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Abstract. In this contribution we give a semi-infinite optimization approach
to investigate the affine breadth eccentricity of convex bodies. An optimization-
technique-based description of the minimal ellipsoid (Loewner-ellipsoid) of a convex
body is used to derive an upper bound of the affine eccentricity in a very natu-
ral way. An additional special (integer programming) optimization problem shows
that the obtained upper bound is the best possible one.
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1. Introduction

Let K := {K ⊆ Rd | K convex, compact, int K 6= ∅} be the class of all convex bod-
ies of Rd. In K we have the geometrical quantities width 4(K) and diameter D(K) as
the minimal or maximal distance respectively between two parallel supporting hyperplanes
of K ∈ K. Furtheron the inradius %(K) := sup{r|B(x, r) ⊆ K} and the circumradius
R(K) := inf{r|B(x, r) ⊇ K} are the radii of a largest ball contained in K or the small-
est containing K respectively, B(x, r) := x + rB, B := {u ∈ Rd |uT u ≤ 1} denotes the
d-dimensional Euclidean unit ball.

According to Steinhagen and Jung the ratios ∆(K)/%(K) and R(K)/D(K) are bounded
above in K, the sharp upper bounds depend on the dimension d only, see [5], [7].
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The quotient
D(C)

4(C)
, the breadth eccentricity of C, is unbounded in K. Leichtweiss [6] showed

that the affine breadth eccentricity

β(C) := inf
ϕ∈Φ

D(ϕ(C))

∆(ϕ(C))
= inf

K∈KC

D(K)

4(K)

is bounded above in K by the sharp upper bound
√

d; Φ denotes the group of all regular
affine mappings of Rd into itself and KC := {K ∈ K |K = ϕ(C), ϕ ∈ Φ} is the affine class
corresponding to C. The affine breadth eccentricity is closely related to the affine radial

eccentricity α(C) = inf
K∈KC

R(K)
%(K)

. It turns out that β(C) = α(C∗), where C∗ :=
1

2
(C +(−C))

denotes the central symmetrization of C. In what follows we will use an optimization approach
for determining the smallest upper bound (already given by Leichtweiss) of the affine breadth
eccentricity.

2. Minimal ellipsoids and upper bounds of affine eccentricity

We consider ellipsoids

E = E(Q, x) :=

{
t ∈ Rd

∣∣∣∣ (t− x)T Q(t− x) ≤ 1

}
with center x = (x1, . . . , xd)

T ∈ Rd and Q = (qik) ∈ Sd×d
+ := set of all real symmetric positive

definite (d, d)-matrices. Let

k(u) := sup
t∈C

uT t , u ∈ Rd

and
h(u) := sup

t∈E(Q,x)

uT t = uT x +
√

uT Xu, u ∈ Rd

be the corresponding support functions of C and E respectively, where X = (xik) := Q−1 ∈
Sd×d

+ . Let 0 6= u ∈ Rd be a given direction, the corresponding supporting hyperplane {t ∈
Rd |uT t = h(u)} of the ellipsoid E(Q, x) has the supporting point

y := x +
Xu√
uT Xu

∈ ∂E(Q, x). (2.1)

The volume of E is given by

V (E) = V (Q, x) =
ωd√
det Q

= ωd

√
det X

where ωd :=
π

d
2

Γ
(

d
2

+ 1
) denotes the volume of the unit ball B.

Let C ∈ K. Due to int C 6= ∅ we can assume 0 ∈ int C. Among all ellipsoids covering C we
look at first for that one with minimal volume (Loewner-ellipsoid, minimal ellipsoid). Using
the equivalence

C ⊆ E(Q, x) ⇐⇒ ∀u ∈ Rd : k(u) ≤ h(u),
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we obtain the semi-infinite optimization problem

min

{
F (X, x) = det X

∣∣∣∣ (X, x) ∈ UM

}
(2.2)

UM :=

{
(X, x) ∈ Sd×d

+ × Rd

∣∣∣∣ ∀u ∈ ∂B : uT x +
√

uT Xu ≥ k(u)

}
(2.3)

with the d(d+3)
2

variables xi and xik, i, k = 1, . . . , d, i ≥ k. The pair (X, x) ∈ UM will also
be regarded as a point ξ := (x11, . . . , x1d, x22, . . . , x2d, x33, . . . , xdd, x1, . . . , xd) ∈ Rm, m =
d(d + 3)

2
. Due to the compactness of C and 0 ∈ int C there exist radii r, R > 0 with

rB ⊆ C ⊆ RB, such that 0 < r ≤ k(u) ≤ R holds for all u ∈ ∂B. Hence the feasible region
(2.3) can be reduced to such points (X, x), for which rdωd ≤ V (E(X−1, x)) ≤ Rdωd holds,
i.e. to

UM :=

(X, x)

∣∣∣∣∣∣
∀u ∈ ∂B : uT x +

√
uT Xu ≥ k(u)

r2d ≤ det X ≤ R2d

X ∈ Sd×d
+ , x ∈ Rd

 .

