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Abstract—Upper and lower bounds on the capacity and min-
imum energy-per-bit for general additive white Gaussian noise
(AWGN) and frequency-division AWGN (FD-AWGN) relay
channel models are established. First, the max-flow min-cut bound
and the generalized block-Markov coding scheme are used to de-
rive upper and lower bounds on capacity. These bounds are never
tight for the general AWGN model and are tight only under certain
conditions for the FD-AWGN model. Two coding schemes that do
not require the relay to decode any part of the message are then
investigated. First, it is shown that the “side-information coding
scheme” can outperform the block-Markov coding scheme. It is
also shown that the achievable rate of the side-information coding
scheme can be improved via time sharing. In the second scheme,
the relaying functions are restricted to be linear. The problem is
reduced to a “single-letter” nonconvex optimization problem for
the FD-AWGN model. The paper also establishes a relationship
between the minimum energy-per-bit and capacity of the AWGN
relay channel. This relationship together with the lower and upper
bounds on capacity are used to establish corresponding lower and
upper bounds on the minimum energy-per-bit that do not differ
by more than a factor of 1 45 for the FD-AWGN relay channel
model and 1 7 for the general AWGN model.

Index Terms—Additive white Gaussian noise (AWGN) channels,
channel capacity, minimum energy-per-bit, relay channel.

I. INTRODUCTION

THE relay channel, first introduced by van der Meulen [1]
in 1971, consists of a sender–receiver pair whose commu-

nication is aided by a relay node. In [1] and [2], simple lower
and upper bounds on the capacity of the discrete-memoryless
relay channel were established. In [3] and [4], capacity theo-
rems were established for: i) physically degraded and reversely
degraded discrete memoryless relay channels, ii) physically de-
graded and reversely degraded additive white Gaussian noise
(AWGN) relay channels with average power constraints, iii) de-
terministic relay channels, and iv) relay channels with feedback.
A max-flow min-cut upper bound and a general lower bound
based on combining the generalized block-Markov and side-in-
formation coding schemes were also established in [4]. In [5],
the capacity of the relay channel with one deterministic com-
ponent was established. It is interesting to note that in all spe-
cial cases where the relay channel capacity is known, it is equal
to the max-flow min-cut bound. Generalizations of some of the
single-relay channel results to channels with many relays were
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given in [6]. In [7], Aref established the capacity for a cascade
of degraded relay channels. The relay channel did not receive
much attention and no further progress was made toward estab-
lishing its capacity for a long time after this early work.

Recent interest in multihop and ad hoc wireless networks has
spurred the interest in studying AWGN relay channels. In [8],
achievable rates for AWGN channels with two relays were in-
vestigated. In [9], the capacity of a class of orthogonal relay
channels was established. In [10], upper and lower bounds on
the capacity of AWGN channels were established. The capacity
of AWGN relay networks as the number of nodes becomes very
large were investigated in (e.g., [11]–[14]). Motivated by energy
constraints in sensor and mobile networks, recent work has also
investigated the saving in transmission energy using relaying
[16]. In [18], upper and lower bounds on the capacity of AWGN
relay channels were used to establish bounds on the minimum
energy-per-bit that do not differ by more than a factor of . The
capacity and minimum energy-per-bit for AWGN relay chan-
nels, however, are not known in general.

In this paper, we provide detailed discussion and several ex-
tensions of the bounds on capacity and minimum energy-per-bit
for AWGN relay channels presented in [10] and [18], including
correcting an error in the capacity with linear relaying result
reported in [10]. We consider the two discrete-time AWGN
relay channel models depicted in Fig. 1. In the general model,
Fig. 1(a), the received signal at the relay and at the receiver at
time are given by

and

where and are the signals transmitted by the sender and
by the relay, respectively. The receivers’ noise processes
and are assumed to be independent white Gaussian noise
processes each with power , and the constants rep-
resent the gain of the channels from the sender to the relay and
from the relay to the receiver, respectively, relative to the gain
of the direct channel (which is assumed to be equal to one). The
frequency-division AWGN (FD-AWGN) model is motivated by
the constraint that in practice the relay cannot send and receive
information within the same frequency band (or at the same
time). To satisfy this constraint, one can either split the channel
from the sender to the relay and the receiver into two bands or
alternatively split the channel to the receiver from the sender and
the relay. The capacity of the first model has been established in
[9]. In this paper, we focus on the second FD-AWGN model,
depicted in Fig. 1(b). The received signal at time is given by

, where is the received signal
from the sender and is the received signal
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Fig. 1. (a) General AWGN relay channel model. (b) FD-AWGN relay channel model. Path gains are normalized to 1 for the direct channel, a > 0 for the channel
to the relay, and b > 0 for the channel from the relay to the receiver.

TABLE I
MAX-FLOW MIN-CUT UPPER BOUNDS AND GENERALIZED BLOCK-MARKOV LOWER BOUNDS ON C(P; 
P ) AND C (P; 
P )

from the relay, and and are independent white
Gaussian noise processes each with average noise power .

The paper establishes upper and lower bounds on the capacity
and minimum energy-per-bit for the general and FD-AWGN
relay channel models. In the following discussion we summa-
rize our main results and provide an outline for the rest of the
paper.

