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Summary . This paper considers the analysis of three-arm randomized trials with noncompli-
ance. In these trials, the average causal effects of treatments within principal strata of compli-
ance behavior are of interest for better understanding the effect of the treatment. Unfortunately,
even with usual assumptions, the average causal effects of treatments within principal strata
are not point-identified. However, the observable data does provide useful information on the
bounds of the identification regions of the parameters of interest. Under two sets of assump-
tions, we derive sharp bounds for the causal effects within principal strata for binary outcomes,
and construct confidence intervals to cover the identification regions. The methods are illus-
trated by an analysis of data from a randomized study of treatments for alcohol dependence.
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1. Introduction

Many randomized trials with human subjects suffer from noncompliance to assigned treat-
ment. There is a large literature on methods of analysis for two-arm trials with noncompli-
ance (e.g., Angrist, Imbens and Rubin, 1996; Imbens and Rubin, 1997; Goetghebeur and
Molenberghs, 1996; Small et al., 2006). Three-arm trials are common in practice but not
much attention has been paid to analyzing these trials with noncompliance. In this paper,
we use the principal stratification approach of Frangakis and Rubin (2002) to define princi-
pal strata for a three-arm trial with noncompliance and then derive sharp bounds on causal
effects within principal strata under two sets of assumptions. We provide several reasons
why these causal effects within principal strata are of interest. Our motivating example is
a three-arm trial of treatments for alcohol dependence, and we analyze this trial using our
methodology.

The randomized trial of treatments for alcohol dependence that we consider consists
of two active treatments and a control. The control denoted by 0 is simple medication
management, in which that arm’s primary care physicians are responsible for providing
usual care. The two active treatments are (A) simple medication management plus Com-
pliance Enhancement Therapy (CET), in which therapists use motivational interviewing
techniques, provide education about the treatment and help the patient develop strategies
to improve compliance with taking medication and attending clinic visits; and (B) simple
medication management plus Cognitive Behavioral Therapy (CBT), in which therapists
instruct subjects on how to monitor and cope with situations that put them at high risk
for relapse to alcohol use. Compliance with an active treatment was categorized as a bi-
nary variable, whether or not the subject attended at least 80% of the scheduled sessions.
This categorization is based on the clinicians’ understanding of the mechanism by which
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the treatment works. Patients randomized to the control did not have access to the CET
or CBT therapist, and patients randomized to CET/CBT could not access the CBT/CET
therapist. The outcome of interest is whether or not the subject relapsed, i.e., had five or
more drinks in a day, on any day in the past month (a relapse is coded as a 0 and lack of
relapse is coded as a 1). The trial is described in more detail in Zisserson et al. (2004).

For a two-arm randomized trial with noncompliance in which the control group cannot
receive the treatment, Angrist, Imbens and Rubin (1996) provided an analytical approach
that estimates the average causal effect of receiving the treatment for those subjects who
would comply with the treatment if offered it. A three-arm trial can be analyzed as two
two-arm trials, one comparing the control group to treatment A and one comparing the
control group to treatment B. The Angrist, Imbens and Rubin approach estimates the
average treatment effect for those subjects who would comply with treatment A if offered
it (group A) and the average treatment effect for those subjects who would comply with
treatment B if offered it (group B). However, additional analytical possibilities are available
if the trial is viewed as one three-arm trial rather than two two-arm trials. The principal
stratification (Frangakis and Rubin, 2002) of subjects with respect to treatment received
divides the subjects into four groups based on their potential compliance behavior under
assignment to treatment A and to treatment B (under assignment to control, all subjects
are assumed to take no treatment). The four principal strata are those subjects who would
comply with both treatments A and B (group 0AB), those subjects who would comply only
with treatment A (group 0A0), those subjects who would comply only with treatment B
(group 00B) and those subjects who would comply with neither treatment A nor treatment
B (group 000). Note that we observe a subject’s compliance behavior under at most one
treatment so that a subject’s principal strata is never fully observed. The subjects who
would comply with treatment A if assigned it in a two-arm trial (group A) are a mixture of
groups 0A0 and 0AB, and the subjects who would comply with treatment B in a two-arm
trial (group B) are a mixture of groups 00B and 0AB. Groups for which membership is
determined by a subject’s full compliance behavior (e.g., groups 000, 0A0, 00B and 0AB)
are called basic principal strata. Groups that combine basic principal strata (e.g., groups
A and B) are called coarsened principal strata (Frangakis and Robin, 2002).

We now describe three settings in which the average causal effects of treatments within
the basic principal strata 000, 0A0, 00B and 0AB provide valuable information beyond that
of the average causal effects of treatment within the coarsened principal strata A and B.
Note that by the average causal effect of treatment for a principal stratum, we mean the
average difference in the potential outcomes under treatment and control for members of
the principal stratum. For conciseness, we sometimes call the average causal effect of treat-
ment the average treatment effect. One reason that knowing the average treatment effects
for groups 0A0, 00B and 0AB is of interest beyond that of knowing the average treatment
effects for groups A and B is that the former average treatment effects are of more rele-
vance to a subject who is reasonably confident about what her compliance behavior would
be if offered the different treatments. Although it is difficult for a subject to know what
her compliance behavior would be, a subject often has enough information to regard her
compliance behavior as not being exchangeable with the population’s. Knowing the av-
erage treatment effects within principal strata allows a subject to utilize her information
about her expected compliance behavior to better predict her individual treatment effects.
For example, suppose a subject is reasonably confident that she would take treatment A if
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suggested it and would take treatment B if suggested it because her usual behavior is to
follow a doctor’s suggestions. Then the average treatment effect of treatment A for group
0AB is a better prediction of this subject’s treatment effect for taking treatment A than is
the average treatment effect of treatment A for group A.

A second reason for being interested in the average causal effects of treatment within
basic principal strata is that they are sometimes relevant to clinicians’ decisions about the
order in which to suggest treatments to patients. For example, consider a three-arm trial
in which both treatments A and B are more effective than the control and both treatments
will be made available to the general population after the trial. Suppose that a clinician
can quickly determine whether a patient complies with a suggested treatment and will sug-
gest the other treatment if the patient does not comply with the first suggested treatment.
Suppose also that if the patient does comply with the first suggested treatment, then the
clinician plans to stick with it as long as it does not appear harmful and there is reason to
believe it may be helping. A clinician might take this approach to not be disruptive and
to increase the patient’s confidence in the treatment. In addition, suppose that a patient’s
final outcome would be the same if the doctor initially suggests a given treatment and the
patient complies with it as if the doctor initially suggests the other treatment, the patient
does not comply with it, then the doctor suggests the given treatment and the patient
complies with it. Finally, suppose that compliance behavior is expected to remain the same
when the treatments are offered to the general population as in the trial. Under these
conditions, the treatment that has a higher effect for the 0AB group should be suggested
first because only the 0AB group’s treatment received will be affected by which treatment
is suggested first. Choosing which treatment to suggest first by comparing the average
treatment effect of treatment A for group A to the average treatment effect of treatment
B for group B could produce a suboptimal strategy. For example, suppose we have equal
proportions in the four principal strata, the average causal effect of treatment A is 0.7 for
group 0A0 and 0.4 for group 0AB, and the average causal effect of treatment B is 0.3 for
group 00B and 0.6 for group 0AB. Then the average causal effect of treatment A for group
A equals 0.5× (0.7 + 0.4) = 0.55, higher than the average causal effect of treatment B for
group B which equals 0.5× (0.3 + 0.6) = 0.45. However, for group 0AB, the average causal
effect of treatment B is higher than the average causal effect of treatment A. Although the
above setting is idealized, it illustrates the relevance of understanding interactions between
treatments and basic principal strata of compliance behavior for certain clinical decisions.