Since UM is a compact subset of Rm, (2.2) has always an optimal solution (X0, x0), which
gives the minimal ellipsoid (Loewner-ellipsoid) E(X0−1

, x0). Due to John [1] there exist

directions u1, . . . , ur ∈ ∂B, 0 ≤ r ≤ m = d(d+3)
2

, which correspond to active restrictions (in
the point (X0, x0)) of (2.3), and multipliers λT = (λ0, . . . , λr) 6= (0, . . . , 0), λ0 ≥ 0, λ1 >
0, . . . , λr > 0 such that the Lagrange-function

L(X, x, λ) := λ0 det X +
r∑

j=1

λj

[
k(uj)− ujT

x−
√

ujT Xuj
]
,

built with these restrictions, is stationary in (X0, x0).

In what follows, u1, . . . , ur are called characteristic directions and the corresponding sup-
porting points y1, . . . , yr (cf. (2.1)) characteristic supporting points.

With ∂L
∂xi

= −
r∑

j=1

λju
j
i and

∂L

∂xik

=


λ0Xii − 1

2

r∑
j=1

λj
(uj

i )
2√

ujT Xuj
for i = k

2λ0Xik −
r∑

j=1

λj
uj

iu
j
k√

ujT Xuj
for j 6= k

(Xik = adjoint of xik in X) we get necessary optimality conditions, which turn out to be also
sufficient ones. The uniqueness of the minimal ellipsoid can be deduced from these conditions,
and it can be shown that the minimal ellipsoid of C is already the minimal ellipsoid of a
certain polytope contained in C (with at most d(d+3)

2
vertices). Summarized we have (cf. [3],

[4])
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Theorem 1.
(i) E(X0−1

, x0) is minimal ellipsoid of a convex body C if and only if E(X0−1
, x0) ⊇ C

and the following conditions hold: There exist directions u1, . . . , ur ∈ ∂B and scalars
λ0, . . . , λr ∈ R with

d + 1 ≤ r ≤ d(d + 3)

2
, λ0 > 0, . . . , λr > 0,

such that

ujT

x0 +
√

ujT X0uj = k(uj), j = 1, . . . , r (2.4)
r∑

j=1

λju
j = 0 (2.5)

(2λ0 det X0)I =
r∑

j=1

λj
X0ujujT√
ujT X0uj

. (2.6)

(ii) The minimal ellipsoid of C is uniquely determined.

(iii) The minimal ellipsoid of C is also minimal ellipsoid of the polytope conv {y1, . . . , yr},

yj := x0 +
X0uj

√
ujT X0uj

, j = 1, . . . , r

(I denotes the (d, d)-identity matrix).

Forming the trace in (2.6) we get

2dλ0 det X0 =
r∑

j=1

λj

√
ujT X0uj. (2.7)

This shows once more λ0 > 0, i.e. John’s optimality conditions of part (i) are of Karush-
Kuhn-Tucker type.

A regular affine mapping has no essential influence to the optimization problem (2.2),
since all volume ratios remain invariant. Furtheron the minimal ellipsoid E0 of C is affine-
invariantly connected with C (due to its uniqueness): ϕ(E0) is minimal ellipsoid of ϕ(C) for
all regular affine transformations ϕ ∈ Φ. Therefore we may assume the minimal ellipsoid
E(X0−1

, x0) to be the unit ball after a suitable affine transformation, i.e. X0 = I, x0 = 0
and uj = yj, j = 1, . . . , r. In this case, the optimality conditions (2.4) and (2.6) simplify to

k(uj) = 1, j = 1, . . . , r

2λ0I =
r∑

j=1

λju
jujT

(2.8)
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and (2.7) turns into

2dλ0 =
r∑

j=1

λj. (2.9)

Lemma 1. Let C ∈ K be a convex body and E0 the corresponding minimal ellipsoid. Let
ϕ0 ∈ Φ be a regular affine transformation, which maps E0 onto the unit ball B. Then

D(ϕ0(C))

4(ϕ0(C))
≤
√

d.