Bounds on capacity: In Section II, we use the max-flow
min-cut upper bound [4] and the generalized block-Markov
lower bound [4], [5] on the capacity of the relay channel to
derive upper and lower bounds on the capacity of the general
and FD-AWGN relay channels (see Table I). The bounds are
not tight for the general AWGN model for any and
are tight only for a restricted range of these parameters for the
FD-AWGN model. We find that the gap between the upper and
lower bounds is the largest when the channel to the relay is not
much better than the channel from the sender to the receiver,
i.e., is close to . We argue that the reason for the large gap
is that in the generalized block-Markov coding scheme the
relay is either required to decode the entire message or is not
used at all. For close to , this severely limits the achievable
rate. Motivated by this observation, in Sections IV and V, we
investigate achievable rates using two schemes where the relay
cooperates in sending the message but without decoding any
part of it. In Section IV, we explore achievable rates using the
side-information coding scheme [4]. We find that this scheme
can outperform block-Markov coding and in fact becomes
optimal as . We show that the achievable rate can be
improved via time sharing and provide a general expression
for achievable rate with side information for relay channels
in general (see Theorem 2). In Section V, we investigate the
achievable rates when the relay is restricted to sending linear

combinations of past received signals. We show that when
is close to , a simple suboptimal linear relaying scheme can
significantly outperform the more sophisticated block-Markov
scheme (see Example 1). We show that the capacity with linear
relaying functions can be found by solving a sequence of
nonconvex optimization problems. One of the main results in
this paper is showing that this formulation can be reduced to a
“single-letter” optimization problem for the FD-AWGN model
(see Theorem 3).

Bounds on minimum energy-per-bit: In Section III, we es-
tablish a general relationship between the minimum energy-
per-bit and capacity (see Theorem 1). We use this relationship
together with the lower bound on capacity based on the general-
ized block-Markov coding scheme and the “max-flow min-cut”
upper bound to establish upper and lower bounds on the min-
imum energy-per-bit (see Table II). These bounds can be very
close and do not differ by more than a factor of two. For the
FD-AWGN model the upper and lower bounds coincide when
the channel from the relay to the receiver is worse than the di-
rect channel, i.e., . For the general AWGN model, the
bounds are never tight. Using the lower bounds on capacity in
Sections IV and V, we are able to close the gap between the
lower and upper bounds to less than a factor of 1.45 for the
FD-AWGN model and 1.7 for the general AWGN model.

II. BASIC BOUNDS ON CAPACITY

As in [4], we define a code for the relay channel
to consist of, i) a set of messages, ii)
a codebook consisting of code-
words of length , iii) a set of relay functions such that

, and iv) a decoding rule

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2010 at 17:12:52 EST from IEEE Xplore.  Restrictions apply. 



EL GAMAL et al.: BOUNDS ON CAPACITY AND MINIMUM ENERGY-PER-BIT FOR AWGN RELAY CHANNELS 1547

. The average probability of decoding error is defined in the
usual way as

transmitted

We assume the average transmitted power constraints

for all and

for all

A rate is said to be achievable if there exists a sequence of
codes satisfying the average power constraints on

and on , such that as . The capacity
of the AWGN relay channel with average power con-

straints is defined as the supremum of the set of achievable rates.
To distinguish between the capacity for the general AWGN and
the FD model, we label the capacity of the FD-AWGN relay
channel as .

In this section, we evaluate the max-flow min-cut upper
bound and the block-Markov lower bounds on the capacity
of the general and FD-AWGN channels. In particular, we
show that the lower bounds achieved with the block-Markov
encoding and the generalized block-Markov encoding schemes
are the same for AWGN relay channels.

First note that the capacity of both the general and FD-AWGN
relay channels are lower bounded by the capacity of the direct
link

Next, we use bounds from [4] on the capacity of the discrete-
memoryless relay channel to derive the upper and lower bounds
on and given in Table I.

The upper bounds are derived using the “max-flow min-cut”
bound on the capacity of the discrete-memoryless relay channel
(see [4,Theorem 4])

(1)

This bound is the tightest upper bound to date on the capacity
of the relay channel. For completion, derivations of the upper
bounds are given in Appendix A.

The lower bounds in the table are obtained using a special
case of Theorem 7 in [4] that yields

(2)

This lower bound is achieved using a generalized block-Markov
coding scheme, where in each block the relay decodes part of
the new message (represented by ) and cooperatively sends
enough information with the sender to help the receiver decode
the previous message ( then ). Note that if we set , we
obtain the rate for the block-Markov scheme, which is optimal
for the physically degraded relay channel, while if we set

, the bound reduces to the capacity of the direct channel, which
is optimal for reversely degraded relay channels. In addition to

these two special cases, this bound was also shown to be tight
for semi-deterministic relay channels [5] and more recently for
a class of relay channels with orthogonal components [9].

The bounds on the capacity of the general AWGN channel
in the table are not tight for any . In particular, when

, the generalized block-Markov coding bound yields
, which is simply the capacity of the direct link. For the

FD-AWGN, the bounds coincide for .
In Sections IV and V, we show that side-information and linear
relaying coding schemes can provide much tighter lower bounds
than the generalized block-Markov bound for small values of .

Derivation of the lower bounds: Consider the lower bound for
the general AWGN case. Note that is in fact achiev-
able by evaluating the mutual information terms in (2) using a
jointly Gaussian . We now show that the lower bound
in (2) with the power constraints is upper-bounded by
in Table I. It is easy to verify that

where is the correlation coefficient between and . Next
consider

We now find an upper bound on .
Note that

Therefore, there exists a constant such that

First assume . Using the entropy power inequality we
obtain
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where and is independent of . Since

we obtain

and

Hence, for

For , note that
and

hence,

Note that the above bounds are achieved by choosing
to be jointly Gaussian with zero mean and appropri-

ately chosen covariance matrix. Performing the maximization
over gives the lower bound result in Table I. This completes
the derivation of the lower bound. The lower bound for the
FD-AWGN case can be similarly derived.

III. BASIC BOUNDS ON MINIMUM ENERGY-PER-BIT

In this section, we establish a general relationship between
minimum energy-per-bit and capacity with average power con-
straints for the discrete-time AWGN relay channel. We then use
this relationship and the bounds on capacity established in the
previous section to find lower and upper bounds on the min-
imum energy-per-bit.

The minimum energy-per-bit can be viewed as a special case
of the reciprocal of the capacity per-unit-cost [19], when the cost
is average power. In [22], Verdú established a relationship be-
tween capacity per-unit-cost and channel capacity for stationary
memoryless channels. He also found the capacity per-unit cost
region for multiple-access and interference channels. Here, we
define the minimum energy-per-bit directly and not as a special
case of capacity per unit cost. We consider a sequence of codes
where the rate can vary with . This allows us to

define the minimum energy-per-bit in an unrestricted way. The
energy for codeword is given by

The maximum relay transmission energy is given by

The energy-per-bit for the code is therefore given by

An energy-per-bit is said to be achievable if there exists a se-
quence of codes with and .
We define the minimum energy-per-bit as the energy-per-bit that
can be achieved with no constraint on the rate. More formally,
we get the following definition.

