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Summary. This article considers the problem of estimating the average controlled direct effect (ACDE) of
a treatment on an outcome, in the presence of unmeasured confounders between an intermediate variable
and the outcome. Such confounders render the direct effect unidentifiable even in cases where the total
effect is unconfounded (hence identifiable). Kaufman et al. (2005, Statistics in Medicine 24, 1683–1702)
applied a linear programming software to find the minimum and maximum possible values of the ACDE for
specific numerical data. In this article, we apply the symbolic Balke–Pearl (1997, Journal of the American
Statistical Association 92, 1171–1176) linear programming method to derive closed-form formulas for the
upper and lower bounds on the ACDE under various assumptions of monotonicity. These universal bounds
enable clinical experimenters to assess the direct effect of treatment from observed data with minimum
computational effort, and they further shed light on the sign of the direct effect and the accuracy of the
assessments.
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1. Introduction
Estimation of the direct effect of a treatment on an outcome
is a central concern in epidemiological and clinical research
(Robins and Greenland, 1992; Buyse and Molenberghs, 1998;
Wang and Taylor, 2002; Rubin, 2004; Kaufman et al., 2005;
Taylor, Wang, and Thiebaut, 2005; Petersen, Sinisi, and van
der Laan, 2006). Pearl (2001) gave a formal definition of the
total effect decomposition into direct and indirect effects, and
distinguished between the controlled direct effect and the nat-
ural direct effect, the former is obtained when intermediate
variables are held constant at specific values. Kaufman et al.
(2005) considered the problem of estimating the average con-
trolled direct effect (ACDE) of a treatment on an outcome, in
the presence of unmeasured confounders between an interme-
diate variable and the outcome. Such confounders render the
direct effect unidentifiable even in cases where the total effect
is unconfounded (hence identifiable). Kaufman et al. (2005)
applied a linear programming software to find the minimum
and maximum possible values of the ACDE for specific nu-
merical data. They further proposed the midpoint between
the minimum and maximum values as an estimator of the
ACDE. However, they did not provide exact formulas of the
bounds on the ACDE.

In this article, we apply the symbolic Balke–Pearl linear
programming method (Balke, 1995; Balke and Pearl, 1997)
to derive closed-form formulas of the upper and lower bounds

on the ACDE under various assumptions of monotonicity. In
contrast to the numerical method of Kaufman et al. (2005),
these symbolic formulas enable clinical experimenters to as-
sess the direct effect of a treatment on an outcome from ob-
served data with minimum computational effort, and they
further shed light on the accuracy of the assessment. In ad-
dition, we derive bounds on the ACDE when covariate infor-
mation is available. Moreover, we provide a formal formula
for the midpoint estimator chosen by Kaufman et al. (2005),
and propose a new stratified midpoint estimator that is more
accurate when covariate measurements are available. In ad-
dition to the binary case, we further propose bounds on the
ACDE in the case where observed variables are multicategor-
ical. Finally, we illustrate our results through an empirical
example in both binary and multicategorical cases.

2. Bounding Formulas
2.1 Problem Description
To motivate our problem, we examine the data from the Lipid
Research Clinics Coronary Primary Prevention Trial (LRC-
CPPT) (shown in Table 1; LRT-CPPT group, 1984; Kaufman
et al., 2005). The purpose of this study is to evaluate the ef-
ficacy of the cholesterol-lowering drug cholestyramine for the
prevention of coronary heart disease (CHD) in 3806 hyperc-
holesterolemia men. Our interest is to examine whether serum
cholesterol level 1 year after initiation of cholestyramine was
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Table 1
Definite CHD mortality or myocardial infarction events (Y) in the LRC-CPPT study
according to randomized cholestyramine treatment group (X) and serum cholesterol

(md/dl) at 1 year (Z) (Kaufman et al., 2005)

Placebo (x1) Cholestyramine treatment (x0)

Cholesterol Cholesterol Cholesterol Cholesterol
≥ 280mg/dl < 280mg/dl Total ≥ 280mg/dl < 280mg/dl Total

(z1) (z0) placebo (z1) (z0) treatment

y1 82 86 168 33 97 130
y0 669 1081 1750 332 1426 1758
Total 751 1167 1918 365 1523 1888

an adequate surrogate endpoint (i.e., explanation) for the out-
come of CHD.

