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Abstract: The F-index F(G) of a graph G is obtained by the sum of cubes of the degrees of all the vertices in
G. It is de�ned in the same paper of 1972 where the �rst and second Zagreb indices are introduced to study
the structure-dependency of total π-electron energy. Recently, Furtula and Gutman [J. Math. Chem. 53 (2015),
no. 4, 1184–1190] reinvestigated F-index and proved its various properties. A connected graph with order n
and sizem, such thatm = n + 2, is called a tricyclic graph. In this paper, we characterize the extremal graphs
and prove the ordering among the di�erent subfamilies of graphs with respect to F-index in Ωαn, where Ωαn
is a complete class of tricyclic graphs with three, four, six and seven cycles, such that each graph has α ≥ 1
pendant vertices and n ≥ 16 + α order. Mainly, we prove the bounds (lower and upper) of F(G), i.e

8n + 12α + 76 ≤ F(G) ≤ 8(n − 1) − 7α + (α + 6)3 for each G ∈ Ωαn .
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1 Introduction and preliminaries
A representative number of a molecular graph that expresses the various features of the involved organic
molecules, usually knownas a topological index (TI). It plays an important role to study the certain changes in
themolecular structureswhichmay be physical or chemical.Moreover, Cheminformatics studies quantitative
structural activity and property relationships that are used to examine the bioactivities and chemical reactiv-
ities of the chemical compounds in a molecular graph on the bases of obtained computational results for the
di�erent topological indices (TI’s), see [1]. Most importantly, all the TI’s are invariants under the parameter of
graphs-isomorphism. For a connected graph, there are many TI’s in literature. These are classi�ed into three
main classes degree-based TI’s, distance-based TI’s and polynomial-based TI’s. The TI’s depending upon
degrees are more familiar than the others, see [2].

Wiener (1947) de�ned the �rst distance based TI, when he was working on para�n, see [3]. Later on,
it was called by Wiener index and much more work has been done on it. Recently, Furtula and Gutman
(2015) [4] reinvestigated a degree-based TI and named it forgotten index (F-index). They also proposed its
basic properties in the same paper and reported that it can enhance the physico-chemical capability of the
molecules. The F-index and its co-index of the di�erent graphs are studied by De et al. [5], Milovanovic et
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al. [6] and Basavanagoud et al. [7]. Khaksari and Ghorbani [8] studied the certain product of graphs with the
same index. The extremal graphswith respect to F-index among the unicyclic and bicyclic graphs are studied
in [9, 10]. For more studies, we refer to [11] and [12-25].

In this paper, we prove the existence of extremal graphs with respect to F-index in the class of tricyclic
graphs with three, four, six and seven cycles under the condition of certain pendant vertices. We also
investigate the ordering and compute the bounds (lower andupper) of the F-index in the same class of graphs.

Throughout the paper, G(V(G), E(G)) for vertex-set V(G) and edge-set E(G) is considered as simple (no
loops andparallel edges), �nite andundirected graph. For r ∈ V(G), d(r) shows its degree (number of incident
edges on r). For more theoretic terminologies, we refer [26]. Now, some important TI’s are de�ned as follows:

De�nition 1.1. For a (molecular) graph G, the �rst and second Zagreb indices are

M1(G) =
∑

rs∈E(G)

[d(r) + d(s)] and M2(G) =
∑

rs∈E(G)

[d(r) × d(s)].

De�nition 1.2. For a (molecular) graph G, the general Randić index (Rα(G)) is

Rα(G) =
∑

rs∈E(Γ)

[d(r) × d(s)]α .

For α = −1
2 , α = 1

2 and α = 1, we obtain Randić, reciprocal Randić and second Zagreb indices respectively.

De�nition 1.3. For a (molecular) graph G the forgotten index (F-index) is de�ned as follow:

F(G) =
∑
s∈V(G)

[d(s)]3.

For more studies, we refer to [4, 11, 27-29]. Following lemma is frequently used in the main results.

Lemma 1.1. [9] For 1 ≤ i ≤ n and 1 ≤ j ≤ 2, assume that < d1
1, d1

2, d1
3, ..., d1

n > and < d2
1, d2

2, d2
3, ..., d2

n > are
degree sequences with the condition of d1

i = d2
i , where dji is degree of the vertex vji ∈ V(Gj) and n = |V(G1)| =

|V(G2)|. Then, F(G1) = F(G2).

2 Computational results of F-index
A connected graph with order n and size m such that m = n − 1 + c is called a c-cyclic graph. In particular, if
c = 0, c = 1, c = 2 or c = 3 then it is a tree, unicyclic, bicyclic or tricyclic graph respectively. A tricyclic graph
contains at least three and at most seven cycles except of exactly �ve cycles. There are seven possibilities for
a tricyclic graph with three cycles as shown in Figure 1. Moreover, the possibilities for the tricyclic graphs
with four, six and seven cycles are four, three and one respectively, see Figure 2. Now, we de�ne some more
tricyclic graphs with respect to the attachment of k ≥ 1 pendent vertices to the l vertices of the graphs which
are de�ned in Figure 1. To choose l vertices, we have the following choices:

(i) cycle-vertex of degree 2,
(ii) tree-vertex of degree 2,
(iii) cycle-vertex of degree greater or equal to 2,
(iv) cycle-vertex and tree-vertex of degree exactly 2,
(v) cycle-vertex of degree greater or equal to 2 and tree-vertex of degree exactly 2.