A third reason for being interested in the average treatment effects for groups 0A0, 00B
and 0AB is that they provide useful information for a planner trying to anticipate what
would happen were the treatment(s) to be introduced into general practice in a setting
in which compliance patterns are expected to differ from those of the trial. Compliance
outside of the trial could be higher because a treatment has been accepted as effective or
lower without the encouragement given in the trial (Robins, 1989). Suppose it is being
considered whether to introduce treatment A into general practice and it is expected that
the compliance rate will be lower without the encouragement given in the trial. Joffe and
Brensinger (2003) provide an approach for a two-arm trial for predicting the effects of in-
troducing treatment A into general practice for a situation in which compliance is expected
to change from the trial. A three-arm trial provides additional information for sharpening
such predictions. For example, it might be expected that subjects who would comply with
treatment A if offered it in the trial but who would not comply with treatment A it offered
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it in general practice are more likely to be 0A0 subjects in the trial than 0AB subjects in the
trial. Then, the average treatment effect of treatment A for the subjects who would comply
with treatment A if offered it in general practice when compared to the average treatment
effect of treatment A for subjects who would comply with treatment A if offered it in the
trial will move closer to the average treatment effect of treatment A for 0AB subjects in
the trial and further from the average treatment effect of treatment A for 0A0 subjects
in the trial. Note that in this third setting we consider for which estimating the average
causal effects within basic principal strata is of interest, we are assuming that compliance
behavior differs between the environment of the trial and the environment of the treatment
being offered to the general population, whereas in our second setting, we are assuming that
compliance behavior remains the same inside and outside of the trial. These are different
plausible possibilities for different treatment settings.

For the above reasons, the average treatment effects within basic principal strata 0A0,
00B and 0AB are of considerable interest. However, these parameters are not point-
identified under usual assumptions. By point-identified, we mean that a parameter would
be uniquely determined if we could use the sampling process to obtain an unlimited num-
ber of observations. For a two-arm trial, the average treatment effect within the principal
stratum of compliers (those who would take the treatment if assigned to it and not take
the treatment if not assigned to it) is point-identified under an exclusion restriction that
randomization has no direct effect and a monotonicity assumption that there are no defiers
(i.e., no patients who would take the treatment only when assigned to the control) plus some
other usual assumptions such as SUTVA, randomization of treatment assignment and non-
zero average causal effect of random assignment on treatment received (Angrist, Imbens and
Rubin, 1996). However, similar assumptions for a three-arm trial do not point-identify the
average treatment effects for basic principal strata. One difficulty for the three-arm trial is
that the monotonicity assumption that there are no defiers does not suffice to point-identify
the proportion of patients in strata 0A0, 00B, 0AB and 000. This difficulty can be overcome
by a further monotonicity assumption that there are no 00B patients (Monotonicity II in
Section 2.2). However, even with this further assumption, the average treatment effects
for treatment A for the principal strata 0A0 and 0AB remain not point-identified because
there is no way to fully deconvolve the observed outcomes under treatment A between these
two groups without further assumptions. Note that point identification breaks down even
in the two-arm case when defiers are allowed (Imbens and Angrist, 1994).

Although the treatment effects within basic principal strata are not point-identified
under usual assumptions, they are partially identified, meaning that if we could use the
sampling process to obtain an unlimited number of observations, we could place these para-
meters in a set valued identification region, where the set is a strict subset of the parameter
space for at least some probability distributions of the observed data under the sampling
process. When parameters of interest are only partially identified under certain assump-
tions, finding the upper and lower bounds of the identification region of the parameter
establishes a domain of consensus among researchers who may hold disparate beliefs about
what other assumptions are appropriate (Joffe, 2001; Manski, 2003). Bounds on parameters
(in particular, bounds on probabilities) are the basis for some general theories for statistical
reasoning in the face of uncertainty and imprecision (Shafer, 1982; Walley, 1991).

For a two-arm trial, bounds on the average treatment effects among the whole popu-
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lation and among those who would accept treatment if offered it have been developed by
Robins (1989), Manski (1990), and Balke and Pearl (1997). Balke and Pearl (1997) provide
the tightest possible bounds on the average treatment effect using linear programming. Joffe
(2001) shows how post-treatment covariates can be used to sharpen bounds on the overall
and direct effect of a treatment. Zhang and Rubin (2003) develop bounds for causal effects
within principal strata in a two-arm trial with censoring by death. In deriving our bounds
for a three-arm trial with binary outcomes, we use some of the analytical ideas in Zhang
and Rubin (2003).

Although our paper focuses on three-arm trials, our general framework and approach
also applies to the analysis of more general multi-arm trials with noncompliance. We discuss
extensions to general multi-arm trials in Section 7. However, the efficient computational
scheme we have developed for computing bounds on causal effects in three-arm trials does
not straightforwardly extend to more general multi-arm trials. Developing efficient and
reliable computational procedures for general multi-arm trials requires further research.

Our paper is organized as follows. We introduce notation, assumptions and principal
stratification in Section 2. We derive large sample bounds for the average causal effects
within basic principal strata under two sets of assumptions in Section 3. In Section 4, we
provide confidence intervals that have asymptotically correct coverage for the identification
regions. In Section 5, we provide a means of checking the plausibility of the exclusion
restriction and Monotonicity II assumptions based on the sample data. In Section 6, we
illustrate our methods by analyzing data from the randomized study of treatments for
alcohol dependence described in the introduction. In Section 7, we discuss how our methods
for three-arm trials with binary compliance can be used to derive bounds on average causal
effects within principal strata for general multi-arm trials. Section 8 provides discussion.

2. Framework

In this section, we first give the notation and assumptions used in this paper, and then
define principal strata for a three-arm trial.

2.1. Notation
Consider a three-arm trial with Control (0), Treatment A (A) and Treatment B (B).

For all notation, vectors denote variables or indices for all N subjects, whereas scalars
denote variables or indices for subject i. To reduce the complexity of the notation, the
index i is suppressed in the scalars. We let Z be the N-dimensional vector of randomization
assignments for all subjects, with individual element Z, where Z = z ∈ {0, A, B} is the
randomization assignment for subject i. Z = 0 if subject i is assigned Control, Z = A
for Treatment A, and Z = B for Treatment B. We let Dz be the N-dimensional vector
of potential treatment-received under randomization assignment z with element Dz, where
Dz = d ∈ {0, A, B} according to whether a person would take the treatment 0, A, or B
under randomization assignment z. Let Yz, d be the N-dimensional vector of potential
responses under randomization assignment z and treatment-received d, where Yz, d is the
potential response for subject i with the vector of randomization assignments z and the
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vector of treatment-received d.

Yz, d and Dz are “potential” response and treatment-received in the sense that we
can only observe one version of them. We let Y and D be the observed outcome and
treatment-received variables, respectively.

2.2. Assumptions
In this subsection we use some of the assumptions in Angrist, Imbens and Rubin (1996).

Assumption 1: Stable Unit Treatment Value Assumption (SUTVA) (Rubin 1980).
a. If z = z′, then Dz = Dz′ for subject i, where z and z′ are two different vectors of

randomization assignments, and z and z′ are the corresponding randomization assignments
for subject i under z and z′.

b. If z = z′ and d = d′, then Yz, d = Yz′, d′ for subject i, where d and d′ are
two different vectors of treatment-received, and d and d′ are the corresponding treatment-
received for subject i under d and d′.

