y'¡), i = 2, . . . , n,
so that 0 <y'¡ <y¡, i = 2.n, and  sup {y'p} < N(m, « - 1, b + bG).
This completes the proof of Theorem 1, since yx, y'2, . . . ,y'n  is the desired
solution.

6. Normal surfaces. The purpose of this section is to give a brief description
of the results of the normalization process described in [3], [7].

Let M be a compact 3-manifold with boundary  Bd(M) and having tri-
angulation  T.  Let  P be a cellular decomposition of M where 3-simplexes are
polyhedral 3-cells such that (1) the 0-simplexes of T are contained in a family
B C T of mutually exclusive "ball" neighborhoods, (2) the parts of the 1-
simplexes of T not contained in U B are contained in a family A C T of
mutually exclusive 'bar" neighborhoods, (3) the pairs of the 2-simplexes of T
not contained in \\ [A U B] are open 2-cells contained in a family F C T of
mutually exclusive "flag" neighborhoods, and (4) the closures of components of
M - \J\A U B UF] are a family R C P of mutually exclusive "remainder space"
neighborhoods.  Also assume \JA, \J(A U B), \J(A UB UF) are, respectively,
closed neighborhoods of the 0-, 1-, and 2-skeleton of T, and that if two cells
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x, y of T' intersect then x O y E T', i.e. faces of lower dimension are in-
cluded in T'.

If ME E3 and the elements of T are rectilinear than we may require that
the elements of F U R be convex, and those of A, B be intersections of convex
sets with M. Following Waldhausen [10], for each a E A and each fEF let
a and / be given product structures Z)fl x Zfl and D. x I   respectively, such
that (1) the disks of the form Z)   "0 and D   x i are where a intersects thev ' a a
two adjoining balls, respectively, and (2) if a is determined by xy and / by xyz
then an arc of the form a n (Df x t) is also of the form p x [0, 1], p E Da.

On the boundary of a ball b a set of the form a n b, a E A, is called an
island; a set of the form b n /, / E F, is called a bridge; and a set of the form
b Or, r ER, is called a lake.

Now let 5 be a connected 2-manifold with boundary which is piecewise
linearly embedded in M so that if Bd(5) is not void, then Bd(5) C Bd(M).

Now select some property P of the surface.  The property P of interest
to the author is that "5 is an incompressible orientable connected 2-manifold
with boundary the fixed simple closed curve X which is a subset of the 1-skele-
ton of T." Another property suggested by Schubert in [7] is that "5 is a 2-
sphere in M which does not bound a cell in M." We now describe the applica-
ble steps of the normalization process for 5 as they are given in Schubert [7].

Step 1. By isotopic deformations of 5, holding Bd(5) fixed, lift 5-Bd(5)
off Bd(M) so that 5 n Bd(M) = Bd(5).

5rep 2. Push 5 out of the elements of R. (Unless the word "cut" is used
from now on such words as push, pull, etc. will be understood to be movements
of 5 by a homeomorphism of the space.)

Step 3. Bd(5) is deformed isotopically out of those pieces fC\ Bd(M),
fEF. This isotopy is extended to an isotopy of 5 so that 5 still intersects no
element of R.

Step A. S is "pulled tight" in the flags by an isotopy which holds Bd(5)
fixed, but so that if fEF then a component of 5 n / is of the form D. x t.

Step 5. Bd(5) is isotopically moved on Bd(M) so that if x is an element
of A (respectively, B) and y is a component of 5 n Int(x n Bd(M)), then y is
a segment of an arc with endpoints in different elements of B (respectively, .4).
The deformation of Bd(5) is extended to one of 5. The preceding is done so
that if a E A, b E B, and x is an arc of the form sfljn Bd(M), then Bd(5)
crosses x on Bd (M) at any point they have in common.

Step 6. 5 is pulled tight in the bars so that if a EA then a component of
S C\a is of the form y x [0, 1], where y is a simple closed curve in Int(Z>fl),
or y is an arc lying in Int(D ) except for its endpoints, which lie on Bd(Z)fl).

Step 7. If there exists b EB such that some component of 5 n b is notLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



400 L. B. TREYBIG

a 2-cell, then there is such a component C such that there is a simple closed
curve J component of CO Bd(b) and a disk D on Bd(ft) such that (1) J =
Bd(Z>) and (2) if / is a component of 5 n Int(D) then / bounds a disk D'
on 5, where Int (Z)') C b.  5 is now cut open along a simple closed curve Jt  on
C, where J U Jx  bounds an annulus on C, and then the two copies of Jx  are
capped by disks whose interiors lie in Int (ft), avoid each other, and avoid 5.

