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Bounds on Faltings’s delta function
through covers

By Jay Jorgenson and Jürg Kramer

Abstract

Let X be a compact Riemann surface of genus gX ≥ 1. In 1984, G. Faltings
introduced a new invariant δFal(X) associated to X. In this paper we give
explicit bounds for δFal(X) in terms of fundamental differential geometric
invariants arising from X, when gX > 1. As an application, we are able to
give bounds for Faltings’s delta function for the family of modular curves
X0(N) in terms of the genus only. In combination with work of A. Abbes,
P. Michel and E. Ullmo, this leads to an asymptotic formula for the Faltings
height of the Jacobian J0(N) associated to X0(N).

1. Introduction

1.1. In the foundational paper [Fal84], G. Faltings proved fundamental
results in the development of Arakelov theory for arithmetic surfaces based on
S. S. Arakelov’s original work on this subject. The article [Fal84] was the origin
for various developments in arithmetic geometry such as the creation of higher
dimensional Arakelov theory by C. Soulé and H. Gillet, or more refined work on
arithmetic surfaces by A. Abbes, P. Michel, and E. Ullmo, or P. Vojta’s work
on the Mordell conjecture. The ideas from Faltings’s original article continue
to be used, and further understanding of the ideas developed in [Fal84] often
leads to advances in arithmetic algebraic geometry.

Let us now explain our main object of study, namely Faltings’s delta
function. To do this, let X be a compact Riemann surface of positive genus
gX , let Ω1

X be the holomorphic cotangent bundle, and let ω1, . . . , ωgX be an
orthonormal basis of holomorphic 1-forms on X with respect to the Petersson
inner product. The canonical metric on X is then defined by means of the
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2 JAY JORGENSON and JÜRG KRAMER

(1, 1)-form

µcan = 1
gX
· i

2

gX∑
j=1

ωj ∧ ωj .

We note that if gX > 1, the Riemann surface X also carries a hyperbolic metric,
which is compatible with the complex structure ofX and has negative curvature
equal to minus one; we denote the corresponding (1, 1)-form by µhyp.

Using the normalized Green’s function gcan(x, y) for x, y ∈ X associated
to the canonical (1, 1)-form µcan in the sense of Arakelov, one can inductively
define a hermitian metric on any line bundle L on X, whose curvature form is
proportional to µcan. In particular, if this construction is applied to the line
bundle Ω1

X , the corresponding hermitian metric is such that the isomorphism
induced by the residue map from the fiber of Ω1

X(x) at x to C (equipped with
the standard hermitian metric) becomes an isometry for all x ∈ X. By means of
the hermitian metric thus defined on any line bundle L, Faltings constructs in
[Fal84] a hermitian metric ‖ · ‖1 on the determinant line bundle λ(L) associated
to the cohomology of the line bundle L.

Now, there is another way to metrize the determinant line bundle λ(L).
For this one considers the degree gX − 1 part PicgX−1(X) of the Picard variety
of X together with the line bundle O(Θ) associated to the theta divisor Θ. By
means of Riemann’s theta function, the line bundle O(Θ) can be metrized in a
canonical way. By restricting to the case where the degree of L equals gX − 1,
and noting that L is of the form OX(E−P1−· · ·−Pr) with a fixed divisor E on
X and suitable points P1, . . . , Pr on X, we obtain a natural morphism from Xr

to PicgX−1(X) by sending (P1, . . . , Pr) to the class of OX(E − P1 − · · · − Pr).
By pulling back O(Θ) to Xr via this map, extending it to Y = Xr ×X and
restricting to the fiber X of the projection from Y to Xr, we obtain a line
bundle, which turns out to be isomorphic to λ(L). In this way the hermitian
metric given by Riemann’s theta function on O(Θ) induces a second hermitian
metric ‖·‖2 on λ(L). A straightforward calculation shows that the curvature
forms of the two metrics thus obtained coincide. Therefore, they agree up to a
multiplicative constant, which depends solely on (the isomorphism class of) X.
This constant defines Faltings’s delta function δFal(X); for a precise definition,
we refer to [Fal84, p. 402].