More precisely, we de�ne that l vertices are either of degree exactly 2 or, greater or equal to 2. By joining
k ≥ 1 pendant vertices to l vertices of degree 2, and the vertices of degree greater or equal to 2 of the graph
G1 in Figure 1, the tricyclic graphs Am,rl,k,1 = A1 and Am,rl,k,2 = A2 are obtained respectively. In G1, vertices of
degree 3 are four and of degree 2 are m1 +m2 +m3 + r such that m = m1 +m2 +m3 are cycle-vertex and r are
tree-vertex. Table 1 shows the vertex-partition with respect to degrees of vertices of graphs A1 and A2.
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Figure 1: Tricyclic graphs with three cycles.

Table 1: Vertex-partitions of the tricyclic graphs A1 and A2.

d(v), for v ∈ V(A1) 1 2 3 k + 2
|d(v)| lk m + r − l 4 l
d(v), for v ∈ V(A2) 1 2 k + 2 k + 3
|d(v)| lk m + r + 4 − l l − 4 4

InG2 (Figure 1), the vertices of degrees4,3, and2are1,2andm1+m2+m3+r+1 such thatm = m1+m2+m3
are cycle-vertex and r + 1 are tree-vertex. By joining k ≥ 1 pendant vertices to l vertices of degree 2, and the
vertices of degree greater or equal to 2 of G2 in Figure 1, the tricyclic graphs Bm,rl,k,1 = B1 and Bm,rl,k,2 = B2, are
obtained, respectively. The Table 2 presents the vertex-partitions of graphs B1 and B2.

The graph G3 (Figure 1) has 2 andm1 +m2 +m3 + r + 2 vertices of degrees 4 and 2, respectively such that
m = m1 + m2 + m3 and r + 2 are cycle-vertex. The tricyclic graphs Cm,rl,k,1 = C1 and Cm,rl,k,2 = C2 are obtained
by joining k ≥ 1 pendent vertices to l vertices of degree 2, and degree greater or equal to 2 of the graph G3 in
Figure 1, respectively. The Table 3 presents the vertex-partitions with respect to the degrees of vertices of the
graphs C1 and C2.

Similarly, we obtain the tricyclic graphs Dm,rl,k,1 = D1, Dm,rl,k,2 = D2, Em,rl,k,1 = E1 and Em,rl,k,2 = E2, by joining
k ≥ 1 pendent vertices to l vertices of degree 2, and greater or equal to 2 of the graphs G4 and G5 in Figure 1,
respectively. In Figure 1, G4 has m cycle-vertex and r + 2 tree-vertex of degrees 2 and G5 has m cycle-vertex
and r + 3 tree-vertex of degrees 2. The vertex-partitions of these derived tricyclic graphs are shown in Table 4
and Table 5.

Moreover for i ∈ {1, 2}, we note that (i) |V(Ai)| = |V(Bi)| = |V(Ci)| = |V(Di)| = |V(Ei)| = m1 +m2 +m3 + lk+
r+4 = m+ lk+r+4 and (ii) the graphs G6 and G7 have the same degree sequences as of G1 and G2 respectively.
For more explanation, B1, B2, E1 and E2 are given in Figure 2 with certain value of the parameters l,m, k and
r.

Now, A1
1 from A1 are obtained by deleting k pendant vertices from a vertex of degree k + 2 and joining

these vertices to another vertex of degree k+2. Similarly,A2
1 is derived fromA1

1 bydeleting2k pendant vertices

Table 2: Vertex-partitions of the tricyclic graphs B1 and B2.

d(v), for v ∈ V(B1) 1 2 3 4 k + 2
|d(v)| lk m + r + 1 − l 2 1 l
d(v), for v ∈ V(B2) 1 2 k + 2 k + 3 k + 4
|d(v)| lk m + r + 4 − l l − 3 2 1
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Figure 2: Tricyclic graphs with four cycles (H1, H2 H3 and H4), six cycles (L1, L2 and L3) and seven cycles (K).

Table 3: Vertex-partitions of the tricyclic graphs C1 and C2.

d(v), for v ∈ V(C1) 1 2 4 k + 2
|d(v)| lk m + r + 2 − l 2 l
d(v), for v ∈ V(C2) 1 2 k + 2 k + 4
|d(v)| lk m + r + 4 − l l − 2 2

Table 4: Vertex-partitions of the tricyclic graphs D1 and D2.

d(v), for v ∈ V(D1) 1 2 3 5 k + 2
|d(v)| lk m + r + 2 − l 1 1 l
d(v), for v ∈ V(D2) 1 2 k + 2 k + 3 k + 5
|d(v)| lk m + r + 4 − l l − 2 1 1

Table 5: Vertex-partitions of the tricyclic graphs E1 and E2.

d(v), for v ∈ V(E1) 1 2 6 k + 2
|d(v)| lk m + r + 3 − l 1 l
d(v), for v ∈ V(E2) 1 2 k + 2 k + 6
|d(v)| lk m + r + 4 − l l − 1 1
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Table 6

Base Graphs (BG) H1 H2 H3
Joining k vertices to l vertices of degree = 2 Rm,rl,k,1 = R1 Sm,rl,k,1 = S1 Tm,rl,k,1 = T1

Joining k vertices to l vertices of degree ≥ 2 Rm,rl,k,2 = R2 Sm,rl,k,2 = S2 Tm,rl,k,2 = T2

Classes of tricyclic graphs generated from BG ξ1 ξ2 ξ3

Table 7

Base Graphs (BG) L1 L2 L3
Joining k vertices to l vertices of degree = 2 Xm,rl,k,1 = X1 Ym,rl,k,1 = Y1 Zm,rl,k,1 = Z1