According to Freedman, Graubard, and Schatzkin (1992),
a good surrogate endpoint is one that explains a large propor-
tion of the total effect. A conventional approach to validate
a surrogate endpoint is to estimate the relative contributions
of the direct and indirect effects to the total effect. However,
if there exist unmeasured confounding factors, for example,
if there exist unmeasured genetic or life style factors that af-
fect both cholesterol and CHD, estimating the direct effect
requires careful causal analysis.

To model presence of unmeasured confounding, we consider
the directed acyclic graph shown in Figure 1, where a treat-
ment X, an intermediate Z, and an outcome Y are binary
variables with values x, z, and y, respectively, (x ∈ {x0, x1},
y ∈ {y0, y1}, z ∈ {z0, z1}), and U is a set of unmeasured vari-
ables, which is independent of X. In this figure, the treatment
is assumed to be randomized, hence there is no confounder
between X and Y, and the total effect of X on Y is identifi-
able. However, the set of unmeasured confounders U between
Z and Y renders the direct effect of X on Y unidentifiable.
In other words, it is impossible to estimate this direct effect
without making further assumptions. The central aim of this
article is to derive formulas of the bounds on the direct effect
of X on Y in this causal structure.

The ACDEs are defined as

ACDE(z) = pr{y1 | do(x1),do(z)} − pr{y1 | do(x0),do(z)},
(1)

for z ∈ {z0, z1}, where do(·) denotes an imposed interven-
tion (Pearl, 2000; Kaufman et al., 2005). pr{y | do(x), do(z)}

Figure 1. A directed acyclic graph with a measured treat-
ment X, an intermediate Z, and an outcome Y, and a set of
unmeasured variables U (Kaufman et al., 2005).

indicates the probability of Y = y when we set X and Z to
specific values x and z, respectively, by a joint intervention
(Pearl, 2000).

Using the counterfactual notation of Neyman (1923) and
Rubin (1974), equation (1) can be also written as

ACDE(z) = pr(Yx1,z = y1)− pr(Yx0,z = y1). (2)

A formal translation from graphs to counterfactual models is
given by Pearl (2000).

Equation (1) represents the average causal effect of X on Y
when the causal path through Z is blocked by holding Z fixed
at z0 or z1. Note that equation (1) is different from the crude
stratum-specific risk difference pr(y1 | x1, z) − pr(y1 | x0, z).
The latter stands for the observed conditional risk difference
in stratum z (in our example, the subgroup with cholesterol
<280 mg/dl or cholesterol ≥280 mg/dl), which represents the
direct effect of X on Y, plus the spurious correlation between
X and Y through the path X→Z←U→Y . On the other
hand, equation (1) represents the direct effect only, because
the path X→Z←U→Y had been blocked by an interven-
tion on Z. If the ACDE equals 0 in our example, then we can
judge that cholesterol (Z) is a perfect surrogate endpoint for
CHD (Y), which suggests that lowering cholesterol level con-
stitutes an adequate explanation for how the drug prevents
the occurrence of CHD.

In order to derive bounds on the ACDE, we follow Kauf-
man et al. (2005) and define 64 potential response types.
First, we consider X (cholestyramine) as a treatment and Z
(cholesterol) as an outcome. Because X and Z are binary vari-
ables, there are four possible potential response types at the
unit level: (1) a subject whose cholesterol increases regard-
less of taking cholestyramine or placebo (doomed), (2) a sub-
ject whose cholesterol decreases only by taking cholestyramine
(causative), (3) a subject whose cholesterol decreases only
by not taking cholestyramine (preventive), and (4) a subject
whose cholesterol decreases regardless of taking cholestyra-
mine or placebo (immune) (Greenland and Robins, 1986). We
index these four types by a mapping variable rz = 1, 2, 3, 4.
Similarly, when we consider X (cholestyramine) as a treat-
ment and Y (CHD) as an outcome with Z (cholesterol) fixed
to z0 or z1, there still exist doomed, causative, preventive,
and immune potential response types. We denote these four
types by a mapping variable ry|z0 = 1, 2, 3, 4 when Z is fixed
to z0, and another mapping variable ry|z1 = 1, 2, 3, 4 when Z
is fixed to z1. Therefore, any of the 4 × 4 × 4 index triples,
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(rz, ry|z0 , ry|z1) represents a potential response type. The joint
probability distribution of (rz, ry|z0 , ry|z1) is defined by