In [Fal84, p. 403], it is asked to determine the asymptotic behavior of
δFal(Xt) for a family of compact Riemann surfacesXt that approach the Deligne-
Mumford boundary of the moduli space of stable algebraic curves of a fixed
positive genus gX . This problem was solved in [J90] by first expressing Faltings’s
delta function in terms of Riemann’s theta function, thus obtaining asymptotic
expansions for all quantities involved in the expression. In the present article,
we will address among other things the following, related problem, namely
that of estimating δFal(X) for varying X covering a fixed base Riemann surface
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 3

X0 in terms of fundamental geometric invariants of X as well as additional
intrinsic quantities coming from X0.

1.2. In their work, A. Abbes, P. Michel and E. Ullmo investigated the
case of the modular curve X0(N) (with N squarefree and 6 - N) associated to
the congruence subgroup Γ0(N) more closely. Using an arithmetic analogue of
Noether’s formula, which was also obtained in [Fal84], it was shown in [AU97]
and [MU98] that the Faltings height hFal(J0(N)) for the Jacobian J0(N) of
X0(N) has an asymptotic expression, involving Faltings’s delta function as the
archimedean contribution, given by

(1) 12 · hFal(J0(N)) = 4gX0(N) log(N) + δFal(X0(N)) + o(gX0(N) log(N));

here the genus gX0(N) of X0(N) (N squarefree, 6 - N) is given by (see [Shi71])

1 + 1
12 ·N

∏
p|N

(
1 + 1

p

)
− 1

2 · d(N)− 1
4

∏
p|N

(
1 +

(−4
p

))
− 1

3

∏
p|N

(
1 +

(−3
p

))
,

where d(N) denotes the number of divisors ofN . In the subsequent work [Ull00],
E. Ullmo established another formula for hFal(J0(N)) involving a suitable
discriminant δT of the Hecke algebra T of J0(N), the matrix MN of all possible
Petersson inner products of a certain basis of eigenforms of weight 2 for Γ0(N),
and a suitable natural number α, namely

(2) hFal(J0(N)) = 1
2 log|δT| − 1

2 log|det(MN )| − log(α).

By estimating congruences for modular forms, as well as estimating det(MN )
and α, Ullmo derives the bounds

(3)

gX0(N) log(N) + o(gX0(N) log(N)) ≤ log|δT|
≤ 2gX0(N) log(N) + o(gX0(N) log(N))

for log|δT|, from which he then derives the bounds

(4) −BgX0(N) ≤ hFal(J0(N)) ≤ 1
2gX0(N) log(N) + o(gX0(N) log(N))

for hFal(J0(N)), with an absolute constantB > 0; we note that the lower bound
here is due to unpublished work of J.-B. Bost. This estimate in turn allows him
to bound δFal(X0(N)) as

(5) −4gX0(N) log(N) + o(gX0(N) log(N)) ≤ δFal(X0(N))

≤ 2gX0(N) log(N) + o(gX0(N) log(N)).

1.3. The main purpose of this note is to give bounds for δFal(X) for ar-
bitrary compact Riemann surfaces of genus gX > 1 in terms of fundamental
geometric invariants of X. As a first main result, Theorem 4.5 gives a bound
for δFal(X) for any compact Riemann surface of genus gX > 1 in terms of the
smallest nonzero eigenvalue, the length of the shortest geodesic, the number of
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4 JAY JORGENSON and JÜRG KRAMER

eigenvalues in the interval [0, 1/4), the number of closed, primitive geodesics of
length in the interval (0, 5), the supremum over x ∈ X of the ratio µcan/µhyp,
and the implied constant in the error term of the prime geodesic theorem for X.
Applying this result to the situation whereX is a finite cover of a fixed Riemann
surface X0 of genus gX0 > 1, we obtain as a second main result (see Corollary
4.6) the estimate

δFal(X) = OX0(gX(1 + 1/λX,1)),

where λX,1 denotes the smallest nonzero eigenvalue on X. We now want to
apply our main results to the modular curves X0(N) with N being such that
gX0(N) > 1, and to derive a bound for δFal(X0(N)) simply in terms of the genus
gX0(N). To do this, we unfortunately cannot apply Corollary 4.6 directly, but
rather have to step back to Theorem 4.5, and have to bound all the fundamental
geometric quantities in terms of gX0(N). This can be done by exploiting the
arithmetic nature of the situation, e.g., by recalling estimates on the smallest
nonzero eigenvalue on X0(N) given by R. Brooks in [Bro99]. In Theorem 5.6,
we end up with the estimate