The SUTVA assumption allows us to write Yz, d and Dz as Yz,d and Dz respectively
for subject i, where Yz,d is the potential outcome with randomization assignment z and
treatment-received d for subject i, and Dz is potential treatment-received with randomiza-
tion assignment z for subject i.

Assumption 2: Random Assignment
For all N subjects, the treatment assignment Z is random: Pr(Z = c) = Pr(Z = c′)

for all c and c′ such that lT c = lT c′, where l is the N-dimensional column vector with all
elements equal to one.

The random assignment assumption implies independence between assignment to treat-
ment arm and pretreatment variables including potential outcomes, potential treatment
received, and baseline covariates.

Assumption 3: Exclusion Restriction
Because of SUTVA, we can express this assumption in scalars. The assumption is that

for subject i, Yz,d = Yz′,d for all z, z′ and d. In words the exclusion restriction assumes
that the randomization assignment affects outcomes only through its effect on treatment
received.

This assumption allows us to define potential outcomes Yz,d as a function of d alone.
That is, Yd = Yz,d = Yz′,d for all z, z′ and d.

Assumption 4: Monotonicity I
P (D0 = 0) = 1 and P (DA = B) = P (DB = A) = 0. That is, a person in the Control

group will not take any treatment, and a person assigned to treatment A or B has no access
to treatment B or A respectively. This assumption is satisfied in the example study on
alcohol dependence because of the study design.

Assumption 5: Monotonicity II
P (DA = A|DB = B) = 1. That is, if a person complies with treatment B, then he must

comply with treatment A also. This assumption is plausible when A is a treatment that



Bounds on Causal Effects in Three-Arm Trials with Noncompliance 7

is similar to treatment B but has fewer or the same side effects for every subject. In the
example study on alcohol dependence, the Monotonicity II Assumption is plausible because
CET requires attending less sessions than CBT. In Section 5, we show that this assump-
tion imposes testable restrictions on the probability distribution of observable outcomes
(Y, D,Z). In Section 6, we will assess the confidence that the distribution of (Y, D, Z) in
the alcohol study satisfies the restrictions based on the sample data. Note that although
Assumption 5 imposes testable restrictions on the probability distribution of observable
outcomes, Assumption 5 cannot be consistently tested (i.e., there is no test of Assumption
5 for which the power converges to one for all fixed alternatives).

In Section 3, Assumptions 1 − 4 will be used to derive bounds for the average causal
effects of the treatment within basic principal strata. Bounds that incorporate the additional
Assumption 5 will also be presented and the consequences of the additional assumption on
bounds will be examined.

2.3. Principal Strata

Frangakis and Rubin (2002) define a basic principal stratification as a stratification of units
by their potential values for a post-randomization variable under the set of randomization
assignments being compared. Under Assumptions 1− 4, the subjects can be classified into
four basic principal strata using actual treatment-received as the post-randomization vari-
able.

0AB = {i|(D0, DA, DB)′ = (0, A, B)′}, the subjects who would comply with the as-
signed treatment under all three arms. Let π0AB = P (i ∈ 0AB);

0A0 = {i|(D0, DA, DB)′ = (0, A, 0)′}, the subjects who would comply with the assigned
treatment under both the control arm and the treatment A arm but would not comply
under the treatment B arm. Let π0A0 = P (i ∈ 0A0);

00B = {i|(D0, DA, DB)′ = (0, 0, B)′}, the subjects who would comply with the assigned
treatment under both the control arm and the treatment B arm but would not comply
under the treatment A arm. Let π00B = P (i ∈ 00B). Under Assumption 5 (Monotonicity
II), the principal stratum 00B is empty;

000 = {i|(D0, DA, DB)′ = (0, 0, 0)′}, the subjects who would not take any treatment
under all three arms. Let π000 = P (i ∈ 000).

Because membership in a basic principal stratum is not affected by treatment assign-
ment, a comparison of average potential outcomes under two different treatment assignments
for a basic principal stratum is a causal effect. Similar to potential outcomes, these basic
principal strata cannot be directly observed. However, the observable strata of the observed
treatment assignment and the observed treatment-received can provide information on these
basic principal strata. Table 1 shows that each observable stratum is a mixture of certain
unobservable basic principal strata in the three-arm trial.
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Table 1. The relation of observed
groups and potential basic princi-
pal strata

Z D Principal strata

A A 0AB, 0A0
A 0 00B, 000
B B 0AB, 00B
B 0 0A0, 000
0 0 0AB, 0A0, 00B, 000

3. Bounds

Under Assumptions 1−4, the average causal effects of treatment within basic principal strata
- E(YA−Y0|0AB), E(YA−Y0|0A0), E(YB−Y0|0AB), E(YB−Y0|00B), and E(YB−YA|0AB)
(= E(YB − Y0|0AB)− E(YA − Y0|0AB) ) - are not point identified based on knowledge of
the joint distribution of the observables (Y, D,Z). However, the average causal effects of
treatments within basic principal strata are partially identified in the sense that knowledge
of the distribution of (Y,D, Z) can narrow the range in which these average causal effects
of treatments can possibly lie. We first derive bounds for the average causal effects of treat-
ments within basic principal strata for binary outcomes under Assumptions 1− 4. We then
derive bounds based on the additional Assumption 5 and examine the consequence of this
additional assumption on the bounds.

In this section, we derive “large sample” bounds that assume that the population con-
ditional probabilities P (Y = 1|Z = z,D = d) and P (D = d|Z = z) are known. In Section
4, we provide confidence intervals for the bounds that reflect the sampling uncertainty in
our estimates of these conditional probabilities.

3.1. Bounds under Assumptions 1− 4
Under Assumptions 1− 4, we use three steps to obtain sharp bounds for a three-arm trial.

I Based on the relations between the observed (D, Z) strata and the unobserved princi-
pal strata, we determine bounds for the proportions in basic principal strata, π0AB , π0A0, π00B ,
and π000.

II Based on the relations between the outcomes in the (D, Z) strata and the potential
outcomes within basic principal strata, we find bounds for average potential outcomes
within basic principal strata given proportions in basic principal strata.

III We find the bounds for the average causal effects of treatments within basic principal
strata using the bounds on proportions in basic principal strata from Step I and
the bounds for average potential outcomes in each basic principal stratum given the
proportions in the basic principal strata from Step II.

Step I: Bounds for the proportions in basic principal strata
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To find bounds for the proportions in the basic principal strata based on the propor-
tions in the observable (D, Z) strata, we express the relations between the proportions in
the basic principal strata and the proportions in the observable (D,Z) strata, the fact that
the proportions in each basic principal stratum must lie between 0 and 1, and then min-
imize/maximize the proportions in the basic principal strata given the proportions in the
observable (D, Z) strata. From Table 1, we know that each observed stratum of (D, Z) is a
mixture of certain unobserved basic principal strata. We use pd|z to denote P (D = d|Z = z)
and have the following equations:

pA|A = π0AB + π0A0 (1)
p0|A = π00B + π000 (2)
pB|B = π0AB + π00B (3)
p0|B = π0A0 + π000 (4)
p0|0 = π0AB + π0A0 + π00B + π000 = 1 (5)

Furthermore, we have

0 ≤ π0AB , π0A0, π00B , π000 ≤ 1 (6)

Minimization and maximization of π0AB , π0A0, π00B , π000 subject to the constraints (1) -
(6) define a linear programming problem. The solution to the linear programming problem
is

max{0, pA|A − p0|B} ≤ π0AB ≤ min{pA|A, pB|B}
max{0, pA|A − pB|B} ≤ π0A0 ≤ min{pA|A, p0|B}
max{0, pB|B − pA|A} ≤ π00B ≤ min{pB|B , p0|A}

max{0, p0|B − pA|A} ≤ π000 ≤ min{p0|A, p0|B}

Step II: Bounds for the potential outcomes given proportions in basic prin-
cipal strata