Definition 1: The minimum energy-per-bit is the infimum
of the set of achievable energy-per-bit values.

To distinguish between the minimum energy-per-bit for the
general and FD-AWGN channel models, we label the minimum
energy-per-bit for the FD-AWGN relay channel by . In the
discussion leading to Theorem 1, we derive a relationship be-
tween and . The statements and results including
the theorem apply with no change if we replace by

and by .
First note that can be expressed as

(3)

where is defined in (4) at the bottom of the
page, and where , and

. Note that by a standard random coding
argument, any rate less than is achievable. It is easy
to argue that as defined in (4) is a super-additive
sequence in , i.e.,

for any . Hence, the supremum in (3) can be replaced
with the limit. We now establish the following properties of

as a function of .

Lemma 1: The capacity of the AWGN relay channel with
average power constraints satisfies the following:

i) if and approaches as ;
ii) as ;
iii) is concave and strictly increasing in ;
iv) is nondecreasing in , for all .

(4)
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TABLE II
LOWER AND UPPER BOUNDS ON E =2N ln 2 AND E =2N ln 2

The proof of this lemma is provided in Appendix B.

We are now ready to establish the following relationship be-
tween the minimum energy-per-bit and capacity with average
power constraint for the AWGN relay channel.

Theorem 1: The minimum energy-per-bit for the AWGN
relay channel is given by

(5)

Proof: We establish achievability and weak converse to
show that

From part iv) of Lemma 1, the second can be replaced
by .

To show achievability, we need to show that any

is achievable. First note that there exist and such
that

for any small . Now we set . Using
standard random coding with power constraints argument, we
can show that is achievable, which proves the
achievability of .

To prove the weak converse we need to show that for any
sequence of codes with

Using Fano’s inequality, we can easily arrive at the bound

where is the maximum average codeword power and
is the maximum average transmitted relay power. Thus,

Now, by definition the energy-per-bit for the code is
. Using the bound on we obtain the bound

Now since and , we get

that .

We now use the above relationship and the bounds on ca-
pacity to establish lower and upper bounds on the minimum
energy-per-bit. First note that the minimum energy-per-bit for
the direct channel, given by , is an upper bound on the
minimum energy-per-bit for both relay channel models consid-
ered. Using Theorem 1 and the bounds on capacity given in
Table I, we obtain the lower and upper bounds on the minimum
energy-per-bit provided in Table II. The bounds in the table are
normalized with respect to and therefore represent the
reduction in the energy-per-bit using relaying.

It is easy to verify that the ratio of the upper bound to the lower
bound for each channel is always less than . This maximum
ratio is approached for as , i.e., when the relay
and receiver are at the same distance from the transmitter and the
relay is very close to the receiver. Note that for the FD-AWGN
channel, the lower and upper bounds coincide and are equal to

for , and therefore relaying does not reduce the
minimum energy-per-bit. For the general AWGN channel, the
ratio is very close to when or are small, or when is
large. We now derive the upper and lower bounds for the general
AWGN model. The bounds for the FD-AWGN relay channel
can be similarly established.

Derivation of bounds: Using Theorem 1 and the bounds on
capacity derived in Section II, we now establish the bounds
on the minimum energy-per-bit of the general AWGN relay
channel given in table, i.e.,
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To prove the lower bound we use the upper bound
on capacity in Table I and the relationship of Theorem 1 to ob-
tain the bound. Substituting the upper bound given in Table I
and taking limits as , we obtain the expression shown
in the fist equation at the bottom of the page. To complete the
derivation of the lower bound, we analytically perform the min-
imization. For , it is easy to see that the minimum
is achieved by making as small as possible, i.e., ,
and the minimum is given by . On the other hand, if

, the minimum is achieved when

and is given by . Now, since

the minimum is given by , which establishes the
lower bound.

Now we turn our attention to upper bounds on minimum en-
ergy-per-bit. Using the lower bound on capacity given in Table I
and the relationship in Theorem 1, we can obtain an upper bound
for . Note that the capacity lower bound in
Table I satisfies the conditions on in Lemma 1, and
therefore, the best upper bound is given by

Now we show that this bound gives

Substituting the lower bound from Table I in The-
orem 1 and taking the limit as , for we ob-
tain the second equation at the bottom of the page. To evaluate
this bound we use the same approach we used in evaluating the
lower bound. We consider the two cases and

and find that the minimization is achieved for

and the bound is given by the expression in the theorem. For
, the best upper bound using the generalized block-Markov

encoding is given by . Since for ,
this completes the proof.

Remark: Note that the definition of the energy-per-bit as-
signed equal cost to the energy expended by the sender and the
relay. One can easily extend the bounds in Theorem 1 to the case
where the energy of the sender or relay is more costly by adding
a weight to the relay part of the energy-per-bit definition
for a code. The new definition is

It is easy to see that the bounds in this section hold with re-
placed by .

IV. SIDE-INFORMATION LOWER BOUNDS

The lower bounds on capacity given in Table I are based on
the generalized block-Markov encoding scheme. In this scheme,
the relay node is either required to fully decode the message
transmitted by the sender or is not used at all. When the channel
from the transmitter to the relay is not much better than the
channel from the sender to the receiver, i.e., , the achiev-
able rate is very close to the capacity of the direct link. This
motivates the investigation of coding schemes that use the relay
to help in transmitting the message without decoding the mes-
sage itself.

In this section, we consider the case where the relay node
facilitates the transmission from the sender to the receiver by
sending a “quantized” version of its received signal using the
Wyner–Ziv coding scheme.