Joining k vertices to l vertices of degree ≥ 2 Xm,rl,k,2 = X2 Ym,rl,k,2 = Y2 Zm,rl,k,2 = Z2

Classes of tricyclic graphs generated from BG ζ1 ζ2 ζ3

from the vertex of degree 2k + 2 and joining these vertices to the vertex of degree k + 2. After l − 1 iteration,
we obtain Al−1

1 from Al−2
1 by deleting (l − 1)k pendent vertices from a vertex of degree (l − 1)k + 2 and joining

these vertices to the last vertex of degree k + 2, where 2 ≤ l ≤ m + r. Using the same transformation, we obtain
Ai2 from Ai−1

2 for 1 ≤ i ≤ l − 5 by the deletion of ik pendent vertices from a vertex of degree ik + 2 and joining
these vertices to the vertex of degree k+ 2. Moreover, we obtain Ai2 from Ai−1

2 for l−4 ≤ i ≤ l−1 by the deletion
of ik pendent vertices from a vertex of degree ik + 3 and joining these vertices to the last vertex of degree
k + 3, where A0

2 = A2. Similarly, for 1 ≤ i ≤ l − 1, we obtain Bi2, Ci2, Di2 and Ei2 from Bi−1
2 , Ci−1

2 , Di−1
2 , and Ei−1

2
respectively.

Assume that U1, U2, U3 U4 and U5, are classes of the tricyclic graphs obtained from G1, G2, G3 G4 and
G5 (shown in Figure 1) respectively such that the order of each graph ism+ lk+ r+ 4 with lk pendent vertices.
Let Ulk

n be a class of all the tricyclic graphs with three cycles such that each graph has order n and pendant
vertices lk, where k ≥ 1, n ≥ 16 and 1 ≤ l ≤ n. Similarly, tricyclic graphs with four and six cycles obtained
from the base graphs presented in Figure 2 are given in Table 6 and Table 7. Moreover, ξ lkn and ζ lkn are classes
of all the tricyclic graphs with four and six cycles respectively that include each graph of order n and pendant
vertices lk. Finally, we obtain the tricyclic graphs with seven cycles (Km,rl,k,1 = K1) and (Km,rl,k,2 = K2) from the
base graph K (see, Figure 2) and µlkn be a class of all the tricyclic graphs with seven cycles such that each
graph has order n and pendant vertices lk. Now, by the deletion and addition of pendant vertices, we have
Rij, Sij, T ij , Xij, Y ij , Z ij and K ij from Ri−1

j , Si−1
j , T i−1

j , Xi−1
j , Y i−1

j , Z i−1
j and K i−1

j respectively, where 1 ≤ i ≤ l − 1 and
1 ≤ j ≤ 2.

Now, we present some important lemmas which are frequently used in the next section of main results.

Lemma 2.1. For u, v, a, b ≥ 1, the functions (i) f1(u) = −au(u + b), (ii) f2(u) = −au2(u + b), (iii) f3(u, v) =
−3u3(v2 + 3v + 2) − 12u2(v + 1), and (iv) f4(u, v) = −auv(uv + b) − c are strictly decreasing functions.

Proof: Since, (i) df1(u)
du = −a(2u + b) < 0, (ii) df2(u)

du = −au(3u + 2b) < 0, (iii) ∂f3(u,v)
∂u = −9u2(v2 + 3v +

2) − 24u(v + 1) < 0 and ∂f3(u,v)
∂v = −3u3(2v + 3) − 12u2 < 0, (iv) ∂f4(u,v)

∂u = −av(2uv + b) < 0 and ∂f4(u,v)
∂v =

−au(2uv+b) < 0 for u, v, a, b ≥ 1. Therefore, f1(u), f2(u), f3(u, v) and f4(u, v) are strictly decreasing functions.

By the use of De�nition 1.3 and the generalization of Table 1-Table 5 for the ith iteration of the deletion of
ik pendant vertices from the vertex of degree ik + 2 and joining them to a vertex of degree k + 2, we obtain the
F-index of the tricyclic graphs Ai1, Bi1, Ci1, Di1 and Ei1 with three cycles and lk pendant vertices for 0 ≤ i ≤ l −1
in the following lemma.

Lemma 2.2. For m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r, 0 ≤ i ≤ l − 1 and mj ≥ 3 with j = 1, 2, 3, the
F-index of the tricyclic graphs de�ned above are

(i) F(Ai1) = lk+(l−i−1)(k+2)3+8(m+r−l+i)+[(i+1)k+2]3+108,
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(ii)

(iii) (iv)

(i)

Figure 3: (i)B6,2
4,2,1 (ii)B3,2

3,2,2 (iii)E7,0
4,2,1 and (iv)E4,0

3,2,2 .

(ii) F(Bi1) = lk+(l−i−1)(k+2)3+8(m+r+1−l+i)+[(i+1)k+2]3+118,

(iii) F(Ci1) = lk+(l−i−1)(k+2)3+8(m+r−l+2+i)+[(i+1)k+2)]3+128,

(iv) F(Di1) = lk+(l−i−1)(k+2)3+8(m+r−l+2+i)+[(i+1)k+2)]3+152,

(v) F(Ei1) = lk+(l−i−1)(k+2)3+8(m+r−l+3+i)+[(i+1)k+2)]3+216.

Again using De�nition 1.3 and Tables 1-5 (3rd and 4th rows), we obtain the F-index of Ai2, Bi2, Ci2, Di2 and
Ei2 for 0 ≤ i ≤ l − 1 in the following lemma.