In general, whether or not 5 is cut into two pieces by this operation, one
must check to see if one of the remaining components has property P.   If not,
the normalization has failed.  Note that in the two examples described above nor-
malization does not fail.  The process is continued until for all b EB, each com-
ponent of b n 5 is a 2-cell lying except for its boundary in  Int (b).

Step 8. Suppose b EB, r is a component of b n Bd(M), and a EA, with
i = a n ft and a n Bd(M) both nonvoid.  If there is a component c of 5 n
Bd(Z>) n Int (i) so that both endpoints of c lie on r, then by cut and paste op-
erations such components c will be removed.  Such a c is selected so that the
endpoints x and y of c on r subtend an arc xzy on Bd(z') so that seg(xzy)
lies on Bd(r) and contains no endpoints of any other c.  Let g be the disk on
i bounded by c U xzy.

S is now cut open on c and capped with disjoint disks g', g" one lying
close to g in Int (ft) except for an arc on ft n Bd(M) and the other lying close
to g in Int(a), except for an arc on a n Bd(M). Thus 5 n Bd(ft) has one less
component having the properties of c.

If the new surface 5' is still connected we must check to see if 5' still
has property P.   If not, the normalization fails.  If 5' has two components 5j
and 52, then one of these has property P or the normalization fails.  In the
first case x(S) < x(S) and in the second case xiS) < x(S ) for p = 1, 2.

Assuming the normalization process does not fail, all components of type
c are removed, and the normalization process is repeated from Step 5 on as often
as needed until the steps are meaningless for 1 through 8.

Step 9. Now suppose b EB and there is a component of 5 n ft whose
bondary runs more than once across some bridge y.  Then, there is a component
C of 5 n ft such that (1) there are two arcs wvw2 of Bd(C) so that both
wl  and w2  run across y but (2) no point of 5 lies between them on y.
There exists fEF and disks of the form D. = D, x t. (i = 1, 2) such that
(1) w. c £>f C 5 (/= 1, 2) and (2)/n ft =;>. There is a disk D on C such
that D n Bd(C) = w(Uw2, and a disk Z)' so that (1) D' C ft, (2) Bd(Z>') is
the union of an arc pqr on £> and an arc pq'r on y where p G segWj, r E
segM>2, segp<jrr C lnt(D), and p^V O Wj = p and pqr'r n w2 = r, and (3) D' C\
S = pqr.  5 is now pushed into / along D' and then Dx  and £>2  are pushed
out of / into the adjoining balls and bars.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Now, starting with Step 6, the process is repeated as long as needed until
Step 9 is no longer needed.  If property P is retained at each step, then the
normalization is completed.  A surface for which all the steps are unnecessary is
called a normal surface.

Two normal surfaces are regarded as similar if they are isotopic under a map
which moves no point out of the cell of 2' (dimensions 1, 2, 3) to which it be-
longs.  Such an isotopy is called inessential.

7. Extended normal equations. Clearly a normal surface 5 is defined up to
inessential isotopy by its intersections with the boundaries of the balls.  Such an
intersection of 5 with the boundary of a ball ft has components which are sim-
ple closed curves J such that if x is an island on ft and y is a bridge on ft
and z and z' are disjoint arcs on /, then (1) if z is a component of J O x
then segz C Int(x) and the endpoints of z are not on y, (2)J is not a sub-
set of y, but if z is a component of J Dy then z runs between the two is-
lands at the ends of y, and z' C Bd(ft) - y, and (3) J is not a subset of x, but
is a subset of the interior of the union of the islands and bridges on ft.  A sim-
ple closed curve / on Bd(ft) which is equivalent to J under inessential isotopy
is said to belong to the same cut type. The set of all cut type classes is labeled
Pj, R2,- • ; Rn where ft ranges over B.

Now suppose a EA, b EB, k ER    (1 <p <n), k C ft, and arc xy is a
component of k D a O ft. The bow type of xy is the set of all x'y' on ft
which are equivalent to xy under inessential isotopy. The bow type classes are
labeled kx, ■ • ; km where a ranges over A, ft over B and k over all Pp's.
In [3], [7] the bow type k. is said to be contained in cut type R¡ if a curve
in R. contains an arc in k.. Define a.. = 1 if bow type k. is contained in
cut type R. and let a.. = 0 otherwise.