First, we show that the lower bound on the capacity of the
discrete-memoryless relay channel using this scheme (see [4,
Theorem 6]) can be recast into the bound (6) at the bottom of
the page. The derivation of this result is given in Appendix C.

Using this result and choosing to be jointly
Gaussian, which is not necessarily the optimal choice, we can
establish the following lower bound on capacity of the general
AWGN relay channel:

(7)

Achievability of this lower bound can be established by ex-
tending the achievability for the discrete-memoryless case

(6)
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given in [4] to the AWGN case using standard arguments found
in [26].

Note that this achievable rate is not a concave function of .
The intuitive reason is that as decreases, the received signal
at the relay becomes too noisy in this case and therefore the
relay transmission mostly contains information about the re-
ceived noise sequence at the relay. The effectiveness of this
scheme can be improved for low by transmitting at power

for a fraction of the time, and not transmitting
the rest of the time. Using this time-sharing argument, the fol-
lowing tighter lower bound can be established:

(8)

Similar derivation using (6) for the FD-AWGN relay channel
yields the lower bound

(9)

It can be easily shown that the bounds in (7) and (9) become
tight as . Additionally, the bound in (9) becomes tight
as . Now, we show that we can do better by modifying
the side-information scheme in [4] to include time sharing.

Theorem 2: The capacity of the discrete-memoryless relay
channel is lower-bounded by
(10) at the bottom of the page, where is a discrete random
variable with finite domain. Achievability for each value of the
time-sharing random variable follows from Theorem 6 in [4].
The rate is then achieved by time sharing among the codes for
the different values of according to its optimal distribution.

Evaluating this bound for jointly Gaussian (see
Appendix D) and using time sharing only on the broadcast side
of the channel, the following lower bound on the capacity of the
FD-AWGN relay channel can be obtained:

(11)

where is given by

Setting gives the lower bound in (9). Hence, this bound
is also tight as or .

A. Upper Bound on Minimum Energy-Per-Bit

The lower bound on capacity of the FD-AWGN relay channel
using side-information coding leads to a tighter upper bound on
the minimum energy-per-bit for some values of and . Using
the side-information coding scheme, the maximum ratio reduces
to less than (versus using the generalized block-Markov
coding). The same coding scheme also reduces the maximum
ratio to less than for the general AWGN relay channel.

V. ACHIEVABLE RATES USING LINEAR RELAYING FUNCTIONS

In this section, we investigate a simple relaying scheme,
where the relay sends a linear combination of its past received
signals. We show that this relatively simple scheme can out-
perform the generalized block-Markov encoding scheme when
the channel from the transmitter to the relay is not much better
than the direct channel. We show that it can also outperform the
more sophisticated side-information encoding scheme in some
cases.

We restrict the relay functions to be linear in the past re-
ceived sequence of symbols at relay. Thus, at time , the trans-
mitted relay symbol can be expressed as ,
where the ’s are coefficients chosen such that the average
power constraint for the relay is satisfied. Equivalently, for a
transmission block length , the transmitted relay vector

can be expressed in terms of the received
relay vector as , where

is a strictly lower triangular weight matrix. We define the ca-
pacity with linear relaying for the general AWGN relay channel

to be the supremum over the set of achievable rates
with linear relaying. The capacity with linear relaying for the
FD-AWGN channel is labeled as - . First we estab-
lish a general expression for . The same expression
applies to - with a small modification that simpli-
fies our derivations.

Similar to (3), the capacity with linear relaying for the general
AWGN relay channel can be expressed as

(12)

where is define as in (13) at the bottom of the page.
Note that . Also, by a standard random
coding argument, any rate less than is achievable.

The maximization in (13) is achieved when is Gaussian.
Denoting the covariance matrix of by , it is easy to show

(10)

(13)
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Fig. 2. Suboptimal linear relaying scheme for general AWGN relay channel
with block length k = 2.

(14) at the bottom of the page, subject to , ,
, and , for .

For , this is a nonconvex optimization problem. Thus,
finding involves solving a sequence of nonconvex
optimization problems, a daunting task indeed! Interestingly, we
can show that even a suboptimal linear relaying scheme can out-
perform generalized block-Markov coding for small values of .

Example 1: Consider the following linear relaying scheme
for the general AWGN relay channel with block length
(see Fig. 2). In the first transmission, the sender’s signal is

, for ,andtherelay’ssignal is
. The received signal at the receiver and the relay receiver are

and , respectively. In thesecond
transmission, the sender’s signal is , i.e.,
a scaled version of with average power . The relay
cooperates with the sender by relaying a scaled version of ,

, where

is chosen to satisfy the relay transmitter power constraint. Thus,

The received signal after the second transmission is given by
.

It can be easily shown that the rate achieved by this scheme
is given by

(15)

where .

This scheme is not optimal even among linear relaying
schemes with block length . However, as demon-
strated in Fig. 3, it achieves higher rate than the generalized
block-Markov coding when is small and can also outperform
the more sophisticated side-information coding scheme when
all distributions are Gaussians.

Next we consider the FD-AWGN relay channel with linear
relaying functions. Since the channel from the relay to the re-
ceiver uses a different frequency band than the channel from
the sender, without loss of generality we assume that th relay
transmission can depend on all received signals up to (instead
of ). With this relabeling, for block length , the transmitted
vector , the transmitted relay vector

, where is a lower tri-
angular weight matrix with possibly nonzero diagonal elements,
and the received vector , where

and

The capacity with linear relaying can be expressed as in (12),
where we get (16), also at the bottom of the page. It can be
easily shown that the maximization (16) is achieved when

is Gaussian. Denoting the covariance matrix of by ,
we can reduce (16) to (17), also at the bottom of the page,
where the maximization is subject to , ,

, and for .
This is again a nonconvex optimization problem and finding

- reduces to solving a sequence of such prob-
lems indexed by . Luckily in this case we can reduce the
problem to a “single-letter” optimization problem. Before
proceeding to prove this result, consider the following simple
amplify-and-forward scheme.