Lemma 2.3. For m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r + 4, 0 ≤ i ≤ l − 1 and mj ≥ 3 with j = 1, 2, 3,
the F-index of the tricyclic graphs Ai2, Bi2, Ci2, Di2 and Ei2 are

(i) F(Ai2) =
{
lk + (l − 5 − i)(k + 2)3 + 4(k + 3)3 + 8(m + r + 4 − l + i) + [(i + 1)k + 3]3; for 1 ≤ i ≤ l − 5,
lk + (l − 1 − i)(k + 3)3 + 8(m + r) + 27(i − l + 4) + [(i + 1)k + 3]3; for l − 4 ≤ i ≤ l − 1,

(ii) F(Bi2) =



lk + (l − 4 − i)(k + 2)3 + 2(k + 3)3 + (k + 4)3 + 8(m + r + 4 − l + i) + [(i + 1)k + 3]3;
for 1 ≤ i ≤ l − 4,

lk + 8(m + r + 1) + (k + 3)3 + (k + 4)3 + (lk − 2k + 3)3; for i = l − 3,
lk + 8(m + r + 1) + (k + 4)3 + (lk − k + 3)3 + 27; for i = l − 2,
lk + (lk + 4)3 + 8(m + r + 1) + 54; for i = l − 1,

(iii) F(Ci2) =


lk + (l − 3 − i)(k + 2)3 + 2(k + 4)3 + 8(m + r + 4 − l + i) + [(i + 1)k + 3]3;

for 1 ≤ i ≤ l − 3,
lk + (k + 4)3 + 8(m + r + 2) + (lk − k + 4)3; for i = l − 2,
lk + (lk + 4)3 + 8(m + r + 2) + 64; for i = l − 1,

(iv) F(Di2) =


lk + (l − 3 − i)(k + 2)3 + (k + 3)3 + (k + 5)3 + 8(m + r + 4 − l + i) + [(i + 1)k + 3]3;

for 1 ≤ i ≤ l − 3,
lk + (k + 5)3 + (lk − k + 3)3 + 8(m + r + 2); for i = l − 2,
lk + (lk + 5)3 + 8(m + r + 2) + 27; for i = l − 1,

(v) F(Ei2) =
{
lk + (l − 2 − i)(k + 2)3 + (k + 6)3 + 8(m + r + 4 − l + i) + [(i + 1)k + 3]3; for 1 ≤ i ≤ l − 2,
lk + (lk + 6)3 + 8(m + r + 3); for i = l − 1.

Lemma 2.4. For m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r, 0 ≤ i ≤ l − 1, 1 ≤ j ≤ 2 and mp ≥ 3 with
p = 1, 2, 3, we have
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(a) F(T ij ) = F(Aij), F(Sij) = F(Bij) and F(Rij) = F(Dij)
(b) F(Xij) = F(Cij), F(Y ij ) = F(Bij) and F(Z ij) = F(Aij)
(c) F(Lij) = F(Aij).

Proof. (a) Since the degree sequences of the base graphs of the tricyclic graph with four cycles T ij (see, H3
in Figure 2) and tricyclic graph with three cycles Aij (see, G1 in Figure 1) are equal. Therefore, the degree
sequences of the graphs T ij and Aij having k ≥ 1 pendant vertices attached with l vertices of degree (i) exactly
2 for j = 1 and (ii) greater or equal 2 for j = 2 are equal. Consequently, by Lemma 1.1, F(T ij ) = F(Aij). Similarly,
the degree sequences of the tricyclic graphs with four cycles Sij and Rij are equal to the degree sequences of
the tricyclic graphs with three cycles Bij and Dij respectively. Thus, by Lemma 1.1, we have F(Sij) = F(Bij) and
F(Rij) = F(Dij). (b) Proof is same as of part (a). (c) Proof is same as of part (a).

3 Extremal graphs with respect to F-index
The results of extremal graphs in the complete class of tricyclic graphs with �xed pendant vertices are
obtained in this section.

Lemma 3.1. For m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r and mj ≥ 3 with j = 1, 2, 3. Then,
F(A1) ≤ F(A2), F(B1) ≤ F(B2), F(C1) ≤ F(C2), F(D1) ≤ F(D2) and F(E1) ≤ F(E2).

Proof. Consider:

Case 1:Using Lemma 2.2(i) and Lemma 2.3(i) for i = 0, we have F(A1)−F(A2) = F(Am,rl,k,l)−F(Am,rl,k,2) = −12k(k+
5). By Lemma 2.1(i), it follows that the tricyclic graph A1 has F-index less than of A2.

Case 2: Using Lemma 2.2(ii) and Lemma 2.3(ii) for i = 0, we have F(B1) − F(B2) = F(Bm,rl,k,l) − F(Bm,rl,k,2) =
−6k(2k + 11). By Lemma 2.1(i), it follows that F-index of the tricyclic graph B1 is less than the F-index of the
tricyclic graph B2.

Case 3: Using Lemma 2.2(iii) and Lemma 2.3(iii) for i = 0, we have F(C1) − F(C2) = F(Cm,rl,k,l) − F(Cm,rl,k,2) =
−12k(k + 6). By Lemma 2.1(i), it follows that F-index of the tricyclic graph C1 is less than the F-index of the
tricyclic graph C2.

Case 4: Using Lemma 2.2(iv) and Lemma 2.3(iv) for i = 0, we have F(D1) − F(D2) = F(Dm,rl,k,l) − F(Dm,rl,k,2) =
−12k(k + 6). By Lemma 2.1(i), it follows that F-index of the tricyclic graph D1 is less than the F-index of the
tricyclic graph D2.