qijk = pr(rz = i, ry|z0 = j, ry|z1 = k),

for i, j, k = 1, 2, 3, 4, and the {qijk} represent the proportion of
the 64 potential response types among the population. Thus,
the population of interest is fully characterized by {qijk}, and
we can rewrite equation (2) as

ACDE(z1) =

4∑
i=1

4∑
j=1

( ∑
k∈{1,2}

qijk −
∑

k∈{1,3}

qijk

)

ACDE(z0) =

4∑
i=1

4∑
k=1

( ∑
j∈{1,2}

qijk −
∑

j∈{1,3}

qijk

)
.

See Web Appendix A for a detail derivation.
Kaufman et al. (2005) applied a linear program software

package to find the minimum and maximum possible values
of the ACDE for specific numerical data. However, they did
not provide exact formulas for the ACDE. Balke (1995) and
Balke and Pearl (1997) describe a computer program that
takes symbolic description of linear programming problems
and returns symbolic expressions for the desired bounds. In
this article, we apply this symbolic method to derive closed-
form formulas for the ACDEs under three sets of assumptions.
Details of this method are included in Web Appendix A.

2.2 No Assumption Case
When no assumption is made, there are 64 potential response
types, whereas there are only eight observed conditional prob-
abilities pr(y, z | x). Using the symbolic Balke–Pearl method
(Balke, 1995; Balke and Pearl, 1997), the formulas for the
tightest lower and upper bounds on the ACDEs are given by

pr(y0, z | x0) + pr(y1, z | x1)− 1 ≤ ACDE(z)

≤ 1− pr(y1, z | x0)− pr(y0, z | x1), (3)

for z ∈ {z1, z0}, which defines the range within which the
ACDE must lie. It is remarkable that we get such a simple
formula, consisting of only one additive expression in the lower
bound and one additive expression in the upper bound.

To find when the lower bound coincides with the upper
bound, we calculate their difference and obtain pr(z1−i | x0) +
pr(z1−i | x1) for ACDE (zi)(zi ∈ {z1, z0}). Hence, in or-
der to make the lower bound equal the upper bound, both
pr(z1−i | x0) and pr(z1−i | x1) must be zero. This indicates
that the upper bound cannot coincide with the lower bound in
both ACDE (z0) and ACDE (z1) at the same time, because the
probabilities in all the cells must be zero in order to achieve
it. That is, the bounding interval never vanishes, regardless
of the observations.

In addition, it should be noted that equation (3) provides
a simple testable criterion for the existence of a direct ef-
fect, that is, if pr(y0, z | x0) + pr(y1, z | x1) > 1, then we
are assured that ACDE(z) is positive, and if pr(y1, z | x0) +
pr(y0, z | x1) > 1,ACDE (z) must be negative.

2.3 Monotonic Assumption Case
Kaufman et al. (2005) made two assumptions regarding the
potential response types: (1) monotonic assumption, which
means no unit-level causal effects of X on Z or of X on Y or

of Z on Y can be negative, and (2) no-interaction assump-
tion, which means that, for all units, the response of Y to
change in X does not depend on the level at which we hold Z.
There are 18 potential response types that satisfy monotonic
assumption, that is, {qi11, qi21, qi22, qi41, qi42, qi44 : i = 1, 2, 4},
and 12 potential response types that satisfy both monotonic
and no-interaction assumptions, that is, {qi11, qi22, qi41, qi44 :
i = 1, 2, 4} (Kaufman and Kaufman, 2006, personal com-
munication). By applying the Balke–Pearl method, we derive
closed-form formulas for the tightest bounds on the ACDEs
in the two cases. The following equations give the lower and
upper bounds under monotonic assumption:

max

{
0

pr(y0, z1 | x0)− pr(y0, z1 | x1)

}
≤ ACDE(z1) ≤ pr(y0 | x0)− pr(y0, z1 | x1). (4)

max

{
0

pr(y1, z0 | x1)− pr(y1, z0 | x0)

}
≤ ACDE(z0) ≤ pr(y1 | x1)− pr(y1, z0 | x0). (5)

It is seen that the interval collapses when pr(y0, z1 | x0) =
pr(y0 | x0) (or pr(y0, z0 | x0) = 0) in equation (4) and pr(y1, z0 |
x1) = pr(y1 | x1) (or pr(y1, z1 | x1) = 0) in equation (5). In
these cases, the ACDEs can be evaluated by the lower or
upper bound.