δFal(X0(N)) = O(gX0(N)),

thereby improving the bound (5). Plugging this bound into (1) yields

hFal(J0(N)) = 1
3gX0(N) log(N) + o(gX0(N) log(N)),

thereby improving (4). Using (2) together with our bound for hFal(J0(N)) and
E. Ullmo’s lower bound for log|det(MN )|, we find the lower bound

log|δT| ≥ 5
3gX0(N) log(N) + o(gX0(N) log(N)),

thereby improving the lower bound in (3).

1.4. The paper is organized as follows. In Section 2, we recall and summa-
rize all the notations, definitions and results to be used later. In particular, we
recall the definitions for the hyperbolic and the canonical metric on a compact
Riemann surface X of genus gX > 1, as well as the definitions of the corre-
sponding Green’s functions, giving rise to the so-called residual metrics on Ω1

X .
Next, we define Faltings’s delta function δFal(X) by means of the regularized
determinant associated to the Laplacian with respect to the Arakelov metric
on Ω1

X (which is nothing but the residual metric associated to the canonical
metric). This result was obtained in [Sou89] as a by-product of the analytic
part of the arithmetic Riemann-Roch theorem for arithmetic surfaces. By
means of Polyakov’s formula, we are able to express Faltings’s delta function in
terms of the regularized determinant associated to the Laplacian with respect
to the hyperbolic metric and a local integral involving the conformal factor
relating the two metrics under consideration. We end Section 2 by recalling
the heat kernel, heat trace, and Selberg’s zeta function associated to X, as
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 5

well as the formula relating the first derivative of Selberg’s zeta function to
the regularized determinant associated to the hyperbolic Laplacian, which was
proved in [Sar87].

In Section 3, we weave together the relations collected in Section 2. As
the main result of Section 3, we obtain a representation of δFal(X) in terms of
the genus, the first derivative of Selberg’s zeta function for X at s = 1, and a
triple integral over X involving the hyperbolic heat trace of X.

In Section 4, the formula obtained in Section 3 allows us to estimate
δFal(X) by suitably extending the techniques developed in [JK01] in order to
give bounds for the constant term of the logarithmic derivative of Selberg’s
zeta function at s = 1. In this way, we arrive at our main estimate for δFal(X),
given in Theorem 4.5, in terms of the above mentioned fundamental geometric
invariants.

In Section 5, we then specialize to the case of the modular curves X0(N).
The main focus here is to estimate all the fundamental geometric quantities
occurring in Theorem 4.5 in terms of the genus gX0(N) of X0(N) only. The
problem one encounters is that the family of modular curves X0(N) that admit
hyperbolic metrics do not form a single tower, so then the geometric invariants
that appear in Theorem 4.5 cannot be readily bounded. Since X0(N) is an
isometric cover of X0(N ′) whenever N ′ |N , the hyperbolic modular curves
are sufficiently interrelated, in what one could view as a “net” rather than a
single “tower”, so that one is able to develop uniform bounds for the geometric
invariants in Theorem 4.5 in order to bound Faltings’s delta function for all
modular curves. This leads to the main result stated in Theorem 5.6.

Finally in Section 6, we briefly discuss the arithmetic implications arising
from Theorem 5.6 by estimating both the Faltings height hFal(J0(N)) of the
Jacobian J0(N) of X0(N) and the discriminant δT of the Hecke algebra T

of J0(N).

2. Notations and preliminaries

2.1. Hyperbolic and canonical metrics. Let Γ be a Fuchsian subgroup
of the first kind of PSL2(R) acting by fractional linear transformations on
the upper half-plane H = {z ∈ C | Im(z) > 0}. We let X be the quotient
space Γ \ H and denote by gX the genus of X. Unless otherwise stated, we
assume that gX > 1 and that Γ has no elliptic and, apart from the identity,
no parabolic elements, i.e., X is smooth and compact. We identify X locally
with its universal cover H; we make this identification explicit by denoting the
image of x ∈ X in H by z(x).

