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BOUNDS ON EXPECTATIONS OF LINEAR SYSTEMATIC
STATISTICS BASED ON DEPENDENT SAMPLES
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David summarized distribution-free bounds for E(X,.,), the expected
value of the kth order statistic, and for the expected value of certain linear
combinations of the order statistics, when sampling # i.i.d. observations from a
population with expectation p and variance 0. Here the problem of finding
distribution-free bounds for the expectations of linear systematic statistics is
considered in the case in which the observations X;, i = 1,2, - -, n, satisfy
only E(X;) = p and Var(X;) = 0> The observations may be dependent and
have different distributions. Bounds are obtained for the expectations of the kth
order statistic, the trimmed mean, the range, and quasi-ranges, the spacings and
Downton’s estimator of 0. The sharpness of these bounds is considered. In
contrast with the i.i.d. case all the bounds obtained are shown to be sharp.

1. Introduction. Let X, X,, - - - , X, be random variables with the correspond-
ing order statistics denoted by X,., < X,., < - -+ <X,.,. Bounds on the ex-
pected values of the order statistics when the X, are i.i.d., with expectation p and
variance o2, are well known. A convenient reference for these results is David
(1970, pages 46ff.). The earliest result due to Gumbel (1954) and Hartley and
David (1954) concerns the maximum, i.e.,

(1) E(X,.,) < p+o(n—1)Q2n - 1)77.

Here we obtain bounds for the expectations of order statistics and of linear
systematic statistics in the case of possibly dependent random variables with
possibly different marginal distributions. Results such as those discussed in this
paper can be expected to be useful in determining conservative significance levels
for statistics which are of the form max(T,, T,, - - -, T,) or range
(T}, Ty, - - -, T,), where the T;’s have common mean and variance but are possibly
dependent.

2. The basic inequality. Denote » random variables and their order statistics as
in the first section, with E(X;) = w, 6%(X;) = o7, where the X, are not necessarily
independent. Define p,., = E(X,.,) and f=n"'Sy., =n"'Sp. Let
A Ay -, A, be any real numbers with A = n7 '3\, As

2(""1’:11 - ﬁ)z = zp'zzn - nﬁz < 2E(‘szn) - n"_"z
= SE(X?) — ng® = Zo? + S p? — npg?
—\2
=={o? + (1 — B},
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the Cauchy-Schwarz inequality yields
(2) '2}\1(#:,: - ﬁ)l = IE()\I - X)(n""i:n - ﬁ)'
< [2()\, - X)zz(p'xn - ﬁ)z]i

‘ 1
< [Z(Ai - }\)22{0,? + (w — u)z}]z.
It is interesting to note that bounds for A ., can often be obtained by
choosing numbers A}, - - - , A, and A{, - - -, A such that
2}\1’”‘1 in < lep‘l in < 2}\1”“1 n
and using (2) to obtain a lower bound for XAy ., and an upper bound for
SN . ,- This device will be used in examples (a) and (b) in Section 3. It is easy to
show by an argument involving isotonic regression that the choices of A/ and A/
made in these examples are the best possible, and that in example (c) no improve-
ment of (8) is possible by using this device.

3. Applications. Throughout this section we assume the X;, X5, - - - , X, to be
jointly distributed with common expectation j1 and variance ¢%. In many instances
the X; will be identically distributed but, since this extra assumption does not lead
to better bounds, we allow the marginal distributions to be possibly different.

(a) Bounds on the expectation of the kth order statistic. Application of (2) to the
left and right-hand sides in

(3) 211‘(=1y‘i:n/k<p'k:n<2?=knu'i:n/(n—k+1)
yields
@) p-o{(n—-k/k)i< ., < ptof(k=1/(n=k+ 1)}z,

Note that the bound in (1) becomes p,., < p + o(n — l)%, when independence
cannot be assumed. Similarly, we have for the expected value of the trimmed
mean:

(5) p=ofk/(n - k)} <ZiZfp.,/(n - k)
< 2'i,=_llc(,2+l""i:n/ (n - kl - k2)
< 2’il=}’c,+1""'i:n/ (n - kl)
< p+olk/(n=kp)j2.

(b) Bounds on the expected difference of two order statistics. Application of (2) to
the right-hand side in

Pryin = Mieyin < Zhap i/ (n—ky+ 1) — S/ k)
yields for 1 < k; <k, <n,

(6) Piyin = Beyin <0{n(n—ky+ 1+ k)/((n—ky + l)kl)}%'
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Special cases of this inequality are for:
(i) The kth quasi-range:

(63.) Mp—kti:n = Mion S o(zn/k)% for2k <n
(ii) The kth spacing:
1
(6b) "l'k+l:n_"l'k:n<on/{k(n_k)}2‘

(c) A bound for the expectation of Downton’s unbiased estimate of a normal
standard deviation. Downton (1966) suggested a scalar multiple of Gini’s mean
difference

™ T, = oy Sl = (55 )

as an unbiased estimate of ¢ in normal samples. We may obtain an upper bound
on E(T,) even when the X;’s are not independent, not normal and, in fact not even
identically distributed. We only assume E(X ) = w and Var(X)) = o> If we apply
(2) it follows that

(®) E(T,) < o(m(n + 1)/3(n — 1))
= (1.023)o((n + 1)/ (n — 1))7.

Hence 7, will in general not seriously overestimate o, even when applied to
situations markedly different from those for which it was designed.

Ol—

4. Sharpness. In general, the inequalities described in this paper are sharp.
Examples for which the bounds are achieved may be readily constructed. For
example, suppose that for some k # 1, n — k + 1 of the elements of a finite
population have common value k — 1, while the remaining k — 1 have common
value —(n — k + 1). Let X}, X5, - - - , X,, be the outcomes of n drawings without
replacement. In this case p =0, s> =(k— )(n —k + 1), and ., =(k— 1)
achieving the upper bound in (4).

The only exceptions are the two trivial bounds g, ., < p and g,., > p included
in (4) and (5). Hawkins (1971) obtained results analogous to (4) for samples from
finite populations, including a slightly better lower bound (respectively upper) for
W, ., (respectively, g, .,) using a classical result of Pearson and Chandra Sekar
(1936). Hawkins’ bounds may be extended to yield, under the assumptions of
Section 3:

(93') [.le,,<[1,—0/(n—1)7
and
(9b) Wi > 0+ 0/ (n— 1)

These bounds are now sharp (i.e., achievable).
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