Proof. The minimal ellipsoid of ϕ0(C) is B. The corresponding characteristic directions
u1, . . . , ur ∈ ∂B are equal to the characteristic supporting points y1, . . . , yr. Let

g(u) := max
j=1,... ,r

uT yj

be the support function of the polytope conv {y1, . . . , yr}, such that

(g(u)− uT yj)(g(−u) + uT yj) ≥ 0, j = 1, . . . , r.

With the multipliers λ1, . . . , λr according to Theorem 1, this leads to

r∑
j=1

λj g(u)g(−u) + (g(u)− g(−u))uT

r∑
j=1

λjy
j − uT

(
r∑

j=1

λjy
jyjT

)
u ≥ 0,

which (using the optimality conditions (2.5), (2.8) and (2.9)) results in

2d λ0 g(u)g(−u)− uT (2λ0I) u ≥ 0,

and therefore

∀u ∈ ∂B : g(u)g(−u) ≥ 1

d
.

Since 0 ≤ g(u) ≤ 1 ∀u ∈ ∂B, we get

g(u) + g(−u)

2
≥
√

g(u)g(−u) ≥ 1√
d

for all u ∈ ∂B. The inclusions {y1, . . . , yr} ⊆ ϕ0(C) ⊆ B lead to

4(ϕ0(C)) ≥ 4(conv
{
y1, . . . , yr

}
) = inf

u∈∂B
(g(u) + g(−u)) ≥ 2√

d

and

D(ϕ0(C)) ≤ D(B) = 2,
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out of which the claim follows. �

Every affine class KC contains according to Lemma 1 a convex body, whose breadth eccen-
tricity is at the most

√
d, so the inequality

∀C ∈ K : 1 ≤ β(C) ≤
√

d

given by Leichtweiss [6] is verified, only using optimization techniques. We show now, also
with means of optimization theory, that the upper bound

√
d is the best (smallest) possible

one in the class K.
To prove this property, a particular body C0 ⊆ K with

∀ ϕ ∈ Φ :
D(ϕ(C0))

∆(ϕ(C0))
≥
√

d

is to present. We will show that for instance every cross polytope of Rd is such a body. For
this purpose let S0 := {e1, . . . , ed,−e1, . . . ,−ed} be the vertex set of a regular cross polytope
P0 := conv S0 (with edge length

√
2); ei := (δi1, . . . , δid)

T ∈ Rd denotes the i-th canonical
basis unit vector of Rd, (e1 · · · ed)d,d = I.

An arbitrary affine transformation ϕ ∈ Φ has the form ϕ(x) = AT x + b with a certain
regular matrix AT = (a1 · · · ad)d,d. Since diameter and width are invariant under translations,
we may restrict ourselves to b = 0. Then

ϕ(S0) = {a1, . . . , ad, −a1, . . . ,−ad}

is the vertex set of the (general) cross polytope

P := ϕ(P0) = ϕ(conv S0) = conv ϕ(S0).

The linearly independent vectors a1, . . . , ad ∈ Rd are the “generating vectors” of P . Inversely
each cross polytope of Rd can be represented as affine image of the regular cross polytope
P0. Hence the affine breadth eccentricity of the regular cross polytope is given by

β(P0) = inf
ϕ∈Φ

D(ϕ(P0))

∆(ϕ(P0))
= inf

P∈KP

D(P )

∆(P )
.

KP denotes the set of all cross polytopes of Rd. (Furthermore we realize: ∀ P ∈ KP : β(P ) =
β(P0), i.e. β is constant on KP.)

The width ∆ of a general cross polytope can be obtained from the solution of a certain
discrete optimization problem according to

Lemma 2. The cross polytope P = conv{a1, . . . , ad,−a1, . . . ,−ad} of Rd with the linearly
independent generating vectors a1, . . . , ad ∈ Rd has the width

∆(P ) =
2

max
ε
||A−1ε||
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and the diameter

D(P ) = 2 max
i=1,... ,d

||ai||,

where AT := (a1 · · · ad)d,d and εT := (ε1, . . . , εd) with ε1 ∈ {−1, 1}, i = 1, . . . , d.

Proof. Let S := {a1, . . . , ad,−a1, . . . ,−ad} be the set of vertices of the cross polytope P ,
then

∆(P ) = ∆(conv S) = ∆(S)

= inf
u∈∂B

{max
t∈S

uT t−min
t∈S

uT t}

= inf
u∈∂B

{ max
i=1,... ,d

(±uT ai)− min
i=1,... ,d

(±uT ai)}

= 2 inf
u∈∂B

( max
i=1,... ,d

|uT ai|) (2.10)

holds. With

z(u) := max
i=1,... ,d

|uT ai| , (2.11)

1
2
∆(P ) is the optimal value of the optimization problem

min

{
z(u)

∣∣∣∣ ||u|| = 1

}
, (2.12)

which is equivalent to

min
{

%
∣∣∣ −% ≤ aiT u ≤ %, i = 1, . . . , d, ||u|| = 1

}
.