In the sequel µ denotes a (smooth) metric on X, i.e., µ is a positive
(1, 1)-form on X. We write volµ(X) for the volume of X with respect to µ.
In particular, we let µ = µhyp denote the hyperbolic metric on X, which
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6 JAY JORGENSON and JÜRG KRAMER

is compatible with the complex structure of X and has constant negative
curvature equal to minus one. Locally, we have

µhyp(x) = i
2
· dz(x)∧dz̄(x)

Im(z(x))2 .

We write volhyp(X) for the hyperbolic volume of X; we recall that volhyp(X)
is given by 4π(gX − 1). The scaled hyperbolic metric µ = µshyp is simply the
rescaled hyperbolic metric µhyp/ volhyp(X), which measures the volume of X
to be one.

Let Sk(Γ) denote the C-vector space of cusp forms of weight k with respect
to Γ equipped with the Petersson inner product

〈f, g〉 = i
2

∫
X

f(z(x)) g(z(x)) Im(z(x))k · dz(x)∧dz̄(x)
Im(z(x))2 for f, g ∈ Sk(Γ).

By choosing an orthonormal basis {f1, ..., fgX} of S2(Γ) with respect to the
Petersson inner product, the canonical metric µ = µcan of X is given by

µcan(x) = 1
gX
· i

2

gX∑
j=1

|fj(z(x))|2 dz(x) ∧ dz̄(x).

We note that the canonical metric measures the volume of X to be one. In
order to be able to compare the hyperbolic and the canonical metrics, we define

dsup,X = sup
x∈X

∣∣∣ µcan(x)
µshyp(x)

∣∣∣.
We note that [JK04] obtained optimal bounds for dsup,X through covers.

2.2. Green’s functions and residual metrics. We denote the Green’s func-
tion associated to the metric µ by gµ. It is a function on X ×X characterized
by the two properties

dxdcxgµ(x, y) + δy(x) =
µ(x)

volµ(X)
and

∫
X
gµ(x, y)µ(x) = 0.

If µ = µhyp, µ = µshyp, or µ = µcan, we set

gµ = ghyp, gµ = gshyp, or gµ = gcan,

respectively. Note that ghyp = gshyp. By means of the function Gµ = exp(gµ),
we can now define a metric ‖ · ‖µ,res on the canonical line bundle Ω1

X of X in
the following way. For x ∈ X and z(x) as above, we set

‖dz(x)‖2µ,res = lim
y→x

(
Gµ(x, y) · |z(x)− z(y)|2

)
.

We call the metric

µres(x) =
i

2
· dz(x) ∧ dz̄(x)
‖dz(x)‖2µ,res
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 7

the residual metric associated to µ. If µ = µhyp, µ = µshyp, or µ = µcan, we set

‖ · ‖µ,res = ‖ · ‖hyp,res, ‖ · ‖µ,res = ‖·‖shyp,res, ‖ · ‖µ,res = ‖ · ‖can,res,

µres = µhyp,res, µres = µshyp,res, µres = µcan,res,

respectively. Since ghyp = gshyp, we have µhyp,res = µshyp,res. We recall that the
Arakelov metric µAr is defined as the residual metric associated to the canonical
metric µcan; the corresponding metric on Ω1

X is denoted by ‖ · ‖Ar. So that we
can compare the metrics µhyp and µAr, we define the C∞-function φAr on X
by the equation

(6) µAr = eφArµhyp.

2.3. Faltings’s delta function and determinants. We denote the Laplacian
on X associated to the metric µ by ∆µ. We write ∆hyp for the hyperbolic
Laplacian on X; identifying x ∈ X with z(x) = ξ+ iη in a fundamental domain
for Γ in H, we have

(7) ∆hyp = −η2
(
∂2

∂ξ2 + ∂2

∂η2

)
.

We let {φX,n}∞n=0 denote an orthonormal basis of eigenfunctions of ∆hyp on X
with eigenvalues

0 = λX,0 < λX,1 ≤ λX,2 ≤ . . . ,

i.e.,
∆hypφX,n = λX,nφX,n for n = 0, 1, 2, . . . .

We denote the number of eigenvalues of ∆hyp lying in the interval [a, b) by
N

[a,b)
ev,X .