Case 5: Using Lemma 2.2(v) and Lemma 2.3(v) for i = 0, we have F(E1) − F(E2) = F(Em,rl,k,l) − F(Em,rl,k,2) =
−12k(k + 8). By Lemma 2.1(i), it follows that F-index of the tricyclic graph E1 is less than the F-index of E2.

Consequently, from all the cases, we have F(A1) ≤ F(A2), F(B1) ≤ F(B2), F(C1) ≤ F(C2), F(D1) ≤ F(D2)
and F(E1) ≤ F(E2).

Lemma 3.2. For m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r and mj ≥ 3 with j = 1, 2, 3. Then,
F(A1) ≤ F(B1) ≤ F(C1) ≤ F(D1) ≤ F(E1).

Proof. Consider:

Case 1: By Lemma 2.2((i) and (ii)) for i = 0, we have F(A1) − F(B1) = F(Am,rl,k,l) − F(Bm,rl,k,1) = −18 < 0. It follows
that F(A1) < F(B1).

Case 2:Using Lemma 2.2((ii) and (iii)) for i = 0, we have F(B1)− F(C1) = F(Bm,rl,k,l)− F(Cm,rl,k,1) = −36 < 0.Which
implies that F(B1) < F(C1).
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Case 3: By Lemma 2.2((iii) and (iv)) for i = 0, we have F(C1)−F(D1) = F(Cm,rl,k,l)−F(Dm,rl,k,1) = −24 < 0. It follows
that F(C1) < F(D1).

Case 4: By Lemma 2.2((iv) and (v)) for i = 0, we have F(D1)− F(E1) = F(Dm,rl,k,l)− F(Em,rl,k,1) = −72 < 0. It implies
that F(D1) < F(E1).

From all the cases, we conclude that F(A1) ≤ F(B1) ≤ F(C1) ≤ F(D1) ≤ F(E1).

Theorem 3.3. If m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r and mj ≥ 3 with j = 1, 2, 3. Then,
F(A1) ≤ F(G), F(B1) ≤ F(G), F(C1) ≤ F(G), F(D1) ≤ F(G) and F(E1) ≤ F(G) for each G ∈ U1, G ∈ U2, G ∈ U3,
G ∈ U4 and G ∈ U5 respectively. Moreover, equalities hold if G ∼= A1, G ∼= B1, G ∼= C1, G ∼= D1 and G ∼= E1
respectively.

Proof.We consider the following cases:

Case 1: If G = A1
1 then by Lemma 2.2(i) (for i = 0 and i = 1) F(A1)−F(A1

1) = −6k2(k+2). Moreover using Lemma
2.1(ii), we have F(A1) < F(A1

1). Similarly, by Lemma 2.2((ii)-(iv)) and Lemma 2.1(ii), we have F(B1) − F(B1
1) =

F(C1)−F(C1
1) = F(D1)−F(D1

1) = F(E1)−F(E1
1) = −6k2(k+2) < 0which implies that F(B1) ≤ F(B1

1), F(C1) ≤ F(C1
1),

F(D1) ≤ F(D1
1), F(E1) ≤ F(E1

1). Consequently, if G = A1
1, G = B1

1, G = C1
1, G = D1

1 and G = E1
1 then F(A1) ≤ F(G),

F(B1) ≤ F(G) F(C1) ≤ F(G), F(D1) ≤ F(G) and F(E1) ≤ F(G) for each G ∈ U1, G ∈ U2, G ∈ U3, G ∈ U4 and
G ∈ U5 respectively.

Case 2: If G = Ai1 for 1 ≤ i ≤ l − 2, by Lemma 2.2(i)

F(Ai1) − F(Ai+1
1 ) = −8 + (k + 2)3 + (ik + k + 2)3 − (ik + 2k + 2)3 = −3k3(i2 + 3i + 2) − 12k2(i + 1).

By Lemma 2.1(iii), F(Ai1) < F(Ai+1
1 ). Using i = 1, 2, 3, ..., l − 2, we have F(A1

1) < F(A2
1), F(A2

1) <
F(A3

1), ..., F(Al−2
1 ) < F(Al−1

1 ). By Combining these inequalities

F(A1
1) < F(A2

1) < F(A3
1) < ... < F(Al−1

1 ).

Using Case 1 and above inequality, F(A1) < F(Ai1) for 1 ≤ i ≤ l − 1 which implies that F(A1) < F(G). Similarly,
by Lemma 2.2((ii)-(v)) F(Bi1) − F(Bi+1

1 ) = F(Ci1) − F(Ci+1
1 ) = F(Di1) − F(Di+1

1 ) = F(Ei1) − F(Ei+1
1 ) = −8 + (k +

2)3 + [k(i + 1) + 2]3 − [k(i + 2) + 2)]3 = −3k3(i2 + 3i + 2) − 12k2(i + 1). By Lemma 2.1(ii), F(Bi1) < F(Bi+1
1 ),

F(Ci1) < F(Ci+1
1 ), F(Di1) < F(Di+1

1 ) and F(Ei1) < F(Ei+1
1 ), where 1 ≤ i ≤ l −2. Using Case 1 and above inequalities,

we have F(B1) < F(Bi1), F(C1) < F(Ci1), F(D1) < F(Di1) and F(E1) < F(Ei1), for 1 ≤ i ≤ l − 1. Consequently, if
G = Ai1, G = Bi1, G = Ci1, G = Di1 and G = Ei1 for 1 ≤ i ≤ l − 1 then F(A1) ≤ F(G), F(B1) ≤ F(G) F(C1) ≤ F(G),
F(D1) ≤ F(G) and F(E1) ≤ F(G) for each G ∈ U1, G ∈ U2, G ∈ U3, G ∈ U4 and G ∈ U5 respectively.