On the basis of the lower bounds of equations (4) and (5),
we can judge whether there exist positive direct effects un-
der the monotonic assumption. That is, if pr(y0, z1 | x0) >
pr(y0, z1 | x1) and/or pr(y1, z0 | x1) > pr(y1, z0 | x0), then we
are assured that there exist positive direct effects.

Moreover, equations (4) and (5) provide a simple neces-
sary test for the monotonic assumption. That is, if the mono-
tonic assumption holds true, then the upper bounds should be
no less than zero, because the lower bounds are nonnegative.
Thus, if the observed quantities are pr(y0 | x0) < pr(y0, z1 | x1)
or pr(y1 | x1) < pr(y1, z0 | x0), then the upper bounds would
be negative, which indicates that the monotonic assumption
does not hold in this situation.

On the other hand, the following equation gives the lower
and upper bounds under both monotonic and no-interaction
assumptions:

max




0
pr(y0, z1 | x0)− pr(y0, z1 | x1)
pr(y1, z0 | x1)− pr(y1, z0 | x0)

pr(y0, z1 | x0)− pr(y0, z1 | x1) + pr(y1, z0 | x1)− pr(y1, z0 | x0)




≤ ACDE(z) ≤ pr(y1 | x1)− pr(y1 | x0), (6)

for z ∈ {z1, z0}. It is seen that the upper bound is the total
effect of X on Y. We can judge whether there exist positive
direct effects from the lower bound of equation (6). That is,
if either pr(y0, z1 | x0) > pr(y0, z1 | x1) or pr(y1, z0 | x1) >
pr(y1, z0 | x0), then we are assured that there exist positive
direct effects.

Further, equation (6) provides a simple necessary test for
both monotonicity and no-interaction assumptions. Because
ACDE(z) must be nonnegative from the lower bounds of equa-
tion (6), then, if pr(y1 | x1) < pr(y1 | x0), the upper bounds
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would be negative, which indicates that at least one of the
two assumptions is violated.

One more thing to be mentioned is that, because the mono-
tonic assumption and no-interaction assumption add some
constraints on the potential response types, the bounds under
monotonic assumption should not be wider than those under
no assumption, and similarly, the bounds under both mono-
tonic and no-interaction assumptions should not be wider
than those under monotonic assumption.

2.4 Estimation Accuracy
In Sections 2.2 and 2.3, we derive the estimators for the lower
and upper bounds under three sets of assumptions. Another
problem is the estimation accuracy of these estimators. For
the no-assumption case, it is easy to obtain the exact variances
for the lower and upper bounds. However, for the remaining
two cases, it is very complicated to derive the variances for the
lower bounds though it is easy to obtain the exact variances
for the upper bounds. In Web Appendix B, we provide the
variance estimators for the lower and upper bounds under
the three cases. In addition, we evaluate the performance of
the proposed variance estimators through simulation studies.

3. Stratified ACDE
The analysis of Section 2 applies to situations where all con-
founders between Z and Y are unmeasured. However, if some
of these confounders are observed, this information is helpful
in narrowing the bounds on direct effects. In this section, we
consider the directed acyclic graph with the set of confounders
U in Figure 1 being divided into two sets of variables: mea-
sured covariates S and unmeasured covariates W.

Then, we define the stratified ACDE as

ACDE(z | s) = pr{y1 | do(x1),do(z), s}
−pr{y1 | do(x0),do(z), s} (7)

for s ∈ {s1, . . . ,sk} and z ∈ {z1, z0}, where

pr{y | do(x),do(z), s} =
pr{y, s | do(x),do(z)}
pr{s | do(x),do(z)} .