To ∆µ we have associated the spectral zeta function ζµ(s), which gives
rise to the regularized determinant det∗(∆µ). We set the notation

Dµ(X) = log
(

det∗(∆µ)
volµ(X)

)
.

If µ = µhyp or µ = µAr, we set Dµ = Dhyp or Dµ = DAr, respectively. With
the first Chern form relations

c1(Ω1
X , ‖ · ‖hyp) = (2gX − 2)µshyp(x), c1(Ω1

X , ‖ · ‖Ar) = (2gX − 2)µcan(x),

an immediate application of Polyakov’s formula (see [JL96, p. 78]) shows the
relation

(8) DAr(X) = Dhyp(X) +
gX − 1

6

∫
X
φAr(x)(µcan(x) + µshyp(x)).

Faltings’s delta function δFal(X) is introduced in [Fal84], where also some of
its basic properties are given. In [J90], Faltings’s delta function is expressed in
terms of Riemann’s theta function, and its asymptotic behavior is investigated.
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8 JAY JORGENSON and JÜRG KRAMER

As a by-product of the analytic part of the arithmetic Riemann-Roch theorem
for arithmetic surfaces, it is shown in [Sou89] that

(9) δFal(X) = −6DAr(X) + a(gX),

where

(10) a(gX) = −2gX log(π) + 4gX log(2) + (gX − 1)(−24ζ ′Q(−1) + 1).

For the sequel, we only have to recall that a(gX) = O(gX).

2.4. Heat kernels and heat traces. Let H(Γ) denote a complete set of
representatives of inconjugate, primitive, hyperbolic elements in Γ. Denote by
`γ the hyperbolic length of the closed geodesic determined by γ ∈ H(Γ) on X;
it is well known that the equality |tr(γ)| = 2 cosh(`γ/2) holds. We denote the
number of elements γ in H(Γ) whose geodesic representatives have length in
the interval (0, b) by N (0,b)

geo,X .
The heat kernel KH(t; z, w) on H (t ∈ R>0; z, w ∈ H) is given by

KH(t; z, w) = KH(t; ρ) =
√

2e−t/4

(4πt)3/2

∫ ∞
ρ

re−r
2/4t√

cosh(r)−cosh(ρ)
dr,

where ρ = dH(z, w) denotes the hyperbolic distance between z and w. The
heat kernel Khyp(t;x, y) associated to X for t ∈ R>0 and x, y ∈ X is defined
by averaging over the elements of Γ, that is,

Khyp(t;x, y) =
∑
γ∈Γ

KH(t; z(x), γz(y)),

and the hyperbolic heat kernel HK hyp(t;x, y) associated to the same X is
defined by averaging over the elements of Γ different from the identity, that is,

HK hyp(t;x, y) =
∑
γ∈Γ
γ 6=id

KH(t; z(x), γz(y)).

We note that Khyp(t;x, y) satisfies the equations(
∂
∂t

+ ∆hyp,x

)
Khyp(t;x, y) = 0 for y ∈ X,

lim
t→0

∫
X
Khyp(t;x, y)f(y)µhyp(y) = f(x) for x ∈ X

for all C∞-functions f on X. In terms of the eigenfunctions {φX,n}∞n=0 and
eigenvalues {λX,n}∞n=0 of ∆hyp, we have

Khyp(t;x, y) =
∞∑
n=0

φX,n(x)φX,n(y)e−λX,nt.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
391/2

40

41

42



BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 9

If x = y, we write HK hyp(t;x) instead of HK hyp(t;x, x). The hyperbolic heat
trace H TrKhyp(t) (t ∈ R>0) is now given by

H TrKhyp(t) =
∫
X

HK hyp(t;x)µhyp(x).

Introducing the function

(11) f(u, t) = e−t/4

(4πt)1/2

∞∑
n=1

log(u)
un/2−u−n/2

e−(n log(u))2/4t,

and setting H TrKγ(t) = f(e`γ , t), we recall the identity

H TrKhyp(t) =
∑

γ∈H(Γ)

H TrKγ(t),

which is one application of the Selberg trace formula; see [Hej76]. For any
δ > 0, we now define

(12) H TrKhyp,δ(t) = H TrKhyp(t)−
∑

γ∈H(Γ)
`γ<δ

H TrKγ(t).