Let a EA and let ftQ,-ftj  be the balls at the ends of a.  Let the elements
of k. lie in a n bQ  and those of k. lie in a n ft l '.  If there exists z Ek{ such
that y = ftj n z x [0, 1] E k. then define ft.. = 1  and otherwise let ft.. = 0.
If ft.. = 1  then k. and k. are said to be coupled.

Also starting with the notation of the previous paragraph, if for each z E
k. the set 7 = ft j n (z x [0, 1 ]) intersects each x E k. then define c.. = 1.
Otherwise, define c¡¡ = 0.  Professor Haken indicated to the author that he
calls k¡ and Ay compatible if c¡¡ = 0.

We now state some equations satisfied by the surface 5.  Let x. denote
the number of times cut type R. occurs on 5. One condition given in [3], [7] is

(20) bjh Z (an - ahl)x¡ = 0       (1 </, h < m),
i'=i

for each pair of coupled bow types k-, kh. Also we haveLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(21) cjhajuahvxuxv = °      (Kf,h<m;l<u,v< n).

In the case of interest to the author where Bd(5) is a fixed simple closed
curve on Bd(M), then certain cut types may be specified in advance to occur exactly
once. This may be stated as

(22) *Pf=1>      i=l,...,*.

Now for each cER. let Gc. denote c n %\JA) n ((\JF) UBd(AQ)] and let
«. = cardo? for some c in R.. The surface 5 is now triangulated (not necessarily
rectilinearly) such that (1) all the 0-simplexes lie in UG?, (2) if A: is a 2-cell on 5
bounded by J ER. then k is subdivided into n. - 2 2-simplexes, (3) if C is a com-
ponent of S Da, a E A, then C is subdivided into two 2-simplexes, and (4) if C is
a component SC\f,fEF, then C is subdivided into 4 2-simplexes. The Euler
characteristic x of 5 is now computed with the aid of the following equations.

The number of components of the form 5 n ft, ft E B, is <i = Z"_ j Xy. The
number of components from sets of the form a n 5 is ft = 2" &x n • since each such
component contains four of the 0-simplexes. The number of components from sets
of the form 5 n /, fE F, is /' = (2ft - k)/3, where k is defined in (22). Under the
triangulation described above the number of 0-simplexes is

(23) Vx =  Z */»/.i
The number of 1-Simplexes is

(24) Sx = Z (2«y - 3>y + 3 Z % "jxj + 3/.

The number of 2-simplexes is

(25) F1=t(«y-2)xy + 2ft+4r

and the Euler characteristic x = Vx + Fj - 5j is described by

(26) 12x=-4Ar+ ¿ (12-«y)Xy.
i

The extended set of normal equations for 5 then consists of (20), (21), (22) and
(26). Now suppose we consider the set of equations as a defining system for such
an 5. If a nontrivial solution X = (x.) is found for the system, then it is not hard
to verify that a surface 5' may be built which (1) is in normal position, (2) has the
same boundary as 5, (3) has the same Euler characteristic as 5, and (4) has the prop-
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erty x¡ is the number of times cut type R. occurs on 5\ The only problem here
is that connectivity may be lost, as can be seen by simple examples. Also remember
that the set of equations (20), (21), (22), (26) given here is that of interest to the
author. If the reader is interested in some other property P, then he would proba-
bly have to derive a different set of equations.

8. The number of simplexes used in certain surfaces. In this section the re-
sults of §§5,6, and 7 are combined to show the existence of triangulated surfaces
of a certain "size" provided surfaces of that type exist at all.

Before we proceed we need to make some more definitions. In E3 let M be
a compact triangulated 3-manifold with boundary and having rectilinear triangula-
tion P. We wish to define a specific cellular decomposition T(M).

Let et denote a positive number less than 1/10 the distance between any
two disjoint simplexes of P and let Bx denote {ft : there is a 0-simplex v of T
and ft= {xEM:d(v,x)<:el}}. Let e2 be a positive number less than ej/10 and
such that if x and y belong to disjoint 1-simplexes of T but to no element of Bx,
then d(x,y)> 10e2. Let Cj = {x:xEM and x lies within e2 of apointof 1-
skeleton of T} and let A t denote the set of all closures of components of Cx -
(JJßj). Let e3 be a positive number less than e2/10 such that if x,y belong to
disjoint 2-simplexes of T but not to \J(A. UB{), then d(x,y)> 10e3, and let C2
denote {x:xEM and x lies within e3 of the 2-skeletonof M}. Let Fj denote
the set of all closures of components of C2 - <\J(AX UPj)). Let Rx denote the
set of all closures of components of M - (j^J(A lUBlUFl )).