Case 3: If G = Ai2, G = Bi2, G = Ci2, G = Di2 and G = Ei2, using the same way as of Case 2, we can prove that
F(A2) ≤ F(G), F(B2) ≤ F(G) F(C2) ≤ F(G), F(D2) ≤ F(G) and F(E2) ≤ F(G) respectively, where 1 ≤ i ≤ l − 1.
Moreover, by Lemma 3.1 F(A1) ≤ F(A2), F(B1) ≤ F(B2), F(C1) ≤ F(C2), F(D1) ≤ F(D2) and F(E1) ≤ F(E2).
Consequently, F(A1) ≤ F(G), F(B1) ≤ F(G) F(C1) ≤ F(G), F(D1) ≤ F(G) and F(E1) ≤ F(G) for each G ∈ U1,
G ∈ U2, G ∈ U3, G ∈ U4 and G ∈ U5 respectively.

Case 4: If G ∈ U1−{Ai1, Ai2}, G ∈ U2−{Bi1, Bi2}, G ∈ U3−{Ci1, Ci2}, G ∈ U4−{Di1, Di2} and G ∈ U5−{Ei1, Ei2}.
After using transformation of the deletion of pendant vertices and joining them with degree greater or equal
to two, we obtain Ai1 or Ai2, Bi1 or Bi2, Ci1 or Ci2, Di1 or Di2, and Ei1 or Ei2 respectively. Thus, we follow the Case
2 or Case 3.

Thus, from all the cases, we have F(A1) ≤ F(G) for each G ∈ U1, F(B1) ≤ F(G) for each G ∈ U2,
F(C1) ≤ F(G) for each G ∈ U3, F(D1) ≤ F(G) for each G ∈ U4 and F(E1) ≤ F(G) for each G ∈ U5, where
equalities hold if G ∼= A1, G ∼= B1, G ∼= C1, G ∼= D1 and G ∼= E1 respectively.

Theorem 3.4. If k ≥ 1, n ≥ 16 + lk and 1 ≤ l ≤ n − lk. Then F(A1) ≤ F(G) for each G ∈ Ulk
n , where Ulk

n is a
class of all the tricyclic graphs with three cycles such that each graph has order n and pendant vertices lk.
Moreover, equality holds if G ∼= A1.
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Proof. We consider the following cases:

Case 1: If G ∈ U1, by Theorem 3.3 F(A1) ≤ F(G) for each G ∈ U1.

Case 2: If G ∈ U2, by Theorem 3.3 F(B1) ≤ F(G) for each G ∈ U2. Also, by Lemma 3.6 F(A1) ≤ F(B1) which
implies that F(A1) ≤ F(G) for each G ∈ U2.

Case 3: Assume that G ∈ U3. Using Theorem 3.3, we have F(C1) ≤ F(G) for each G ∈ U3. Now, by Lemma 3.2
F(A1) ≤ F(C1). Consequently, F(A1) ≤ F(G) for each G ∈ U3.

Case 4: If G ∈ U4 then by Theorem 3.3 F(D1) ≤ F(G) for each G ∈ U4. Moreover, by Lemma 3.2 F(A1) ≤ F(D1)
which implies that F(A1) ≤ F(G) for each G ∈ U4.

Case 5: If G ∈ U5, by Theorem 3.3 F(C1) ≤ F(G) for each G ∈ U5 and by Lemma 3.2 F(A1) ≤ F(E1).
Consequently, F(A1) ≤ F(G) for each G ∈ U5.

So, from all the cases, we conclude that F(A1) ≤ F(G) for each G ∈ Ulk
n and equality holds if G ∼= A1.

Lemma 3.5. For m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ n − lk and mj ≥ 3 with j = 1, 2, 3. Then,
F(Al−1

1 ) ≤ F(Al−1
2 ), F(Bl−1

1 ) ≤ F(Bl−1
2 ), F(Cl−1

1 ) ≤ F(Cl−1
2 ), F(Dl−1

1 ) ≤ F(Dl−1
2 ) and F(El−1

1 ) ≤ F(El−1
2 ).

Proof. Consider:

Case 1: By Lemma 2.2(i) and Lemma 2.3(i) for i = l − 1, we have F(Al−1
1 ) − F(Al−1

2 ) = −3lk(lk + 5). By Lemma
2.1(iv), F(Al−1

1 ) < F(Al−1
2 ).

Case 2: Using Lemma 2.2(ii) and Lemma 2.3(ii) for i = l − 1, we have F(Bl−1
1 ) − F(Bl−1

2 ) = −6lk(lk + 6). Using
Lemma 2.1(iv), we have F(Bl−1

1 ) ≤ F(Bl−1
2 ).

Case 3: By Lemma 2.2(iii) and Lemma 2.3(iii) for i = l − 1, we have F(Cl−1
1 )− F(Cl−1

2 ) = −6lk(lk + 6). By Lemma
2.1(iv), F(Cl−1

1 ) < F(Cl−1
2 ).

Case 4: By Lemma 2.2(iv) and Lemma 2.3(iv) for i = l −1, we have F(Dl−1
1 )− F(Dl−1

2 ) = −9lk(lk + 7). By Lemma
2.1(iv), F(Dl−1

1 ) < F(Dl−1
2 ).

Case 5: By Lemma 2.2(v) and Lemma 2.3(v) for i = l − 1, we have F(El−1
1 ) − F(El−1

2 ) = −12lk(lk + 8). Using
Lemma 2.1(iv), F(El−1

1 ) < F(El−1
2 ).