In this step, we derive bounds on the average potential outcomes within basic principal
strata for known proportions in basic principal strata. From Table 1, we know that the
observed outcomes of Y |Z, D are a mixture of potential outcomes from basic principal
strata:

E(Y |Z = A,D = A) =
π0AB

π0AB + π0A0
E(YA|0AB) +

π0A0

π0AB + π0A0
E(YA|0A0) (7)

E(Y |Z = B, D = B) =
π0AB

π0AB + π00B
E(YB |0AB) +

π00B

π0AB + π00B
E(YB |00B) (8)

E(Y |Z = A,D = 0) =
π00B

π00B + π000
E(Y0|00B) +

π000

π00B + π000
E(Y0|000) (9)

E(Y |Z = B, D = 0) =
π0A0

π0A0 + π000
E(Y0|0A0) +

π000

π0A0 + π000
E(Y0|000) (10)
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E(Y |Z = 0, D = 0) = π0ABE(Y0|0AB) + π0A0E(Y0|0A0) + π00BE(Y0|00B)
+π000E(Y0|000) (11)

Note that for binary outcomes, the expectations in the above equations equal the cor-
responding probabilities of a favorable outcome occurring, so we have

0 ≤ E(YA|0AB), E(YA|0A0), E(YB |0AB), E(YB |00B),
E(Y0|0AB), E(Y0|0A0), E(Y0|00B), E(Y0|000) ≤ 1 (12)

To derive bounds for average potential outcomes within basic principal strata given the
proportions in basic principal strata, we use Lemma 1.

Lemma 1. Let h be a mixture of two Bernoulli distributions f and g, h = αf +(1−α)g,
where the mixing proportion α is known, and let P1, P2 and P3 be the probabilities of a
positive outcome under f , g and h respectively. Then,

max(0, 1− 1−P3
α ) ≤ P1 ≤ min(1, P3

α )
max(0, 1− 1−P3

1−α ) ≤ P2 ≤ min(1, P3
1−α )

The proof of Lemma 1 is a straightforward solution to the linear programming problem
of minimizing/maximizing P1 and P2 subject to the constraints P3 = αP1 + (1 − α)P2,
0 ≤ P1 ≤ 1, 0 ≤ P2 ≤ 1, 0 ≤ P3 ≤ 1.

By Lemma 1 and equations (7), (8) and (12), we obtain bounds for the average po-
tential outcomes within basic principal strata, E(YA|0AB), E(YA|0A0), E(YB |0AB) and
E(YB |00B), given the proportions in each basic principal stratum. Furthermore, by equa-
tions (1)-(5), we can express π0A0, π00B , π000 in terms of π0AB and the conditional distrib-
ution of D|Z. We use q1|zd to denote P (Y = 1|Z = z, D = d). Thus, we have the following
bounds given π0AB and the joint distribution of (Y, D, Z).

E(Yd|0AB, π0AB) ∈ (minE(Yd|0AB, π0AB),maxE(Yd|0AB, π0AB))

= (max{0, 1− 1− q1|zd
π0AB

pd|z

},min{1,
q1|zd
π0AB

pd|z

}),

where z = d = A or B;

E(YA|0A0, π0AB) ∈ (minE(YA|0A0, π0AB),maxE(YA|0A0, π0AB))

= (max{0, 1− 1− q1|AA

1− π0AB

pA|A

},min{1,
q1|AA

1− π0AB

pA|A

});

E(YB |00B, π0AB) ∈ (minE(YB |00B, π0AB),maxE(YB |00B, π0AB))

= (max{0, 1− 1− q1|BB

1− π0AB

pB|B

}, min{1,
q1|BB

1− π0AB

pB|B

}).
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Similar but more complicated algebra provides bounds for average potential outcomes
under the control (E(Y0|0AB), E(Y0|0A0) and E(Y0|00B)) given π0AB and the distribution
of (Y, D, Z). The details are provided in Appendix A.

Step III: Bounds for the average causal effects within basic principal strata

In this final step, we combine the bounds from Steps I and II to construct bounds for
the average causal effects within basic principal strata. From Step II, we have obtained
bounds for average potential outcomes within basic principal strata given π0AB . Then,
given π0AB , the average causal effects within basic principal strata can be bounded based
on the difference of the corresponding bounds on the average potential outcomes within basic
principal strata. For example, for basic principal stratum 0AB, given π0AB , the average
causal effect E(YA − Y0|0AB, π0AB) can be no less than E(YA|0AB, π0AB)’s lower bound
minus E(Y0|0AB, π0AB)’s upper bound, and no greater than E(YA|0AB, π0AB)’s upper
bound minus E(Y0|0AB, π0AB)’s lower bound. That is, given π0AB , E(YA−Y0|0AB, π0AB)
must fall in the interval

(minE(YA|0AB, π0AB)−maxE(Y0|0AB, π0AB),
maxE(YA|0AB, π0AB)−minE(Y0|0AB, π0AB)).

However, under Assumptions 1 − 4, π0AB is not point-identified but only bounded by
Step I, π0AB ∈ I, I = (max(0, pA|A−p0|B),min(pA|A, pB|B)). Thus, E(YA−Y0|0AB) must
fall into

( min
π0AB∈I

[minE(YA|0AB, π0AB)−maxE(Y0|0AB, π0AB)],

max
π0AB∈I

[maxE(YA|0AB, π0AB)−minE(Y0|0AB, π0AB)]) (13)

The minima and maxima of average potential outcomes that appear in (13) are given
in Step II. The bounds in (13) are computed using a grid search over π0AB ∈ I. Similarly,
expressions (13) hold for E(YA − Y0|0A0), E(YB − Y0|0AB) and E(YB − Y0|00B).

3.2. Bounds under Assumptions 1− 4 and 5 (Monotonicity II)
In this section, we derive bounds that use Assumption 5 in addition to the Assumptions
1− 4 used in the bounds of Section 3.1. In a three-arm trial, Assumption 5 (Monotonicity
II) asserts that basic principal stratum 00B is empty. This means that the stratum (D =
0, Z = A) belongs only to the basic principal stratum 000 and the stratum (D = B, Z =
B) belongs only to the basic principal stratum 0AB. This additional information on the
relationship between the strata of (D, Z) and the basic principal strata has two beneficial
consequences: it point-identifies the proportions within each basic principal stratum and it
provides additional information about the distribution of potential outcomes within basic
principal strata based on the distribution of Y |D,Z. The proportions in each basic principal
stratum are point-identified by the joint distribution of (D, Z):
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π0AB = pB|B
π0A0 = pA|A − pB|B
π000 = p0|A

Following the same reasoning in Step II on the relationship between the distribution of
Y |D,Z and the distribution of potential outcomes within basic principal strata but using
the fact that the basic principal stratum 00B is empty, we have the following:

E(YA|0AB) ∈ (max{0, 1− 1− q1|AA
π0AB

pA|A

},min{1,
q1|AA
π0AB

pA|A

})

E(YA|0A0) ∈ (max{0, 1− 1− q1|AA

1− π0AB

pA|A

},min{1,
q1|AA

1− π0AB

pA|A

})

E(YB |0AB) = q1|BB

E(Y0|000) = q1|A0

E(Y0|0AB) = min

(
1

max{0,
q1|00−p0|Bq1|B0

pB|B
}

)

E(Y0|0A0) = min

(
1

max{0,
p0|Bq1|B0−p0|Aq1|A0

pA|A−pB|B
}

)

Thus, in a three-arm trial under Assumption 5 (in addition to Assumptions 1 − 4),
E(YB − Y0|0AB) is point-identified. E(YA − Y0|0AB) and E(YA − Y0|0A0) remain only
partially identified under Assumptions 1−5 but the bounds are narrowed from those under
only Assumptions 1− 4 because π0AB is known. The bounds under Assumptions 1− 5 are
provided in Appendix B.