Example 2: We consider block length . It is easy to
show that (17) reduces to

- (18)

(14)

- (16)

- (17)
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Fig. 3. Comparison of achievable rates based on the generalized block-Markov, linear relaying, and side-information encoding schemes for the general AWGN
relay channel for a = 1 and

p

b = 2.

Fig. 4. Linear relaying scheme for FD-AWGN relay channel with block length
k = 1.

which can be achieved by the simple amplify-and-forward
scheme depicted in Fig. 4, with and

It can be shown that if , then -

is a concave function of . Otherwise, it is convex for small
values of and concave for large values of . The interpreta-
tion is that as is decreased, linear relaying injects more noise
than signal, thus becoming less helpful. In such cases, the per-
formance of this scheme can be improved by time sharing be-
tween amplify-and-forward for a fraction of the time
and direct transmission (see Fig. 5), where only the sender node
transmits, for the rest of the time. The following lower bound
can be established using this scheme and can be shown to be
concave in for all parameter values and all (see Fig. 6
for an illustration)

-

(19)

where and .

Fig. 5. Time sharing between amplify-and-forward and direct transmission
only.

Fig. 6. Comparison of achievable rates using amplify-and-forward and
time-sharing between amplify-and-forward and direct transmission only.

As proved in the following theorem, the capacity with linear
relaying can be achieved using time sharing between direct
transmission and amplify-and-forward with at most four dif-
ferent power and relaying parameter settings.
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Theorem 3: The capacity of FD-AWGN relay channel with
linear relaying functions is given by

-

(20)

where , ,
, subject to , ,

and

Proof: We first outline the proof. The main difficulty in
solving the optimization problem is that it is not concave in
and . However, for any fixed , the problem is concave in
and the optimal solution can be readily obtained using convex
optimization techniques [27]. We show that for any matrix

, there exists a diagonal matrix whose associated optimal
covariance matrix is also diagonal and such that the value of
the objective function for the pair is the same as that
for the pair . Hence, the search for the optimal solution
can be restricted to the set of diagonal and matrices. The
reduced optimization problem, however, remains nonconvex.
We show, however, that it can be reduced to a nonconvex
constrained optimization problem with 14 variables and three
equality constraints.

Simplifying the expression for - in (17), the op-
timization problem can be expressed as (21) at the bottom of the
page, subject to , , and

where is a lower triangular matrix.
Finding the optimal for any fixed is a convex optimiza-

tion problem [27]. Defining

and neglecting the factor, the Lagrangian for this problem
can be expressed as

The Karush–Kuhn–Tucker (KKT) conditions for this problem
are given by

where . Now if is the singular value decompo-
sition of and is the singular value decomposition of

, then

Columns of matrices and are eigenvectors of the symmetric
matrix . Hence, and are permutation matrices.
As a result, is a diagonal
matrix and, therefore, where . There-
fore, the first KKT condition can be simplified to

Since the KKT conditions are necessary and sufficient for op-
timality, it follows that must have the same set of eigenvec-
tors , i.e., , where is a diagonal matrix. The
dual matrix can be chosen to have the same structure, i.e.,

and , hence satisfying the
KKT conditions. As a result, the expression in (21) can be sim-
plified to

-

(22)

where and are diagonal matrices. Since this expression is
independent of , we can set . Hence, the search for
the optimal matrices and can be limited to the space of
diagonal matrices and . In particular, if ,
then the diagonal matrix .

Thus, the maximization problem can be simplified to the fol-
lowing:

-

(23)

subject to , , for , ,
and .

- (21)
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First, it is easy to see that at the optimum point

and

Note that the objective function is an increasing function of .
Therefore, if , we can always in-
crease the value of objective function by increasing assuming
that . Now we show that . It is easy to
verify that

is positive along the curve . Therefore,
while keeping fixed at , we can al-
ways increase the objective function by increasing and hence

.
Note that at the optimum, if , then . However, if

, the value of is not necessarily equal to zero. Without
loss of generality, assume that at the optimum, for the
first indices, and that the total power assigned to
the indices is given by , for .
Then by convexity

where the upper bound can be achieved by redistributing the
power as , for . In Appendix E, we show
that at the optimum, there are no more than four dis-
tinct pairs such that and . Including the case
where , we therefore conclude that there are at most five
distinct pairs for any . Thus, in general, the ca-
pacity can be expressed as (24) at the bottom of the page, where

, , ,
subject to , , , , and

To find - we need to find - .

Taking the limit of the above expression as , we obtain

-

(25)

where , subject to , ,

and

This completes the proof of the theorem.

We have shown that the capacity with linear relaying can be
computed by solving a single-letter cosntrained optimization
problem. The optimization problem, however, is nonconvex and
involves 14 variables (or 11 if we use the three equality con-
straints). Finding the solution for this optimization problem in
general requires exhaustive search, which is computationally
extensive for 11 variables. Noting that the problem is convex
in each set of variables , , and if we fix the other two, the
following fast Monte Carlo algorithm can be used to find a good
lower bound to the solution of the problem. Randomly choose
initial values for the three sets of variables, fix two of them, and
optimize over the third set. This process is continued by cycling
through the variable sets, until the rate converges to a local max-
imum. The process is repeated many times for randomly chosen
initial points and local maximas are found.

Fig. 7 compares the lower bound on the capacity of the
FD-AWGN relay channel with linear relaying to the max-flow
min-cut upper bound and the generalized block-Markov and
side-information coding lower bound. Note that when is
small, the capacity with linear relaying becomes very close
to the upper bound. Further, as , the capacity with
linear relaying becomes tight. On the other hand, as ,
the generalized block-Markov lower bound becomes tight.
Note that if , the capacity is given by
the block-Markov lower bound. This is similar to the result
reported in [17].