From all the cases, we conclude that F(Al−1
1 ) ≤ F(Al−1

2 ), F(Bl−1
1 ) ≤ F(Bl−1

2 ), F(Cl−1
1 ) ≤ F(Cl−1

2 ), F(Dl−1
1 ) ≤

F(Dl−1
2 ), F(El−1

1 ) ≤ F(El−1
2 ).

Lemma 3.6. For m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r + 4 and mj ≥ 3 with j = 1, 2, 3. Then,
F(Al−1

2 ) ≤ F(Bl−1
2 ) ≤ F(Cl−1

2 ) ≤ F(Dl−1
2 ) ≤ F(El−1

2 ).

Proof. Consider:

Case 1: By Lemma 2.3((i) and (ii)) for i = l − 1, we have F(Al−1
2 ) − F(Bl−1

2 ) = −3l2k2 − 21lk − 28. Using Lemma
3.1(iv), we have F(Al−1

2 ) < F(Bl−1
2 ).

Case 2: Using Lemma 2.3((ii) and (iii)) for i = l − 1, we have F(Bl−1
2 ) − F(Cl−1

2 ) = −18 < 0. By Lemma 3.1(iv), we
have F(Bl−1

2 ) ≤ F(Cl−1
2 ).

Case 3: By Lemma 2.3((iiii) and (iv)) for i = l−1, we have F(Cl−1
2 )−F(Dl−1

2 ) = −3l2k2 −27lk−24. Using Lemma
3.1(iv), we have F(Cl−1

2 ) < F(Dl−1
2 ).

Case 4: By Lemma 2.3((iv) and (v)) for i = l − 1, we have F(Dl−1
2 ) − F(El−1

2 ) = −3l2k2 − 33lk − 72. By Lemma
3.1, we have F(Dl−1

2 ) < F(El−1
2 ).

From all the cases, we conclude that F(Al−1
2 ) ≤ F(Bl−1

2 ) ≤ F(Cl−1
2 ) ≤ F(Dl−1

2 ) ≤ F(El−1
2 ).

Theorem 3.7. If m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r + 4 and mj ≥ 3 with j = 1, 2, 3. Then,
F(G) ≤ F(Al−1

2 ), F(G) ≤ F(Bl−1
2 ), F(G) ≤ F(Cl−1

2 ), F(G) ≤ F(Dl−1
2 ) and F(G) ≤ F(El−1

2 ) for each G ∈ U1, G ∈ U2,
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G ∈ U3, G ∈ U4 and G ∈ U5 respectively. Moreover, equalities hold if G ∼= Al−1
2 , G ∼= Bl−1

2 , G ∼= Cl−1
2 , G ∼= Dl−1

2
and G ∼= El−1

2 respectively.

Proof. Proof is same as of Theorem 3.3 with the help of Lemma 2.3, Lemma 3.5 and Lemma 3.6.

Theorem 3.8. If k ≥ 1, n ≥ 16 + lk and 1 ≤ l ≤ n − lk. Then F(G) ≤ F(El−1
2 ) for each G ∈ Ulk

n , where Ulk
n is a

class of all the tricyclic graphs with three cycles such that each graph has order n and pendant vertices lk.
Moreover, equality holds if G ∼= El−1

2 .

Proof. Proof follows by Theorem 3.4 with the help of Theorem 3.3, Lemma 3.5 & Lemma 3.6.

By the similar arguments as of the tricyclic graphs with three cycles, we obtain the following result for
the tricyclic graphs with four, six and seven cycles.

Theorem 3.9. If k ≥ 1, n ≥ 16 + lk and 1 ≤ l ≤ n − lk. Then

(a) F(T1) ≤ F(G) ≤ F(Rl−1
2 ) for each G ∈ ξ lkn , where lower and upper bounds holds for G ∼= T1 and G ∼= Rl−1

2
respectively.
(b) F(Z1) ≤ F(G) ≤ F(Xl−1

2 ) for each G ∈ ζ lkn , where lower and upper bounds holds for G ∼= Z1 and G ∼= Xl−1
2

respectively.
(c) F(L1) ≤ F(G) ≤ F(Ll−1

2 ) for each G ∈ µlkn , where lower and upper bounds holds for G ∼= L1 and G ∼= Ll−1
2

respectively.

Proof. (a) By Lemma 2.4, F(T1) = F(A1), F(T2) = F(A2), F(S1) = F(B1), F(S2) = F(B2), F(R1) = F(D1)
and F(R2) = F(D2). Now, by Lemma 3.1 F(A1) ≤ F(A2), F(B1) ≤ F(B2) and F(D1) ≤ F(D2). Consequently,
F(T1) ≤ F(T2), F(S1) ≤ F(S2) and F(R1) ≤ F(R2). Moreover, by Lemma 3.2 F(A1) ≤ F(B1) ≤ F(D1) which implies
that F(T1) ≤ F(S1) ≤ F(R1). Finally, by Theorem 3.3 and Theorem 3.4, we have F(A1) ≤ F(G) for each G ∈ Ulk

n ,
whereUlk

n is a class of all the tricyclic graphs with three cycles such that each graph has order n and pendant
vertices lk. Consequently, F(T1) ≤ F(G) for each G ∈ ξ lkn , where lower bound holds for G ∼= T1. Similarly, by
Theorem 3.5, Lemma 3.6, Theorem 3.7 and Theorem 3.8, we have F(G) ≤ F(Dl−1

2 ) ≤ F(El−1
2 ) for each G ∈ Ulk

n ,
whereUlk

n is a class of all the tricyclic graphs with three cycles such that each graph has order n and pendant
vertices lk which implies that F(G) ≤ F(Rl−1

2 ) for each G ∈ ξ lkn , where ξ lkn is a class of all the tricyclic graphs
with four cycles such that each graph has order n and pendant vertices lk. Thus, F(T1) ≤ F(G) ≤ F(Rl−1

2 ) for
each G ∈ ξ lkn , where lower and upper bounds holds for G ∼= T1 and G ∼= Rl−1

2 respectively. (b) Proof is same
as of part (a). (c) Proof is same as of part (a).