4. Confidence intervals for the average causal effects within basic principal strata

In Section 3, we have shown that for three-arm trials the average causal effects of the
treatments within the basic principal strata are not point-identified but bounded. When
deriving the bounds in Section 3, we assumed that the distribution of (Y,D, Z) was known.
In practice, there is sampling uncertainty in the distribution of (Y, D, Z) and the lower and
upper bounds need to be estimated. Confidence intervals (CIs) are of interest when making
inference about the bounds.

For example, from Section 3.2, in a three-arm trial under Assumptions 1− 5

E(YA − Y0|0AB) ∈ (max

(
0

1− 1−q1|AA
π0AB
pA|A

)
−min

(
1

max{0,
q1|00−p0|Bq1|B0

pB|B
}

)
,



Bounds on Causal Effects in Three-Arm Trials with Noncompliance 13

min

(
1

q1|AA
π0AB
pA|A

)
−min

(
1

max{0,
q1|00−p0|Bq1|B0

pB|B
}

)
).

which is a function of conditional probabilities and can be estimated by substituting the
sample values of the conditional probabilities. We would then like to have a CI that de-
scribes our uncertainty about these bounds.

Suppose (Ln, Un) are estimates of the bounds (L,U) on the identification region (the
range of possible values for a parameter given the true probability distribution of observable
outcomes) of a partially identified population parameter. We are interested in a CI which
asymptotically covers the identification region with fixed probability. One way to form such
a CI is to find a one-sided CI (Ll

n,∞) for the lower bound L with coverage probability
P (Ll

n ≤ L) = 1 − α
2 and a one-sided CI (−∞, Uu

n ) for the upper bound U with coverage
probability P (Uu

n ≥ U) = 1− α
2 . By the Bonferroni inequality, P (Ll

n ≤ L,Uu
n ≥ U) ≥ 1−α.

Thus, (Ll
n, Uu

n ) has at least (1−α) coverage probability. We call the above method for form-
ing a CI for the identification region the Bonferroni method. This method is potentially
conservative because it does not take into account the joint distribution of (Ln, Un).

Horowitz and Manski (2000) develop a CI that takes into account the joint distribution
of (Ln, Un). The interval (Ln − znα, Un + znα), where znα is chosen so that P (Ln − znα ≤
L,U ≤ Un + znα) = 1 − α asymptotically, has asymptotically (1 − α) probability of con-
taining both the lower and the upper bounds of the identification region. Horowitz and
Manski’s approach requires the use of the same znα in the CI (Ln− znα, Un + znα); it is not
balanced, meaning that P (Ln−znα ≥ L) might not equal P (Un +znα ≤ U) asymptotically.
Also, Horowitz and Manski’s approach should be modified when Ln or Un are equal to the
lower or upper bound of the identification region respectively.

The asymptotic Bonferroni and Horowitz-Manski CIs can be obtained by using the delta
method or the bootstrap. For the Bonferroni CIs, we use empirical percentile bootstrap CIs
to construct (1− α

2 ) one-sided CIs for L and U respectively. For Horowitz-Manski’s method,
by repeated bootstrap sampling, the distribution of bootstrap estimates, (L∗n, U∗

n), condi-
tional on the data can be estimated and used to find z∗nα such that P ∗(L∗n−z∗nα ≤ Ln, Un ≤
U∗

n + z∗nα) = 1 − α, where P ∗ is the probability measure induced by bootstrap sampling
conditional on the data. Then the bootstrap (1− α) CI for (L,U) is (Ln − z∗nα, Un + z∗nα)
(Horowitz and Manski, 2000), which has asymptotic coverage probability (1 − α) (Bickel
and Freedman, 1981).

Another approach to finding a confidence interval for the identification region is to find
a joint 95% confidence region for (L,U) and then take the smallest value for L and the
largest value for U in this confidence region. This takes into account the joint distribution
of the (Ln, Un) without the limitations on the form of the confidence interval of Horowitz-
Manski. Beran (1988) develops the B method to find simultaneous confidence sets that
are balanced and have correct overall coverage probability asymptotically. The B method
simultaneous confidence intervals for L and U are {Ll

n : Ln − Ll
n ≤ Ĥ−1

n,l [Ĥ
−1
n (1 − α)]}

and {Uu
n : Uu

n − Un ≤ Ĥ−1
n,u[Ĥ−1

n (1 − α)]} respectively, where Ĥn,l and Ĥn,u are dis-
tributions of (L∗n − Ln) and (Un − U∗

n) respectively (where L∗n and U∗
n are estimates of

Ln and Un from each bootstrap resample respectively), and Ĥn is the distribution of
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max{Ĥn,l(L∗n − Ln), Ĥn,u(Un − U∗
n)}. The B method CI for (L,U) is (minLl

n,maxUu
n ).

Beran (1990) provides the B2 method as an improvement of the B method that reduces the
asymptotic order of imbalance in the B method simultaneous confidence set as well as the
asymptotic order of error in overall coverage probability. The B2 method requires a double
bootstrap Monte Carlo algorithm that uses roughly the square of the computer time needed
by the B method.

The Bonferroni, Horowitz-Manski and B method CIs are CIs that cover the entire iden-
tification region with probability greater than or equal to (1− α) asymptotically. Perforce,
these confidence intervals contain the true parameter with probability greater than or equal
to (1− α) asymptotically and are hence confidence intervals for the true parameter. How-
ever, Imbens and Manski (2004) show that by dropping the requirement that a confidence
interval contain the identification region with probability greater than or equal to (1 − α)
asymptotically, a narrower confidence interval for the true parameter can be constructed.
Because our interest is typically in a confidence interval for the true parameter rather than
the identification region, extending Imbens-Manski’s approach to our setting is of consider-
able interest. However, doing so is beyond the scope of this paper. In particular, verifying
Assumption 1 of Imbens and Manski (2004), or constructing an alterative assumption, re-
quires further research for our setting.

In Section 6, the data from the alcohol study are used to compare bootstrap CIs based
on the Bonferroni method, Horowitz and Manski’s approach, and the B method, and sim-
ulation studies are done to examine the finite sample coverage of these three methods.

5. Checking the Plausibility of the Exclusion Restriction and Monotonicity II As-
sumptions

All the bounds in this paper are derived under the exclusion restriction assumption (As-
sumption 3). The bounds in Section 3.2 are derived under the additional Monotonicity II
assumption. Neither the exclusion restriction nor the Monotonicity II assumptions are
“point-identified”. In other words, it cannot be uniquely determined from the proba-
bility distribution of observable outcomes (Y,D, Z) whether or not they hold. However,
both assumptions imply restrictions on the probability distribution of observable outcomes
(Y,D, Z) such that the assumptions cannot hold under certain distributions of (Y, D,Z).
In this section, we discuss the restrictions on the distribution of (Y,D, Z) implied by the
exclusion restriction and Monotonicity II assumptions and provide a means of assessing the
confidence that the distribution of (Y,D, Z) satisfies these restrictions based on the sample
data.