We note that the hyperbolic Green’s function ghyp(x, y) for x, y ∈ X and x 6= y

relates to the heat kernel as

(13) ghyp(x, y) = 4π
∫ ∞

0

(
Khyp(t;x, y)− 1

volhyp(X)

)
dt.

In particular for the Green’s function gH(z, w) on H for z, w ∈ H and z 6= w,
we recall the formulas

gH(z, w) = − log
(∣∣∣z−w
z−w̄

∣∣∣2) = 4π
∫ ∞

0
KH(t; z, w)dt.

2.5. Prime geodesic theorem. Consider the function

πX(u) = #{γ ∈ H(Γ) | e`γ < u},

which is defined for u ∈ R>1; it is just the number of inconjugate, primitive,
hyperbolic elements of Γ such that the corresponding geodesics have length
less than log(u). For any eigenvalue λX,j with j = 0, 1, 2, . . . and in the range
0 ≤ λX,j < 1/4, we put sX,j = 1/2 +

√
1/4− λX,j . Note that 1/2 < sX,j ≤ 1.

In terms of the integral logarithm

li(usX,j ) =
∫ u

sX,j

2

dξ
log(ξ)

,

the prime geodesic theorem states

(14)
∣∣∣πX(u)−

∑
0≤λX,j<1/4

li(usX,j )
∣∣∣ ≤ C · u3/4(log(u))−1/2
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10 JAY JORGENSON and JÜRG KRAMER

for u > 2 with an implied constant C > 0 depending solely on X; see [Hub59],
[Hub61a], [Hub61b], [Cha84, p. 297], or [Hej83, p. 474]. Then, we define the
Huber constant CHub,X to be the infimum of all constants C > 0 such that (14)
holds. With this definition the main result of [JK02a] implies the following:
Assume that X is a finite cover of a fixed Riemann surface X0 of genus gX0 > 1.
Then

(15) CHub,X ≤ deg(X/X0) · CHub,X0 ,

where deg(X/X0) denotes the degree of X over X0. This choice for the error
term in the prime geodesic theorem suffices for our purposes, since we are
working with general compact Riemann surfaces. Improvements on the error
term in certain cases are contained in [Cai02], [Iwa84], and [LRS95]. For the
purpose of this article, these results will not be used.

We note that using the function πX(u), the truncated hyperbolic heat
trace (12) can be rewritten as

(16) H TrKhyp,δ(t) =
∫ ∞
eδ

f(u, t)dπX(u).

2.6. Selberg ’s zeta function. For s ∈ C, Re(s) > 1, the Selberg zeta
function ZX(s) associated to X is defined via the Euler product expansion

ZX(s) =
∏

γ∈H(Γ)

Zγ(s), where Zγ(s) =
∞∏
n=0

(
1− e−(s+n)`γ

)
are the local factors. The Selberg zeta function ZX(s) is known to have a
meromorphic continuation to all of C and satisfies a functional equation. From
[Sar87, p. 115], we recall the relation

(17) Dhyp(X) = log
(

Z ′X(1)
volhyp(X)

)
+ b(gX),

where

(18) b(gX) = (gX − 1)(4ζ ′Q(−1)− 1/2 + log(2π)).

As in [JK01], we define the quantity

cX = lim
s→1

(
Z ′X
ZX

(s)− 1
s− 1

)
.

From [JK01, Lem. 4.2], we recall the formula

(19) cX = 1 +
∫ ∞

0
(H TrKhyp(t)− 1)dt =

∫ ∞
0

(H TrKhyp(t)− 1 + e−t)dt.

Identity (19) is obtained by means of the McKean formula

Z ′X
ZX

(s) = (2s− 1)
∫ ∞

0
H TrKhyp(t)e−s(s−1)tdt,

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
391/2

40

41

42



BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 11

which, in view of the asymptotic lims→∞ ZX(s) = 1, integrates to

(20) log(ZX(s)) = −
∫ ∞

0
H TrKhyp(t)e−s(s−1)t dt

t
.