(Geometrically (2.12) means: A hyperplane H through the origin with normal vector u is to
determine in such a way, that the greatest distance between the points a1, . . . , ad and the
hyperplane H gets minimal.) With v := u/% we get

max

{
||v||

∣∣∣∣ v ∈ M

}
, (2.13)

M :=

{
v ∈ Rd

∣∣∣∣ [ A

−A

]
v ≤

[e
e

]}
,

e := (1, . . . , 1)T ∈ Rd. The polyhedral constraint set M is compact, because if M would be
unbounded, the corresponding homogeneous constraint system[

A

−A

]
v ≤ 0

would have a nontrivial solution v (recession direction of M) with Av = 0. That is impossible
due to the linear independency of the generating vectors a1, . . . , ad. The points of M build
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a parallelotope with center 0, whose d pairs of (d − 1)-dimensional faces have the normal
vectors a1, . . . , ad and whose distances to the origin are 1/||a1||, . . . , 1/||ad||. (2.13) requires
to determine a point in M with greatest distance to the origin 0.

On the compact convex set M the convex objective function ||v|| attains its maximum
in a vertex of M . The point v ∈ M is a vertex of M iff there are d linearly independent
constraints in the set of all in v active constraints. This occurs if and only if

aiT v = εi, i = 1, . . . , d

holds with ε1, . . . , εd ∈ {−1, 1}, i.e. Av = ε, ε = (ε1, . . . , εd)
T . There are exactly 2d such

vectors ε. These lead to the 2d different vertices of M , which correspond to the 2d different
(d − 1)-dimensional faces of the cross polytope. Hence (2.13) is equivalent to the discrete
optimization problem

max

{
||v||

∣∣∣∣ Av = ε, ε = (ε1, . . . , εd), ε1, . . . , εd ∈ {−1, 1}
}

with the optimal value ||v||max = max
ε
||A−1ε||, such that

∆(P ) = 2%min =
2

||v||max

=
2

max
ε
||A−1ε||

, �

Due to (2.10) and (2.11) the diameter of the cross polytope P becomes D(P ) = 2 sup
u∈∂B

z(u).

With max
i=1,... ,d

||ai|| =: ||ak|| we get

∀ u ∈ ∂B : z(u) = max
i=1,... ,d

|uT ai| ≤ ||ak||

and z(u0) = ||ak|| for u0 = ak/||ak||, such that

sup
u∈∂B

z(u) = ||ak||

and
D(P ) = 2 sup

u∈∂B
z(u) = 2 max

i=1,... ,d
||ai||, �

Lemma 3. Let P ⊆ Rd be an arbitrary cross polytope. Then

D(P )

∆(P )

{
>
√

d, if P not regular

=
√

d, if P regular.

Proof. Due to Lemma 2

D(P )

∆(P )
= max

ε
||A−1ε|| max

i=1,... ,d
||ai||
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holds for P = conv{a1, . . . , ad,−a1, . . . ,−ad}, in which A = (a1 · · · ad)T
d,d is the matrix of

the generating vectors of P and ε = (ε1, . . . , εd)
T , εi ∈ {−1, 1}, i = 1, . . . , d. The generating

matrix %A belongs to the cross polytope P% := conv{%a1, . . . , %ad,−%a1, . . . ,−%ad} and

D(P%)

∆(P%)
=

D(P )

∆(P )

holds, so that max
i=1,... ,d

||ai|| = 1 can be assumed. Let A−1 =: (b1 · · · bd), we have

∀ j ∈ {1, . . . , d} : 1 = ajT

bj ≤ ||aj|| ||bj|| ≤ ||bj|| (2.14)

and

D2(P )

∆2(P )
= max

ε
||b1ε1 + · · ·+ bdεd||2 (2.15)

= max
ε

||b1||2 + · · ·+ ||bd||2 + 2
d∑

i,k=1
i<k

εiεkb
iT bk


= ||b1||2 + · · ·+ ||bd||2 + 2γd

with γd := max
ε

sd, sd :=
d∑

i,k=1
i<k

εiεkb
iT bk. Then

γ1 = 0,

γ2 = max
ε1,ε2

ε1ε2b
1T

b2 = |b1T

b2| ≥ 0,

γd = max
ε1,... ,εd

(sd−1 + εd(ε1b
1T

bd + · · ·+ εd−1b
d−1T

bd))

holds. Choosing (ε1, . . . , εd−1) = (ε0
1, . . . , ε0

d−1) in such a way, that sd−1 becomes maximal,
we obtain

γd ≥ γd−1 + max
εd

εd(ε
0
1b

1T

bd + · · ·+ ε0
d−1b

d−1T

bd)

= γd−1 + |ε0
1b

1T

bd + · · ·+ ε0
d−1b

d−1T

bd|
≥ γd−1,

all in all
γd ≥ γd−1 ≥ · · · ≥ γ2 ≥ γ1 = 0.