Pearl (1995) provides a necessary condition on the probability distribution of (Y,D, Z)
for the exclusion restriction assumption to hold. For our setting of three-arm trials with
binary outcomes in which one group cannot access the treatment assigned to the other
groups, a necessary condition for the exclusion restriction assumption to hold is that the
six following inequalities hold:

P (Y = 0, D = 0|Z = z) + P (Y = 1, D = 0|Z = z̄) ≤ 1, (14)
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where

z =





0
A
B



 , z̄ =





0̄
Ā
B̄



 =





A,B
0, B
0, A





We now assume that the exclusion restriction assumption holds and derive restrictions
on the distribution of (Y, D,Z) for Monotonicity II to be plausible. Under the assumption of
the exclusion restriction, the set of probability distributions of observable outcomes (Y, D,Z)
can be divided into three subsets: (i) probability distributions of observable outcomes for
which Monotonicity II does not hold for any of the corresponding probability distributions of
potential outcomes; (ii) probability distributions of observable outcomes for which there are
some corresponding distributions of potential outcomes for which Monotonicity II holds as
well as some probability distributions of potential outcomes for which Monotonicity II does
not hold; and (iii) probability distributions of observable outcomes for which Monotonicity
II must hold. The union of the subset (ii) and (iii) of probability distributions of observable
outcomes for which Monotonicity II is plausible is the set of probability distributions on
(Y, D,Z) satisfying the following constraints:

q1|AA, q1|A0, q1|BB ∈ (0, 1); (15)

q1|B0 ∈ (
p0|A
p0|B

q1|A0,
pA|A − pB|B

p0|B
+

p0|A
p0|B

q1|A0); (16)

q1|00 ∈ (p0|Aq1|A0, pA|A + p0|Aq1|A0). (17)

The constraints (15)-(17) are obtained based on the relationship between observed out-
comes and potential outcomes and the fact that potential binary outcomes are 0 or 1.
Given that (Y, D, Z) satisfies constraints (15)-(17), the subset (iii) of probability distribu-
tions of observable outcomes for which Monotonicity II must hold is the set of probability
distributions on (Y, D,Z) satisfying a further constraint:

min(pB|B , p0|A) = 0, (18)

which is obtained based on the fact that P (π00B = 0) = 1 under Monotonicity II.

The set of probability distributions of observable outcomes (Y, D, Z) can be divided into
three subsets: (a) distributions which do not satisfy (15)-(17); (b) distributions which sat-
isfy (15)-(17) but not (18); (c) distributions which satisfy (15)-(18). Under the assumption
that the exclusion restriction holds, (a) corresponds to subset (i) above, (b) corresponds to
(ii) and (c) corresponds to (iii). Suppose it is observed that the empirical distribution of
(Y, D,Z) falls into subset (a). We would like to know how “confident” we should be that
the true distribution of (Y, D, Z) falls into subset (a). This is an example of the problem
of regions discussed by Efron and Tibshirani (1998). A simple bootstrap procedure for
estimating the confidence that the true probability distribution of (Y,D, Z) falls into subset
(a) based on a sample is the following:
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Table 2. Observed proportions in the alcohol study and the hypothet-
ical study

Observed Proportions Alcohol Study Hypothetical Study

P (D = A|Z = A) 0.70 0.95
P (D = 0|Z = A) 0.30 0.05
P (D = B|Z = B) 0.52 0.80
P (D = 0|Z = B) 0.48 0.20
P (D = 0|Z = 0) 1.00 1.00

P (Y = 1|Z = A, D = A) 0.60 0.95
P (Y = 1|Z = A, D = 0) 0.47 0.20
P (Y = 1|Z = B, D = B) 0.87 0.70
P (Y = 1|Z = B, D = 0) 0.71 0.25
P (Y = 1|Z = 0, D = 0) 0.60 0.45

(1) Bootstrap from the empirical distribution of (Y, D, Z);

(2) Count what proportion of the bootstrapped empirical distributions do not satisfy the
constraints (15)-(17). This proportion is the estimated confidence that the true probability
distribution of observable outcomes falls into subset (a).

An analogous procedure can be used to estimate the confidence that the probability
distribution of (Y, D, Z) falls into subsets (b) or (c) when the empirical distribution of
(Y,D, Z) falls into subsets (b) or (c) respectively. Also an analogous procedure can be used
to estimate the confidence that the probability distribution of (Y, D,Z) does or does not
satisfy the constraint (14) that is necessary for the exclusion restriction assumption to hold.
Efron and Tibshirani (1998) provide some refinements on this simple bootstrap procedure
that improve the accuracy of the estimated confidence.

6. Application

In this section, we will use data from the trial of treatments for alcohol dependence dis-
cussed in the introduction to illustrate the methods developed in this paper to construct
the bounds and confidence intervals for the average causal effects within principal strata
under different assumptions. †

In the alcohol study, we have 141 subjects and observe the proportions shown in the
first column of Table 2.

For the alcohol study, the empirical distribution of (Y, D, Z) satisfies the constraint
(14), indicating that the exclusion restriction assumption is plausible, but it does not sat-
isfy the constraints (15)-(17). Using the bootstrap procedure in Section 5, 65% of 1000
bootstrapped distributions do not satisfy the constraints (15)-(17), so we are fairly confi-
dent that Monotonicity II does not hold for the alcohol study. Under Assumptions 1 − 4,
the bounds are estimated using the results of Section 3, and the bootstrap 95% Bonferroni,

†R codes to compute the bounds and CIs with the methods developed in this paper are available
from the authors.
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Table 3. The estimated bounds and 95% Bonferroni, Horowitz-
Manski and B method CIs for the average causal effects within
principal strata for the alcohol study

Causal effect 1− 4

E(YA − Y0|0AB) Estimated Bounds (−0.61, 0.67)
95% Bonferroni CIs (−1, 1)
95% Horowitz-Manski CIs (−1, 1)
95% B method CIs (−1, 1)

E(YA − Y0|0A0) Estimated Bounds (−1, 0.40)
95% Bonferroni CIs (−1, 0.79)
95% Horowitz-Manski CIs NA
95% B method CIs (−1, 0.81)

E(YB − Y0|0AB) Estimated Bounds (0.11, 0.67)
95% Bonferroni CIs (−0.85, 1)
95% Horowitz-Manski CIs (−0.44, 1)
95% B method CIs (−0.43, 1)

E(YB − Y0|00B) Estimated Bounds (−0.64, 1)
95% Bonferroni CIs (−1, 1)
95% Horowitz-Manski CIs NA
95% B method CIs (−1, 1)

Horowitz-Manski, and B method CIs are obtained based on the corresponding methods in-
troduced in Section 4. Because of the binary outcome, the confidence limits for the bounds
which are estimated to be −1 or 1 are defined as −1 or 1 respectively. The results are shown
in Table 3.

For the alcohol study, the estimated bounds and 95% CIs for all principal strata are wide
under Assumptions 1 − 4. The 95% CIs for treatment A or B for principal strata 0AB,
0A0 and 00B all contain 0, indicating that there is not strong evidence that treatment A
(CET) or treatment B (CBT) has a beneficial causal effect on alcohol relapse. The CIs for
treatment A and treatment B overlap for principal stratum 0AB, so the data provide no
strong evidence about which treatment is better for principal stratum 0AB. Because the
Horowitz-Manski method requires the use of the same znα in the CI (Ln − znα, Un + znα),
it is not applied to the bounds with −1 or 1. The CIs based on different methods have
similar length except that the Horowitz-Manski CI and B method CI for E(YB − Y0|0AB)
are shorter than the corresponding Bonferroni CI.