A. Upper Bound on Minimum Energy-Per-Bit

Linear relaying can improve the upper bound on the minimum
energy-per-bit for the general AWGN relay model. To demon-
strate this, consider the achievable rate by the scheme in Ex-

- (24)
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Fig. 7. Comparison of achievable rates based on the generalized block-Markov, linear relaying, and side-information encoding schemes for the FD-AWGN relay
channel.

ample 1. It can be shown that the rate function (15) is convex for
small and therefore, as in Example 2, the rate can be improved
by time sharing. The rate function with time sharing can be used
to obtain an upper bound on the minimum energy-per-bit. Fig. 8
plots the ratio of the best upper to lower bounds on the minimum
energy-per-bit. Note that the simple scheme in Example 1 with
time sharing reduces the maximum ratio to . The minimum
energy-per-bit using the linear relaying is usually lower than the
minimum energy-per-bit using the side-information scheme for
the general AWGN relay channel.

Using the relationship between the minimum energy-per-bit
and capacity in Theorem 1 and the capacity with linear relaying
for the FD-AWGN model established in Theorem 3, we can
readily obtain an upper bound on minimum energy-per-bit of the
FD-AWGN relay channel. Linear relaying improves the ratio for
large and . The maximum ratio using the linear relaying
is reduced to . The maximum ratio can be further reduced by
using the side-information coding scheme to . Fig. 9 plots
the ratio of the best upper bound on the minimumenergy-per-bit
to the lower bound in Table II for the FD-AWGN relay channel.

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2010 at 17:12:52 EST from IEEE Xplore.  Restrictions apply. 



EL GAMAL et al.: BOUNDS ON CAPACITY AND MINIMUM ENERGY-PER-BIT FOR AWGN RELAY CHANNELS 1557

Fig. 8. Ratio of the best upper bound to the lower bound of Theorem 2 for
various values of a and b for general AWGN relay channel.

Fig. 9. Ratio of the best upper bound to the lower bound of Theorem 2 for
various values of a and b for FD-AWGN relay channel.

VI. CONCLUSION

The paper establishes upper and lower bounds on the ca-
pacity and minimum energy-per-bit for general and FD-AWGN
relay channel models. The max-flow min-cut upper bound and
the generalized block-Markov lower bound on capacity of the
relay channel are first used to derive corresponding upper and
lower bounds on capacity. These bounds are never tight for the
general AWGN model and are tight only under certain condi-
tions for the FD-AWGN model. The gap between the upper
and lower bounds is largest when the gain of the channel to the
relay is comparable or worse than that of the direct channel. We
argue that the reason for this large gap is that in the generalized
block-Markov scheme, the relay either decodes the entire mes-
sage or it is not used at all. When or less than , this re-
stricts the achievable rate to be close to the capacity of the direct
channel. To obtain tighter lower bounds for this case, two coding
schemes are investigated, where the relay cooperates with the
sender but without decoding any part of the message. First,
the side-information coding scheme is shown to outperform the
block-Markov coding when the gain of the channel to the relay
is comparable to that of the direct channel. We show that the
achievable rate can be improved via time sharing and provide a
general expression for the achievable rate using side-informa-
tion coding for relay channels in general. In the second scheme,
the relaying functions are restricted to be linear. For the gen-
eral AWGN model, a simple linear-relaying scheme is shown
to significantly outperform the more sophisticated generalized

block-Markov and side-information schemes in some cases. It
is shown that the capacity with linear relaying can be found by
solving a sequence of nonconvex optimization problems. One
of our main results in the paper is reducing this formulation to
a “single-letter” expression for the FD-AWGN model. Figs. 3
and 7 compare the rates for the different schemes.

The paper also established a general relationship between
the minimum energy-per-bit and the capacity of the AWGN
relay channel. This relationship together with the lower and
upper bounds on capacity are used to establish corresponding
lower and upper bounds on the minimum energy-per-bit for the
general and FD-AWGN relay channels. The bounds are very
close and do not differ by more than a factor of for the
FD-AWGN relay channel model and by for the general
AWGN model.

Two open problems are suggested by the work in this paper.
The first is to find the distribution on that opti-
mizes the achievable rate using side-information coding given
in Theorem 2. Our bounds are obtained with the assumption
that is Gaussian and with specific choices of the
time-sharing random variable . The second open problem is
finding a “single-letter” characterization of the capacity with
linear relaying for the general AWGN relay model. We have
been able to find such characterization only for the FD-AWGN
case.

In conclusion, the upper and lower bounds for the capacity
and minimum energy-per-bit established in this paper are still
not tight for the general AWGN relay model and are only tight
under certain conditions for the FD-AWGN relay channel. Es-
tablishing capacity and the minimum energy-per-bit is likely
to require a combination of new coding schemes and a tighter
upper bound than the max-flow min-cut bound.

APPENDIX A

In this appendix, we evaluate upper bounds on the capacity
of the general and FD-AWGN relay channels. The max-flow
min-cut bound gives the

First consider the general AWGN relay channel. To prove the
upper bound we begin with the first bound. Using standard ar-
guments, it can be easily shown that

where we define
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Now, consider the second bound shown in the equation at the
top of the page. Therefore, the upper bound can be expressed as

Performing the maximization over , we can easily obtain the
upper bound given in Table I.

Now consider the bound for the FD-AWGN relay channel.
Substituting by in (1) yields the max-flow min-cut
upper bound on capacity of the FD-AWGN channel. Note that

Similarly, it can be shown that

Again both terms are maximized for . As a result, the
following upper bound on capacity can be established:

Upper and lower bounds in Table I can be readily established.

APPENDIX B

Lemma: The capacity of the AWGN relay channel with av-
erage power constraints satisfies the following:

i) if and approaches as .
ii) as .
iii) is concave and strictly increasing in .
iv) is nondecreasing in , for all .

Proof:

i) This follows from the fact that , which is less
than or equal to , is strictly greater than zero
for , and approaches infinity as .

ii) This follows from the fact that in Table I
which is greater than or equal to approaches
zero as .

iii) Concavity follows by the following “time-sharing” ar-
gument. For any and , there exists

and such that and
. Now, for any

, where and are integers,

where the second inequality follows from the fact that
is achieved ar-

bitrarily closely for some and
that is a mixture of the and that achieve

and the and that achieve
(corresponding to “time-sharing”).