Because S is a set of observed baseline covariates, it is not
affected by X or Z, which implies pr{s | do(x), do(z)} =
pr(s) (Pearl, 2000). Let k be the number of categories of S,
then 64k potential response types are needed in order to ob-
tain the tightest bounds on the ACDE. However, if we limit
the potential responses to the case where S = s is observed,
then there are in total 64 potential response types in each
stratum. Therefore, we can apply the previous discussion to
derive the bounds on the stratified ACDEs. When there exist
64 potential response types, the stratified ACDE is given by

pr(y0, z | x0, s) + pr(y1, z | x1, s)− 1

≤ ACDE(z | s) ≤ 1− pr(y1, z | x0, s)− pr(y0, z | x1, s),

for z ∈ {z1, z0}. Similarly, if the monotonic assumption holds
true in stratum s, we can obtain

max

{
0

pr(y0, z1 | x0, s)− pr(y0, z1 | x1, s)

}
≤ ACDE(z1 | s) ≤ pr(y0 | x0, s)− pr(y0, z1 | x1, s),

max

{
0

pr(y1, z0 | x1, s)− pr(y1, z0 | x0, s)

}
≤ ACDE(z0 | s) ≤ pr(y1 | x1, s)− pr(y1, z0 | x0, s).

In addition, if both the monotonic and no-interaction assump-
tions hold true in stratum s, we can obtain

max




0
pr(y0, z1 | x0, s)− pr(y0, z1 | x1, s)
pr(y1, z0 | x1, s)− pr(y1, z0 | x0, s)

pr(y0, z1 | x0, s)− pr(y0, z1 | x1, s) + pr(y1, z0 | x1, s)− pr(y1, z0 | x0, s)




≤ ACDE(z | s) ≤ pr(y1 | x1, s)− pr(y1 | x0, s), (8)

for z ∈ {z1, z0}. Thus, because the ACDE(z) can be obtained
by

ACDE(z) =
∑
s

ACDE(z | s)pr(s),

letting LBs(z) and UBs(z) be the lower bound and the upper
bound in stratum s, respectively, the summarized bounds on
the ACDE(z) by using covariate information can be evaluated
by ∑

s

LBs(z)pr(s) ≤ ACDE(z) ≤
∑
s

UBs(z)pr(s). (9)

These summarized bounds on direct effects are not wider than
the bounds derived in Section 2, a simple proof of which is
provided in Web Appendix C.

We would like to point out some practical requirements
for the observed covariates S. First of all, S must be baseline
covariates in order for the method to be valid. Moreover, we
can divide such baseline covariates into the following three
cases: (a) S is a confounder between Z and Y; (b) S has an
effect on Z but not on Y; (c) S has an effect on Y but not on
Z. If the measured covariate S satisfies any of the three cases,
then the summarized bounds of equation (9) should not be
wider than those provided in Section 2.

4. Midpoint Estimator
Kaufman et al. (2005) proposed the midpoint between the
minimum and maximum values as an estimator of the ACDE,
which is given as

mRD(z) =
UB(z) + LB(z)

2
, z∈{z0, z1}, (10)

where LB(z) and UB(z) are the linear programming minimum
and maximum values for ACDE(z) derived from the observed
probabilities using linear programming packages. With the
derived formulas in Section 2, we can now present an exact
formula of the midpoint estimator. For example, the midpoint
estimator with no assumption is derived directly as

mRD(z) =
1

2
{pr(y0, z | x0) + pr(y1, z | x1)

−pr(y1, z | x0)− pr(y0, z | x1)} (11)
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Table 2
A hypothetical example: proportion of potential response types

in strata s1 and s0

s1 s0

q111 0.10 q141 0.01 q111 0.10 q141 0.20
q211 0.01 q241 0.01 q211 0.30 q241 0.01
q411 0.30 q441 0.02 q411 0.10 q441 0.01
q122 0.01 q144 0.10 q122 0.10 q144 0.10
q222 0.01 q244 0.01 q222 0.01 q244 0.01
q422 0.20 q444 0.22 q422 0.01 q444 0.05

based on equation (3). The midpoint estimators for the re-
maining two cases can be derived in the same way. Thus, we
can calculate the midpoint estimator from the observed data
without using linear programming packages.