Analogously, we find the local versions

(21)

Z ′γ
Zγ

(s) = (2s− 1)
∫ ∞

0
H TrKγ(t)e−s(s−1)tdt,

log(Zγ(s)) = −
∫ ∞

0
H TrKγ(t)e−s(s−1)t dt

t
.

Observing the identity

(22) log(w) =
∫ ∞

0
(e−t − e−wt)dt

t

for w > 0 and taking w = s(s− 1) (with s ∈ R>1), we can combine (22) with
the integrated version (20) of the McKean formula to get

(23) − log(Z ′X(1)) =
∫ ∞

0
(H TrKhyp(t)− 1 + e−t) dt

t
.

Subtracting (22) from (23) yields the more general formula

(24) − log(Z ′X(1))− log(w) =
∫ ∞

0
(H TrKhyp(t)− 1 + e−wt) dt

t
,

which holds for w > 0. Using (12) and the second formula in (21) with s = 1,
we end up with the formula

(25)
∑

γ∈H(Γ)
`γ<δ

log(Zγ(1))

− log(Z ′X(1))− log(w) =
∫ ∞

0
(H TrKhyp,δ(t)− 1 + e−wt) dt

t
.

3. Expressing Faltings’s delta via hyperbolic geometry

In this section, we obtain an expression that evaluates Faltings’s delta
function δFal(X) in terms of spectral theoretic information of X coming from
hyperbolic geometry. Our method of proof is as follows. First, we use results
from [Sar87] and [Sou89] together with the Polyakov formula (8) to express
δFal(X) in terms of hyperbolic information and the conformal factor φAr (see
(6)) relating the Arakelov metric µAr to the hyperbolic metric µhyp on X. We
then derive and exploit explicit relations between the canonical and hyperbolic
Green’s functions in order to explicitly evaluate the term involving φAr. We
begin with the following lemma, which collects results stated above.

Lemma 3.1. For any X with genus gX > 1, let

c(gX) = a(gX)− 6b(gX) + 6 log(volhyp(X)),
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12 JAY JORGENSON and JÜRG KRAMER

where a(gX) and b(gX) are given by (10) and (18), respectively. With the
above notations, we then have the formula

δFal(X) = −6 log(Z ′X(1))− (gX − 1)
∫
X
φAr(x)(µshyp(x) + µcan(x)) + c(gX).

Proof. Combining formulas (9), (8), and (17), we obtain

δFal(X) = −6DAr(X) + a(gX)

= −6Dhyp(X)− (gX − 1)
∫
X
φAr(x)(µshyp(x) + µcan(x)) + a(gX)

= −6 log
( Z ′X(1)

volhyp(X)

)
− (gX − 1)

∫
X
φAr(x)(µshyp(x) + µcan(x))

+ a(gX)− 6b(gX)

= −6 log(Z ′X(1))− (gX − 1)
∫
X
φAr(x)(µshyp(x) + µcan(x))

+ a(gX)− 6b(gX) + 6 log(volhyp(X)).

This completes the proof of the lemma. �

Remark 3.2. For the sake of completeness, let us make explicit the value
of c(gX); a straightforward calculation yields

c(gX) = a(gX)− 6b(gX) + 6 log(volhyp(X))

= 2gX(−24ζ ′Q(−1)− 4 log(π)− log(2) + 2) + 6 log(volhyp(X))

+ (48ζ ′Q(−1) + 6 log(2π)− 4).

Lemma 3.3. Let µ1 and µ2 be any two positive (1, 1)-forms on X with
associated Green’s functions g1(x, y) and g2(x, y), respectively , and assume
that

∫
X µ1(x) =

∫
X µ2(x) = 1. Then we have the relation

(26) g1(x, y)− g2(x, y) =∫
X
g1(x, ζ)µ2(ζ) +

∫
X
g1(y, ζ)µ2(ζ)−

∫
X

∫
X
g1(ξ, ζ)µ2(ζ)µ2(ξ).

Proof. Let FL(x, y) and FR(x, y) denote the left and right sides of (26).
Using the characterizing properties of the Green’s functions, one can show
directly that, for fixed y ∈ X, we have

dxdcxFL(x, y) = dxdcxFR(x, y) = µ1(x)− µ2(x),

and ∫
X
FL(x, y)µ2(x) =

∫
X
FR(x, y)µ2(x) =

∫
X
g1(y, ζ)µ2(ζ).