Clearly, the set of “time-sharing” distributions is a subset
of the set of all possible and .
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Note here that even though may not be
concave, is concave.

That is strictly monotonically increasing in
follows from parts i), ii), and concavity.

iv) For any , and , it follows from the
concavity of that

But since , this implies that

or

Thus, for any , is nondecreasing in .

APPENDIX C

We show that the lower bound on the capacity of the discrete-
memoryless relay channel of Theorem 6 in [4] can be recast into
the bound as in (26) at the bottom of the page.

Achievability of any rate subject to the
constraint , for any distribution

was proved in [4]. We show the converse, i.e., any rate satisfying
the original conditions and

, also satisfies (26). Consider

It is not difficult to show the achievability, i.e., that any rate satis-
fying the above inequality also satisfies the original conditions.

APPENDIX D

Achievability of any rate, shown in the second equation at the
bottom of the page, was shown in Section IV. We now evaluate
the mutual information terms for the AWGN relay channel. The
optimal choice of probability mass functions are not known. We
assume the random variable has cardinality and takes values
in . We further assume . Consider as
a Gaussian random variable with variance if and zero
otherwise. Furthermore, assume is a Gaussian random vari-
able with variance irrespective of the value of random vari-
able and independent of . Define the random variable
if , and if , where is a constant
and is independent of , , , , and .

Now consider

Using the above results, we can easily show that

(26)
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Combining the above results, it can be shown that any rate
shown in the first equation at the bottom of the page is achiev-
able. It can be shown that the value of that maximizes the
above expression is given by

Replacing and simplifying the lower bound expression, we
obtain the lower bound given in (11).

APPENDIX E

In this appendix, we prove that - can be ex-
pressed as

-

The starting point is the expression

-

subject to , , for

and

For a given and , this optimization problem is equivalent
to finding the maximum of

subject to , , for

and

To find the optimality condition for this problem, we form the
Lagrangian

where and are Lagrange multipliers for the two equality
constraints (the Lagrange multipliers for the inequality con-
straints are all equal to zero at the optimum, since by assumption

and for all ).
At the optimum, we must have

and for all

Computing the derivatives, we obtain the conditions in the
second expression at the bottom of the page. Solving this set of
equations, we obtain

where ’s are the positive roots of the fourth order polynomial
equation

with coefficients

and
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This polynomial equation has at most four distinct roots for any
given channel gain coefficients and . Denote the roots by ,

, , . Substituting in the optimality conditions, we obtain
at most four distinct values of , which we denote by by , ,

, . Note that only pairs such that and are
feasible.

ACKNOWLEDGMENT

The authros would like to thank James Mammen, Mohsen
Bayati, and Young-Han Kim for helpful discussions, and
Chong Hon Fah for pointing out an error in the original draft
of this paper, and the reviewers for their helpful comments and
suggestions.

REFERENCES

[1] E. C. van der Meulen, “Three-terminal communication channels,” Adv.
Appl. Probab., vol. 3, pp. 120–154, 1971.

[2] H. Sato, “Information Transmission Through a Channel With Relay,”
The Aloha System, Univ. Hawaii, Honolulu, Tech. Rep. B76-7, 1976.

[3] A. El Gamal, “Results in multiple user channel capacity,” Ph.D. disser-
tation, Stanford Univ., Stanford, CA, 1978.

[4] T. M. Cover and A. El Gamal, “Capacity theorems for the relay
channel,” IEEE Trans. Inf. Theory, vol. IT-25, no. 5, pp. 572–584,
Sep. 1979.

[5] A. El Gamal and M. Aref, “The capacity of the semi-deterministic relay
channel,” IEEE Trans. Inf. Theory, vol. IT-28, no. 3, pp. 536–536, May
1982.

[6] A. El Gamal, “On information flow in relay networks,” in Proc. IEEE
Nat. Telecommunications Conf., vol. 2, New Orleans, LA, Nov. 1981,
pp. D4.1.1–D4.1.4.

[7] M. Aref, “Information flow in Relay networks,” Ph.D. dissertation, Stan-
ford Univ., Stanford, CA, 1980.

[8] B. Schein and R. G. Gallager, “The Gaussian parallel relay network,” in
Proc IEEE Int Symp. Information Theory, Sorrento, Italy, Jul. 2000, p.
22.

[9] A. El Gamal and S. Zahedi, “Capacity of a class of relay channels with
orthogonal components,” IEEE Trans. Inf. Theory, vol. 51, no. 5, pp.
1815–1817, May 2005.

[10] S. Zahedi, M. Mohseni, and A. El Gamal, “On the capacity of AWGN
relay channels with linear relaying functions,” in Proc. IEEE Int. Symp.
Information Theory, Chicago, IL, Jun./Jul. 2004, p. 399.

[11] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[12] , “Toward an information theory of large networks: An achievable
rate region,” in Proc IEEE Int Symp Information Theory, Washington,
DC, Jun. 2001, p. 159.

[13] M. Gastpar and M. Vetterli, “On the capacity of wireless networks: The
relay case,” in Proc IEEE INFOCOM 2002, vol. 3, New York, Jun. 2002,
pp. 1577–1586.

[14] , “On the asymptotic capacity of Gaussian relay channels,” in Proc
IEEE Int Symp Information Theory, Lausanne, Switzerland, Jun./Jul.
2002, p. 195.

[15] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and ca-
pacity theorems for relay networks,” IEEE Trans. Inf. Theory, vol. 51,
no. 9, pp. 3037–3063, Sep. 2005.

[16] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless net-
works,” IEEE J. Sel. Areas Commun., vol. 17, no. 8, pp. 1333–1344,
Aug. 1999.

[17] Y. Liang and V. V. Veeravalli, “Gaussian orthogonal relay channels: Op-
timal Resource allocation and capacity,” IEEE Trans. Inf. Theory, pp.
3284–3289, Sep. 2005.