When covariate information is available, we propose a new
stratified midpoint estimator, which is given by

mRDs(z) =
∑
s

LBs(z) + UBs(z)

2
pr(s), (12)

where S is a set of observed baseline covariates discussed in
Section 3.

The new stratified midpoint estimator is superior to the
midpoint estimator when some covariates are observed. To
see this, we consider a hypothetical example when both mono-
tonic and no-interaction assumptions hold true, and there is a
binary observed covariate S. Table 2 shows the true proportion
of 12 potential response types in each stratum, and Table 3
shows the observed conditional probabilities pr(y, z | x, s)
induced from Table 2. Here, pr(s1) is set to be 0.45.

Then, according to Kaufman et al.’s method, the bounds
on the direct effect are (0.050, 0.175), and the midpoint es-
timate is 0.112. On the other hand, the bounds are (0.190,
0.230) in stratum s1 and (0.090, 0.130) in stratum s0 accord-
ing to our formula (8). Then, we calculate the summarized
lower and upper bounds according to our summarized formula
(9), which are (0.135, 0.175), and the stratified midpoint es-
timator according to formula (12), which is 0.155. Here, we
can calculate the true stratified ACDE from Table 2, which
is 0.220 in stratum s1 and 0.120 in stratum s0. In addition,
the true ACDE is 0.165 from Table 2, which is included in
both Kaufman et al.’s bounds and our bounds. However, it is
seen that Kaufman et al.’s midpoint estimator is quite away
from the true ACDE and outside our bounds, whereas the
stratified midpoint estimator is close to the true ACDE.

Table 3
Observed conditional probabilities pr(y, z | x, s) induced from

Table 2

s1 s0

y1 y0 y1 y0

x1 z1 0.15 0.11 0.72 0.11
z0 0.50 0.24 0.11 0.06

x0 z1 0.11 0.11 0.30 0.20
z0 0.31 0.47 0.40 0.10

5. Extension to Multicategorical Case
In the discussion above, we consider the ACDE when ob-
served variables are binary. In this section, we consider the
case where X,Y , and Z are multicategorical variables. When
the categorical treatment variable X is changed from x to x′,
we define the ACDE as

ACDE(y, z, x, x′)=pr{y | do(x′),do(z)}−pr{y | do(x),do(z)}.

where y and z are possible values of Y and Z, respectively.
Then, we provide the lower and upper bounds on the ACDE
under the multicategorical case:

−1 + pr(z | x) + pr(y, z | x′)− pr(y, z | x) ≤ ACDE(y, z, x, x′)

≤ 1− pr(z | x′) + pr(y, z | x′)− pr(y, z | x).

The proof is given in Web Appendix D. When X,Y , and
Z are binary variables, these bounds are consistent with
equation (3). Kang and Tian (2006) provided a method to
obtain the inequality constraint for causal effects from nonex-
perimental data in the presence of unobserved variables. The
above bounds can also be obtained by using their method.

6. Empirical Example
6.1 Binary Case
We illustrate our results through the example given in Sec-
tion 2. Kaufman et al. (2005) collapsed the serum cholesterol
values into two categories from five original categories, based
on the data in Freedman et al. (1992). We will discuss the five
categories in the next subsection.

Because treatment X is randomized, the total effect of X
on Y can be estimated by the risk difference pr(y1 | x1) −
pr(y1 | x0) = 0.0876 − 0.0689 = 0.0187. On the other hand,
the observed stratum-specific risk difference is pr(y1 | x1, z0)
− pr(y1 | x0, z0) = 0.0737 − 0.0637 = 0.0100 in stratum
z0, and pr(y1 | x1, z1) − pr(y1 | x0, z1) = 0.1092 − 0.0904 =
0.0188 in stratum z1. Thus, as noted in Kaufman et al. (2005),
there appears to be a direct causative effect of not receiv-
ing cholestyramine on the risk of CHD in each stratum of
intermediate.