Given x G Pj let v   denote {y:yEx and y belongs to a set of the form
aflxOBdOO (aEAl and/GF^.or Bd(a U x U f) n TQ Ct Bd(M), or sC\P}
where s E T. and there exists a EA such that P is the plane containing
Bd(a n x) - Bd(M), and s determines a.

ForeachaGylj let  ftj,ft2 denote the elements of Zf, intersecting a. Let
vq denote {y: y Ea D (vb   U vb ) or (if the 1-simplex s which determines a
is on Bd(M)) y Es n P C\vb. (i = 1,2))}, where P is as above.

Define A to be {c(a) D M: c(a) is the convex hull of va for some a G A x }.
Likewise define B. Define F to be the set of all closures of components of C2 -
(JJ(4 U B)), and define R to be the set of all closures of components of M-
QJAUBUF)). Define P1,---,Pn asin§7.

Theorem 9. In E3 let M be a compact 3-manifold with boundary and having
rectilinear triangulation T.  Let T = T(M) be as in the previous definition.
Let S be a connected, incompressible, orientable 2-manifold with boundary such
that S n Bd(M) = Bd(5), where Bd(5) is a simple closed curve which is the
union of 1-simplexes of T.  Let 5 have Euler characteristic x <tnd let v = the
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number of 0-simplexes of T.   Then, there is a 2-manifold with boundary S' such
that (1) 5' n Bd(M) = Bd(5') = Bd(5), 5' C M, and the Euler characteristic of
S' is x, (2) 5' is in normal position relative to  T, and (3) there is a vector
Y = (y¡) such that (a) y¡ denotes the number of times cut type R¡ occurs on
5, and (b) sup {y¡}<N(m, n , sup {x, y}) where m < (2)m2n + v + 1, n < v\,
x = 12 + 4(§), y = 12x + 4t> + 1, m < 2Q) [(S)((§) - 1)1 « <u!, where m is
the number of possible bow types and n the number of possible cut types.

Proof. First note that since 5 is incompressible the steps for normaliza-
tion may all be replaced by isotopic deformations so we may as well assume that
5 satisfies a matrix equation A'X = B' where the matrices are formed using
(20), (22) and (26).

If n(Tp) (p = 0, 1, 2, 3) denotes the number of p-simplexes of T, then
n(Tp) < (plx), p = 1, 2, 3.  At a given 0-simplex q of P, if ft G B and q E ft
then the number of cut types on Bd(ft) is at most (v - 1)!. Thus, the number
n of cut types is no more than u!.

If a G A  and ft G B then the number of bow types on a H ft is
< (3)(Q - 1).   Since this bound must be considered at most twice on one 1-sim-
plex, the number n of bow types is < 2Q) [(3)((3) - 1)].

Also the number of a.¡ is mn, and the number of b.-h is < (2)m2. Also
each n- is <4(3).

Therefore the system of equations (20), (22), (26) as applied to M, Bd(5),
X has the property that if it is thought of as a single system as in equation (1),
where A  is m   by «' (since m,n are used previously), then sup {|a(y|}<x =
12 + A(v3) and sup {|ftf| }< 12x + Av + 1 = y.  Also m < d)m2n + v + 1  and
n < u!.  Therefore there is a solution  Y = (y¡) where

sup {y¡} <N(m, «', sup {x, y})

and y¡ < x¡ for each i. The surface S1 is then built using the indicated cut
types, then filling in the bars and the flags.

Theorem 10. In Theorem 9 the surface S' may be chosen to have a rec-
tilinear triangulation with at most (26/3)u! (%)N(m, n, sup{x, y}) 2-simplexes.

Proof. 5' may be formed so that (1) each disk which is a component of
5' n ft, ft EB, and determined by cut type P;. may be triangulated with <n¡
2-simplexes, where «• is defined in §7, (2) each disk which is a component of
A n 5', a EA, may be triangulated with two 2-simplexes, and (3) each compo-
nent of 5' n / / G F, may be triangulated with four 2-simplexes. Therefore the
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total number of 2-simplexes used is less than or equal to

v^          . o ¿ xini        2 27 1Áxini - kZ "ft + 2 Z-^-+ 4 ;/-
1 I

n   13 0f\      / v\
< Z -Z7"jxj < -Jv[ W N(m', n, sup{x,^}).

This completes the proof of Theorem 10.
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