[18] A. El Gamal and S. Zahedi, “Minimum energy communication over a
relay channel,” in Proc. IEEE Int. Symp. Information Theory, Yokohama,
Japan, Jun./Jul. 2003, p. 344.

[19] R. J. McEliece, The Theory of Information and Coding. Reading, MA:
Addison-Wesley, 1977.

[20] R. G. Gallager, “Energy Limited Channels: Coding, Multiaccess, and
Spread Spectrum,” MIT, Cambridge, MA, Tech. Rep. LIDS-P-1714,
LIDS, 1987.

[21] , “Energy limited channels, coding, multiaccess and spread spec-
trum,” in Proc. Conf. Information Science and Systems, Princeton, NJ,
Mar. 1988, pp. 372–372.

[22] S. Verdú, “On channel capacity per unit cost,” IEEE Trans. Inf. Theory,
vol. 36, no. 5, pp. 1019–1030, Sep. 1990.

[23] S. Verdú, G. Caire, and D. Tuninetti, “Is TDMA optimal in the low
power regime?,” in Proc IEEE Int Symp Information Theory, Lausanne,
Switzerland, Jun./Jul. 2002, p. 193.

[24] A. Høst-Madsen and J. Zhang, “Capacity bounds and power allocation
for wireless relay channel,” IEEE Trans. Inf. Theory, submitted for pub-
lication.

[25] S. Verdú, “Spectral efficiency in the wideband regime,” IEEE Trans. Inf.
Theory, vol. 48, no. 6, pp. 1319–1343, Jun. 2002.

[26] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[27] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[28] S. Zahedi, “On reliable communication over relay channels,” Ph.D. dis-
sertation, Stanford Univ., Stanford, CA, 2005.

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2010 at 17:12:52 EST from IEEE Xplore.  Restrictions apply. 


	toc
	Bounds on Capacity and Minimum Energy-Per-Bit for AWGN Relay Cha
	Abbas El Gamal, Fellow, IEEE, Mehdi Mohseni, Student Member, IEE
	I. I NTRODUCTION

	Fig. 1. (a) General AWGN relay channel model. (b) FD-AWGN relay 
	TABLE I M AX -F LOW M IN -C UT U PPER B OUNDS AND G ENERALIZED B
	II. B ASIC B OUNDS ON C APACITY
	III. B ASIC B OUNDS ON M INIMUM E NERGY -P ER -B IT
	Definition 1: The minimum energy-per-bit ${\cal E}_{b}$ is the i
	Lemma 1: The capacity of the AWGN relay channel with average pow


	TABLE II L OWER AND U PPER B OUNDS ON ${\cal E}_{b}/2N\ln 2$ AND
	Theorem 1: The minimum energy-per-bit for the AWGN relay channel
	Proof: We establish achievability and weak converse to show that

	Remark: Note that the definition of the energy-per-bit assigned 
	IV. S IDE -I NFORMATION L OWER B OUNDS
	Theorem 2: The capacity of the discrete-memoryless relay channel
	A. Upper Bound on Minimum Energy-Per-Bit

	V. A CHIEVABLE R ATES U SING L INEAR R ELAYING F UNCTIONS

	Fig. 2. Suboptimal linear relaying scheme for general AWGN relay
	Example 1: Consider the following linear relaying scheme for the
	Example 2: We consider block length $k=1$ . It is easy to show t

	Fig. 3. Comparison of achievable rates based on the generalized 
	Fig. 4. Linear relaying scheme for FD-AWGN relay channel with bl
	Fig. 5. Time sharing between amplify-and-forward and direct tran
	Fig. 6. Comparison of achievable rates using amplify-and-forward
	Theorem 3: The capacity of FD-AWGN relay channel with linear rel
	Proof: We first outline the proof. The main difficulty in solvin

	A. Upper Bound on Minimum Energy-Per-Bit

	Fig. 7. Comparison of achievable rates based on the generalized 
	Fig. 8. Ratio of the best upper bound to the lower bound of Theo
	Fig. 9. Ratio of the best upper bound to the lower bound of Theo
	VI. C ONCLUSION
	Lemma: The capacity of the AWGN relay channel with average power
	Proof:


	E. C. van der Meulen, Three-terminal communication channels, Adv
	H. Sato, Information Transmission Through a Channel With Relay, 
	A. El Gamal, Results in multiple user channel capacity, Ph.D. di
	T. M. Cover and A. El Gamal, Capacity theorems for the relay cha
	A. El Gamal and M. Aref, The capacity of the semi-deterministic 
	A. El Gamal, On information flow in relay networks, in Proc. IEE
	M. Aref, Information flow in Relay networks, Ph.D. dissertation,
	B. Schein and R. G. Gallager, The Gaussian parallel relay networ
	A. El Gamal and S. Zahedi, Capacity of a class of relay channels
	S. Zahedi, M. Mohseni, and A. El Gamal, On the capacity of AWGN 
	P. Gupta and P. R. Kumar, The capacity of wireless networks, IEE
	M. Gastpar and M. Vetterli, On the capacity of wireless networks
	G. Kramer, M. Gastpar, and P. Gupta, Cooperative strategies and 
	V. Rodoplu and T. H. Meng, Minimum energy mobile wireless networ
	Y. Liang and V. V. Veeravalli, Gaussian orthogonal relay channel
	A. El Gamal and S. Zahedi, Minimum energy communication over a r
	R. J. McEliece, The Theory of Information and Coding . Reading, 
	R. G. Gallager, Energy Limited Channels: Coding, Multiaccess, an
	S. Verdú, On channel capacity per unit cost, IEEE Trans. Inf. Th
	S. Verdú, G. Caire, and D. Tuninetti, Is TDMA optimal in the low
	A. Høst-Madsen and J. Zhang, Capacity bounds and power allocatio
	S. Verdú, Spectral efficiency in the wideband regime, IEEE Trans
	T. M. Cover and J. A. Thomas, Elements of Information Theory . N
	S. Boyd and L. Vandenberghe, Convex Optimization . Cambridge, U.
	S. Zahedi, On reliable communication over relay channels, Ph.D. 