The bounds on the ACDE under no assumption are
[−0.1999, 0.3850] in stratum z0, and [−0.7814, 0.6337] in stra-
tum z1, which are relatively wide. Here, according to Kauf-
man et al. (2005), it is reasonable to assume that neither
cholestyramine nor absence of hyperlipidaemia may elevate
risk of the outcomes, nor may cholestyramine elevate serum
cholesterol, leading to 18 potential response types for consid-
eration. In addition, the necessary test for the monotonic as-
sumption in Section 2 shows that pr(y0 | x0) − pr(y0, z1 | x1) =
0.5823 > 0, and pr(y1 | x1) − pr(y1, z0 | x0) = 0.0362 >
0, which suggests that the monotonic assumption holds for
the data. Then, according to our formulas, the bounds are
[0, 0.0362] in stratum z0, and [0, 0.5823] in stratum z1. The
upper bound in stratum z1 can be as large as 0.5823, which is
much larger than the total effect 0.0187. Even the midpoint
estimator is 0.2912, larger than 0.0187. Therefore, it may not
be helpful to calculate the relative contribution of the direct
and indirect effects to the total effect, in order to validate the
serum cholesterol level as a surrogate endpoint. One expla-
nation is that there exists potential response type q442, which
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Table 4
Data from definite CHD mortality or myocardial infarction events (Y) in the Lipid

Research Clinics Coronary Primary Prevention Trial (Freedman et al., 1992) and the
lower and upper bounds on the ACDE in five cholesterol categories

Placebo (x1) Cholestyramine (x0) Bounds

Cholesterol (Z) y1 y0 y1 y0 Lower Upper

<180 0 7 9 97 −0.949 0.992
180−230 8 83 34 641 −0.656 0.939
230−280 78 991 54 688 −0.595 0.455
280−330 64 572 23 281 −0.818 0.690
>330 18 97 10 51 −0.964 0.944

contributes the ACDE (z1) value but does not contribute to
the total effect.

When we restrict to 12 potential response types, again,
the necessary test for no-interaction assumption holds, that
is, pr(y1 | x1) − pr(y1 | x0) = 0.0187 > 0. The bounds on
the ACDE(z) are [0, 0.0187] in both strata. The upper bound
equals the total effect, because the interactive potential re-
sponse type q442 does not exist. The midpoint estimator gives
an estimate 0.0094, which indicates that there may exist a di-
rect effect of cholestyramine treatment on CHD without me-
diating serum cholesterol.

Moreover, it is noted that the bounds under the monotonic
assumption are narrower than those under no assumption,
and the bounds under both monotonic and no-interaction as-
sumptions are narrower than those under monotonic assump-
tion. The reason is that these assumptions make some con-
straints on the potential response types.

6.2 Multicategorical Case
Freedman et al. (1992) provided the data from the LRC-
CPPT study, where the serum cholesterol values (Z) have five
categories (shown in Table 4). Based on our formulas in Sec-
tion 5, we calculate the lower and upper bounds when the
serum cholesterol is fixed at each of the five categories, which
are shown in Table 4. When we compare the bounds in binary
case with those in Table 4, it is seen that with the number of
categories of Z increases, the observed probabilities become
smaller and the bounds become wider, which indicates that
the width of the bounds is dependent on the sparsity of the
observations. However, the bounds are helpful if one is inter-
ested in the ACDE under more detailed categories, which the
bounds of binary case cannot provide.

7. Discussion
This article applied the symbolic Balke–Pearl method to de-
rive closed-form formulas for the lower and upper bounds on
the ACDEs under three sets of assumptions. We also con-
sidered extensions to situations where the treatment, the in-
termediate, and the outcome are multinomial rather than di-
chotomous variables, as well as situations in which the con-
founding factors are partially observed, so that covariate-
adjusted bounds and midpoint estimators can be obtained.

Because our approach is nonparametric and mainly based
on observed information, the proposed bounds define a range
within which the direct effect must lie. On the basis of these
deterministic bounds, one can narrow the bound width sub-
stantially by introducing subject matter constraints. There-

fore, these universal bounds are helpful for epidemiologists
and clinical experimenters to assess the direct effect of
treatment.

8. Supplementary Materials
Web Appendices and Tables referenced in Sections 2, 3, and
5 are available under the Paper Information link at the Bio-
metrics website http://www.biometrics.tibs.org.
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