To illustrate that the bounds can be highly informative in certain cases, we consider
some hypothetical data. Suppose we have a three-arm trial with binary outcome Y equal to
one if the treatment is successful, n = 1200, and observe the proportions shown in the sec-
ond column of Table 2. The empirical distribution of (Y, D, Z) satisfies the constraint (14),
indicating that the exclusion restriction assumption is plausible, and it satisfies the con-
straints (15)-(17). Because 95% of 1000 bootstrapped distributions satisfy the constraints
(15)-(17), we are confident that Monotonicity II is plausible for the hypothetical study. Note
that although the data does not suggest Monotonicity II is implausible, whether Monotonic-
ity II is in fact a reasonable assumption depends on the nature of the actual treatments.
The bounds and bootstrap 95% Bonferroni, Horowitz-Manski, and B method CIs for the
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Table 4. The estimated bounds and 95% Bonferroni, Horowitz-Manski and B
method CIs for the average causal effects within principal strata for the hypo-
thetical data

Causal effect 1− 4 1− 4 and 5

E(YA − Y0|0AB) Estimated Bounds (0.41, 0.51) (0.44, 0.50)
95% Bonferroni CIs (0.33, 0.58) (0.36, 0.57)
95% Horowitz-Manski CIs (0.34, 0.58) (0.37, 0.57)
95% B method CIs (0.33, 0.58) (0.37, 0.57)

E(YA − Y0|0A0) Estimated Bounds (0.39, 0.79) (0.42, 0.73)
95% Bonferroni CIs (0.13, 0.89) (0.18, 0.87)
95% Horowitz-Manski CIs (0.22, 0.96) (0.23, 0.92)
95% B method CIs (0.21, 0.91) (0.21, 0.87)

E(YB − Y0|0AB) Estimated Bounds (0.16, 0.23) 0.20
95% Bonferroni CIs (0.06, 0.32) (0.11, 0.29)
95% Horowitz-Manski CIs (0.06, 0.32) NA
95% B method CIs (0.07, 0.32) NA

E(YB − Y0|00B) Estimated Bounds (−1, 1) Undefined
95% Bonferroni CIs (−1, 1) NA
95% Horowitz-Manski CIs (−1, 1) NA
95% B method CIs (−1, 1) NA

average causal effects within principal strata are computed under Assumptions 1 − 4 and
1− 5 shown in Table 4.

In the hypothetical study most of the bounds are informative in terms of not including
zero. The addition of Assumption 5 helps to narrow the bounds. The CIs based on different
methods have similar length in this example. For both sets of assumptions, the 95% CIs
for treatment A for both principal strata 0AB and 0A0 and for treatment B for principal
stratum 0AB do not contain 0, indicating that there is strong evidence that treatment A
has a beneficial causal effect for both strata 0AB and 0A0, and treatment B has a beneficial
causal effect for stratum 0AB. For principal stratum 0AB, under both sets of assumptions,
the lower endpoints of the CIs for the treatment A are greater than the upper endpoints
of the CIs for treatment B. This provides strong evidence that treatment A is better than
treatment B for principal stratum 0AB.

To estimate the true coverage probabilities of the Bonferroni, Horowitz-Manski, and B
method 95% CIs for the bounds, we generated one thousand simulations for each study
with the same sample size of the original data using the empirical distribution of the data.
For each simulation, we constructed the Bonferroni, Horowitz-Manski, and B method 95%
bootstrap CIs. The true coverage probabilities (for the empirical distribution of the data)
are estimated by checking how many of the one thousand bootstrap CIs cover the bounds of
the identification region of the empirical distribution of the data. The estimated coverage
probabilities for the Bonferroni, Horowitz-Manski, and B method are in the range of 0.94−
0.96, 0.91 − 0.96, and 0.90 − 0.96 respectively for the hypothetical data, and 0.92 − 0.97,
0.65 − 0.92, and 0.76 − 0.96 respectively for the alcohol data, which has a much smaller
sample size than the hypothetical data.
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7. Extensions to General Multi-Arm Trials

In this section, we consider more general multi-arm trials than three-arm trials. For simi-
lar reasons as discussed in the introduction for three arms, the causal effects within basic
principal strata are often of interest in general multi-arm trials. As with three-arm trials,
our three-step strategy described in Section 3.1 can be used to compute bounds for causal
effects within basic principal strata. However, computation of such bounds for trials with
more than three arms is more difficult. We discuss this further below; we first describe the
structure of the basic principal strata in several types of multi-arm trials.

For a k-arm trial with the same structure as a three-arm trial under Assumptions 1− 4,
i.e., the control group cannot receive any active treatments and each active treatment arm
cannot receive any other active treatments not assigned to it, there will be (2k−1) observed
(Z,D) strata and 2k−1 basic principal strata. Each (Z,D) stratum will have 2k−2 basic
principal strata in it except for the (Z,D) = (0, 0) strata which has 2k−1 basic principal
strata in it.

For a k-arm trial with the same structure as a three-arm trial under Assumptions 1− 5,
i.e., Monotonicity II holds, the proportions in each basic principal stratum are identified
in Step I, the average potential outcomes for control within all basic principal strata and
the average potential outcome for the hardest to comply with treatment within the basic
principal stratum that would take all treatments are identified in Step II. Hence the average
causal effect for the hardest to comply with treatment within the basic principal stratum
that would take all treatments is identified in Step III. All other average causal effects within
basic principal strata are not point identified.

In the alcohol study that we considered, compliance to an arm was categorized as a
binary variable, whether or not the patient attended at least 80% sessions, based on the
clinicians’ understanding of how the treatment works. Categorization of compliance into
a binary variable is often done in analyses of causal effects when there is noncompliance
(e.g., Sommer and Zeger, 1991; Ten Have et al., 2004; Small et al., 2006). Although such
categorization is often a reasonable simplification as in the alcohol study that we consider,
compliance often actually involves more than two levels. For example, for the alcohol study,
compliance could be classified into three levels – none, half or full – based on the percentage
of sessions attended. In this case, there are nine basic principal strata (000, 0( 1

2A)0, 0A0,
00( 1

2B), 00B, 0( 1
2A)B, 0AB, 0A( 1

2B), 0( 1
2A)( 1

2B)) and there are nine basic principal strata
in each (Z, D) stratum other than the (0, 0) stratum; for example, the (Z, D) = (A, 1

2A)
stratum contains the basic principal strata 0( 1

2A)0, 0( 1
2A)B, 0( 1

2A)( 1
2B).

For both settings in which there are more than three arms and settings in which there
are more than two levels of compliance, the ratio of basic principal strata to observed (Z, D)
strata increases compared to three-arm trials. This makes the identification problems more
severe, and potentially reduces the informativeness of the bounds. For complex multi-arm
trials, it might be worthwhile to consider parametric models that parameterize the rela-
tionships among outcomes in different principal strata. For example, for trials with more
than two levels of compliance, Goetghebeur and Molenberghs (1996) discuss the use of
parametric models for the association between principal stratum membership and potential
outcomes.
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Besides the additional identification problems raised by multi-arm trials with more than
three arms or more than two levels of compliance, such trials raise computational difficulties
for computing bounds. For three-arm trials with two levels of compliance, our three-step
strategy described in Section 3.1 enables us to compute bounds by carrying out a one-
dimensional grid search in which the function we evaluate at each grid point involves solving
simple linear programming problems. We can quickly compute the bounds and this enables
bootstrap methods to be used to compute confidence intervals for bounds in a manageable
amount of time (e.g., less than 10 seconds for Bonferroni bootstrap CIs for all bounds
with 1000 resamplings). For general multi-arm trials, our three-step strategy can still be
used to compute the bounds. For Step II, the bounds for average potential outcomes
within basic principal strata given the proportions in the basic principal strata can be
still be computed using linear programming. However, for Step I, the region of feasible
proportions in the basic principal strata can no longer be parameterized as an interval for
one parameter as in three-arm trials. Instead, the feasible region must be parameterized as
a multi-dimensional convex polytope. Polyhedral computation techniques (Fukuda, 2004)
can be used to parameterize the feasible region in Step I. As a consequence of the more
complex region of feasible proportions in principal strata, for Step III, we need to carry
out a grid search over a multidimensional convex polytope rather than a one-dimensional
interval. Another approach for computing bounds in general multi-arm trials besides our
three-step strategy is to directly write the bounds as the solution to nonlinear programming
problems. However, because the programming problems are not in general convex, solutions
to the programming problem may be only local optima. Development of fast and reliable
computational techniques for computing bounds for multi-arm trials more complex than
three-arm trials with two levels of compliance is a valuable topic for future research.