Furthermore

γd

{
= 0, if biT bk = 0 for i, k = 1, . . . , d, i 6= k,
> 0 otherwise

holds, because if bpT
bq 6= 0 for a certain pair of indices p, q ∈ {1, . . . , d}, then

γd ≥ max
εp,εq

εpεqb
pT

bq = |bpT

bq| > 0
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would hold. Together with (2.14) and (2.15) this leads to

D(P )

∆(P )
≥
√

d, (2.16)

and equality holds in (2.16) if and only if the vectors b1, . . . , bd build an orthonormal sys-
tem, i.e. the matrix A−1 is orthogonal. Hence the generating vectors a1, . . . , ad of the cross
polytope build an orthonormal system, i.e. P is a regular cross polytope. This proves the
claim. �

The Lemmata 1 and 3 show, that
√

d is the best possible upper bound of β for all convex
bodies, so we have proven the

Theorem 2. In the class K of the convex bodies K of Rd the affine breadth eccentricity

β(K) := inf
ϕ∈Φ

D(ϕ(K))

∆(ϕ(K))

has the upper bound
√

d, which is the best possible one. It will be attained for instance in the
affine class of cross polytopes of Rd.

Analogously to the proofs of Lemmata 2 and 3 it can be verified, that in addition to the cross
polytopes the parallelotopes of Rd (which are “polar” to the cross polytopes) also are convex
bodies with maximal affine breadth eccentricity

√
d.

3. Application: Minimal ellipsoid of a general cross polytope

Let E0 = E(C0, x0) be the minimal ellipsoid of the cross polytope

P = conv{a1, . . . , ad,−a1, . . . ,−ad} ⊆ Rd (3.1)

with the linearly independent generating vectors a1, . . . , ad ∈ Rd. The centers of P and E0

coincide (as it is true for every central-symmetric convex body), i.e. x0 = 0. Let ϕ = ϕP be
an affine transformation of Rd into itself with ϕP (E0) = B(0, 1). According to Lemma 1, we
get

D(ϕP (K))

∆(ϕP (K))
≤
√

d

for the cross polytope ϕP (P ). Due to Lemma 3 equality holds and hence ϕP (P ) is a regular
cross polytope. After a suitable orthogonal transformation it can be written as

ϕP (P ) = conv{e1, . . . , ed,−e1, . . . ,−ed}

with ϕP (ai) = ei, i = 1, . . . , d. Hence the mapping ϕP must have the form

ϕP (t) = A−1T

t,
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where A = (a1 · · · ad)T
d,d. The condition ϕP (E0) = B(0, 1) has the consequence AQ0AT = I,

thus the explicit representation of the minimal ellipsoid E(Q0, x0) of the cross polytope (3.1)
is given by

Q0 = (AT A)−1, x0 = 0.

The generating vectors a1, . . . , ad build a system of pairwise conjugate half axes of the min-
imal ellipsoid, because

aiT Q0ak =

{
0, if i 6= k
1, if i = k

, i, k = 1, . . . , d. (3.2)

Remark. If the vectors a1, . . . , ad ∈ Rd are given, the matrix Q0 is uniquely determined by
property (3.2): At first (3.2) implies the linear independency of a1, . . . , ad. For every

x =
d∑

k=1

ξka
k ∈ Rd

the relation

(
d∑

i=1

aiaiT ) Q0x =
d∑

i,k=1
i<k

ξka
iaiT Q0ak = x

holds, hence Q0−1
=

d∑
i=1

aiaiT = AT A.

So we have as a by-product the following geometric property: Let {a1, . . . , ad} be an arbitrary
system of conjugate half axes of an ellipsoid E = {t ∈ Rd | tT Qt ≤ 1} ⊆ Rd. Then E is
minimal ellipsoid of the cross polytope conv{a1, . . . , ad,−a1, . . . ,−ad}, which is generated
by these conjugate half axes. By the way, additionally E is also the maximal ellipsoid of the
parallelotope (polar convex body) given as intersection of the supporting halfspaces of E in
the boundary points a1, . . . , ad,−a1, . . . ,−ad, cf. [4].
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