Theorem 3.10. If k ≥ 1, n ≥ 16 + α and 1 ≤ l ≤ n − α. Then F(A1) ≤ F(G) ≤ F(El−1
2 ) for each G ∈ Ωαn, where

Ωαn = {Uαn, ξ αn , ζ αn , µαn}, α is number of pendant vertices and bounds (lower and upper) holds for G ∼= T1 and
G ∼= Rl−1

2 (respectively).

Proof. Using Lemma 2.4, Theorem 3.4, Theorem 3.8 and Theorem 3.9.

4 Lower and upper bounds
The ordering and investigate of bounds (lower and upper) of the F-index in the complete class of tricyclic
graphs of three, four, six or seven cycles with �xed pendant vertices is given in this section.

Theorem 4.1. If m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r + 4 and mj ≥ 3 with j = 1, 2, 3. Then, (a)
F(U1) < F(U2) < F(U3) < F(U4) < F(U5), (b)F(ξ3) < F(ξ2) < F(ξ1) and (c)F(ζ3) < F(ζ2) < F(ζ1).

Proof.(a) Firstly, we prove that F(U1) < F(U2). For the purpose, we show that for each G ∈ U1 there exists
G* ∈ U2 such that F(G) < F(G*), where n = m + r + 4 + lk is order of both G and G* with lk pendant vertices
in each. We assume that G = Ai1 and G* = Bi1 for 1 ≤ i ≤ l − 1. By Lemma 2.2, F(G) − F(G*) = −10 < 0 which
implies that F(G) < F(G*). Similarly, by Lemma 2.3 it can be proved that if G = Ai2 for 1 ≤ i ≤ l − 1 then there
exists G* = Bi2 such that F(G) < F(G*). In addition, if G ∈ U1−{Ai

1,Ai
2}, using transformation of delation and



160 | Sana Akram, Muhammad Javaid, and Muhammad Jamal

joining the pendant vertices. Then, G = Ai1 or G = Ai2. Thus, we get G* ∈ U2 such that F(G) < F(G*). So, we
conclude that F(U1) < F(U2). Similarly, we can prove that F(U2) < F(U3), F(U3) < F(U4), and F(U4) < F(U5).
Consequently, we have F(U1) < F(U2) < F(U3) < F(U4) < F(U5). Proves of (b) and (c) are same as of (a).

Theorem 4.2. If m = m1 + m2 + m3 ≥ 9, k ≥ 1, r ≥ 2, 2 ≤ l ≤ m + r + 4 and mj ≥ 3 with j = 1, 2, 3. Then,
F(U1) = F(ξ3) = F(ζ3) < F(U2) = F(ξ2) = F(ζ2) < F(U3) = F(ζ1) < F(U4) = F(ξ1) < F(U5) < F(U6).
Proof. Proof is obvious using Lemma 2.4, Theorem 4.1 (a), (b) and (c).

Theorem4.3. Let G ∈ Ωαn be a tricyclic graph of order n ≥ 16+αwith three, four, six or seven cycles and α ≥ 1
pendant vertices. Then, 8n + 12α + 76 ≤ F(G) ≤ 8(n − 1) − 7α + (α + 6)3, where the lower and upper bounds
are achieved if and only if G ∼= A1 with k = 1 and G ∼= El−1

2 respectively.

Proof. Assuming l = α and k = 1 in Lemma 2.2 (i) for i = 0 and Lemma 2.3(v) for i = l − 1, we have F(A1) =
8n + 12α + 76 and F(El−1

2 ) = 8(n − 1) − 7α + (α + 6)3. Moreover, by Theorem 3.4 and Theorem 3.8 F(A1) < F(G)
and F(G) ≤ F(El−1

2 ) for each G being a tricyclic graph of order n ≥ 16 with three cycles and α ≥ 1 pendant
vertices. Thus, we have 8n + 12α + 76 ≤ F(G) ≤ 8(n − 1) − 7α + (α + 6)3, where lower and upper bounds are
achieved if and only if G ∼= A1 with k = 1 and G ∼= El−1

2 respectively.

5 Conclusion
In this paper, we studied the complete class of tricyclic graphs consisting on three, four, six and seven cycles
for certainnumber of pendant verticeswith respect to F-index.Weproved the existenceof the extremal graphs
and construct the ordering of graphs with respect to F-index. Mainly, we computed the bounds (lower and
upper) of F-index for the same family of graphs.

Acknowledgement: The authors are indebted to the anonymous referees for their valuable comments to
improve the original version of this paper.

References
[1] Mircea Diudea, QSPR/QSAR studies by molecular descriptors, Nova Science Publishers, 2001.
[2] Ivan Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013), 351–361.
[3] Harry Wiener, Structural determination of Para�n boiling points, J. Am. Chem. Soc. 69 (1947), 17–20.
[4] Boris Furtula and Ivan Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), no. 4, 1184–1190.
[5] Nilanjan De, Sk. Md. Abu Nayeem and Anita Pal, The F-coindex of some graph operations, SpringerPlus 5 (2016), 221, DOI

10.1186/s40064-016-1864-7.
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