8. Discussion

For three-arm trials, average causal effects of the treatments within basic principal strata
are of interest for several reasons. They provide useful information to patients who have
enough information to regard their own compliance behavior as not being exchangeable
with the population’s and will choose between treatments, to clinicians who do not know
patients’ compliance behavior and want to determine which treatment to offer first, and to
planners who try to anticipate what would happen were the treatments to be introduced
into general practice. Even with usual assumptions, when noncompliance is present, the
average treatment effects within basic principal strata in three-arm trials are not point-
identified. However, we show that the observable data does provide useful information that
can narrow the bounds on the identification regions of the average causal effects. We derive
sharp bounds for the average causal effects within basic principal strata given the distrib-
ution of observables (Y, D,Z) under two sets of assumptions. To account for the sampling
uncertainty in the distribution of (Y, D,Z), we develop confidence intervals for the bounds
of the identification regions.

When the confidence intervals on the bounds of the identification regions for the aver-
age causal effect of treatments A and B for basic principal stratum 0AB overlap, making
a decision on treatment strategy (whether to offer A or B first) is not straightforward
based on the available data. We are working on two approaches that can provide further
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information about average causal effects within basic principal strata beyond the bounds
presented in this paper. One approach we are working on is to take advantage of additional
information, such as covariates that predict principal stratum membership, to provide more
decisive results. Another approach we are working on is to develop methods of sensitiv-
ity analysis. In this paper, we derive the bounds based on the most extreme relationship
between certain potential outcomes which are associated with each observable outcome. If
the relationship between certain potential outcomes follows a parametric model, we can
do sensitivity analyses on the parameters of interest and then the bounds are the extreme
results of these sensitivity analyses. We are working on developing appropriate models for
sensitivity analysis. Related work on sensitivity analysis includes Vansteelandt and Goet-
ghebeur (2001) and Vansteelandt et al. (2005).

Our method to derive bounds on average causal effects within basic principal strata
for three-arm trials in this paper can be extended to trials with more than three arms or
more than two levels of compliance. However, fast and reliable methods for computing the
bounds for these trials requires further research. Additionally, the ratio of basic principal
strata to observed strata of (Z, D) increases as the number of arms and/or compliance levels
increase, making the identification problems more severe and hence making the bounds of
average causal effects within basic principal strata less informative. Appropriate further
assumptions that can reduce the identification problems when there are multiple arms and
more than two levels of compliance is a valuable topic for future research. In this study, we
focus on binary outcomes. Extensions to more general outcomes would be worthwhile.
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APPENDIX

Appendix A:

CONSTRUCTION OF BOUNDS FOR AVERAGE POTENTIAL OUTCOMES UNDER
THE CONTROL GIVEN PROPORTIONS IN PRINCIPAL STRATA WITH ASSUMP-
TIONS 1− 4:

For constructing bounds for average potential outcomes under the control given propor-
tions in principal strata, it is useful to re-express (9)-(11) as

E(Y |Z = 0, D = 0)− p0|BE(Y |Z = B, D = 0)

−p0|AE(Y |Z = A, D = 0) = π0ABE(Y0|0AB)− π000E(Y0|000) (19)

E(Y |Z = 0, D = 0)− p0|AE(Y |Z = A, D = 0) = π0ABE(Y0|0AB) + π0A0E(Y0|0A0) (20)

E(Y |Z = 0, D = 0)− p0|BE(Y |Z = B, D = 0) = π0ABE(Y0|0AB) + π00BE(Y0|00B) (21)
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By maximizing/minimizing E(Y0|0AB) with constraints (12) and (19)-(21), or equiva-
lently (9)-(12), using linear programming as in Lemma 1, we have the following bounds for
E(Y0|0AB) given π0AB :

E(Y0|0AB, π0AB) ∈ (minE(Y0|0AB, π0AB),maxE(Y0|0AB, π0AB))

= (max




0

min{1,
q1|00−p0|Bq1|B0−p0|Aq1|A0

π0AB
}

min{1,
q1|00−p0|Aq1|A0−pA|A+π0AB

π0AB
}

min{1,
q1|00−p0|Bq1|B0−pB|B+π0AB

π0AB
}




,

min




1

max{0,
q1|00−p0|Bq1|B0−p0|Aq1|A0

π0AB
+ p0|B−pA|A+π0AB

π0AB
}

max{0,
q1|00−p0|Aq1|A0

π0AB
}

max{0,
q1|00−p0|Bq1|B0

π0AB
}




).

Given π0AB , maximizing/minimizing E(Y0|0A0) with constraints (12) and (19)-(21), or
equivalently (9)-(12), is equivalent to maximizing/minimizing E(Y0|0A0) with constraints
(12) and (20) given E(Y0|0AB, π0AB) bounded as above. Using linear programming as in
Lemma 1 we have

E(Y0|0A0, π0AB) ∈ (minE(Y0|0A0, π0AB), maxE(Y0|0A0, π0AB))

= (max

(
0

min{1,
q1|00−p0|Aq1|A0−π0AB [maxE(Y0|0AB,π0AB)]

pA|A−π0AB
}

)
,

min

(
1

max{0,
q1|00−p0|Aq1|A0−π0AB [minE(Y0|0AB,π0AB)]

pA|A−π0AB
}

)
).

Similarly we have

E(Y0|00B, π0AB) ∈ (minE(Y0|00B, π0AB), maxE(Y0|00B, π0AB))

= (max

(
0

min{1,
q1|00−p0|Bq1|B0−π0AB [maxE(Y0|0AB,π0AB)]

pB|B−π0AB
}

)
,

min

(
1

max{0,
q1|00−p0|Bq1|B0−π0AB [minE(Y0|0AB,π0AB)]

pB|B−π0AB
}

)
).
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Appendix B:

RESULTS ON THE AVERAGE CAUSAL EFFECTS WITHIN PRINCIPAL STRATA
UNDER ASSUMPTIONS 1− 5

E(YB − Y0|0AB) = q1|BB −min

(
1

max{0,
q1|00−p0|Bq1|B0

pB|B
}

)
;

E(YA − Y0|0AB) ∈ (max

(
0

1− 1−q1|AA
π0AB
pA|A

)
−min

(
1

max{0,
q1|00−p0|Bq1|B0

pB|B
}

)
,

min

(
1

q1|AA
π0AB
pA|A

)
−min

(
1

max{0,
q1|00−p0|Bq1|B0

pB|B
}

)
);

E(YA − Y0|0A0) ∈ (max

(
0

1− 1−q1|AA

1−π0AB
pA|A

)
−min

(
1

max{0,
p0|Bq1|B0−p0|Aq1|A0

pA|A−pB|B
}

)
,

min

(
1

q1|AA

1−π0AB
pA|A

)
−min

(
1

max{0,
p0|Bq1|B0−p0|Aq1|A0

pA|A−pB|B
}

)
),

where
π0AB = pB|B .
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