Consequently FL(x, y) = FR(x, y), again for fixed y. However, it is obvious
that FL and FR are symmetric in x and y. This proves the lemma. �
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 13

Remark 3.4. Equation (26) from Lemma 3.3 provides the key identity
for the subsequent investigations. Note that a less explicit variant of it can be
found in the literature, e.g., [Lan88, Prop. 1.3].

Lemma 3.5. Let µ1 and µ2 be as in Lemma 3.3. Let µ1,res and µ2,res be
the residual metrics associated to µ1 and µ2, respectively. Then we have∫

X
log
(
µ2,res(x)
µ1,res(x)

)
(µ1(x) + µ2(x)) = 0.

Proof. Using the definitions of Green’s functions and residual metrics
given in Section 2.2, we get

log
(
µ2,res(x)
µ1,res(x)

)
= log

(
lim
y→x

G1(x, y)
G2(x, y)

)
.

Using Lemma 3.3, this implies

log
(
µ2,res(x)
µ1,res(x)

)
= lim

y→x
(g1(x, y)− g2(x, y))

= 2
∫
X
g1(x, ζ)µ2(ζ)−

∫
X

∫
X
g1(ξ, ζ)µ2(ζ)µ2(ξ).

The result then follows, since∫
X

(
2
∫
X
g1(x, ζ)µ2(ζ)−

∫
X

∫
X
g1(ξ, ζ)µ2(ζ)µ2(ξ)

)
(µ1(x) + µ2(x)) = 0. �

Lemma 3.6. For any X, we have

(27) log
(
µcan,res(x)
µshyp,res(x)

)
=

φAr(x) + 4π
∫ ∞

0

(
HK hyp(t;x)− 1

volhyp(X)

)
dt+ log(4).

Proof. The left side of the claimed formula can be expressed as

log (µcan,res(x)/µshyp,res(x)) = log (µAr(x)/µhyp,res(x))

= log(eφAr(x)µhyp(x)/µhyp,res(x)) = φAr(x) + log(µhyp(x)/µhyp,res(x)).

We now evaluate µhyp(x)/µhyp,res(x) in terms of the heat kernel on X. Working
with relation (13), we have

ghyp(x, y) = 4π
∫ ∞

0

( ∑
γ∈Γ:γ 6=id

KH(t; z(x), γz(y))− 1
volhyp(X)

)
dt

− log
(∣∣∣z(x)− z(y)
z(x)− z̄(y)

∣∣∣2)
= 4π

∫ ∞
0

(
HK hyp(t;x, y)− 1

volhyp(X)

)
dt− log

(∣∣∣z(x)− z(y)
z(x)− z̄(y)

∣∣∣2),
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14 JAY JORGENSON and JÜRG KRAMER

from which we derive

lim
y→x

(ghyp(x, y) + log|z(x)− z(y)|2)

= 4π
∫ ∞

0

(
HK hyp(t;x)− 1

volhyp(X)

)
dt+ log(4 Im(z(x))2).

This implies

log(µhyp(x)/µhyp,res(x)) = log(‖dz(x)‖2hyp,res/ Im(z(x))2)

= lim
y→x

(ghyp(x, y) + log|z(x)− z(y)|2)− log(Im(z(x))2)

= 4π
∫ ∞

0

(
HK hyp(t;x)− 1

volhyp(X)

)
dt+ log(4).

Combining these calculations, we conclude that

log
( µcan,res(x)
µshyp,res(x)

)
= φAr(x) + 4π

∫ ∞
0

(
HK hyp(t;x)− 1

volhyp(X)

)
dt+ log(4),

which proves the lemma. �

Proposition 3.7. For any X with genus gX > 1, let

F (t;x) = HK hyp(t;x)− 1/volhyp(X).

Then, we have the formula∫
X
φAr(x)(µshyp(x) + µcan(x))

= − 2π
gX

∫
X

∫ ∞
0

∫ ∞
0
F (t1;x)∆hypF (t2;x)dt1 dt2 µhyp(x)−2(cX−1)

gX−1
−2 log(4).

Proof. Choosing µ1 = µshyp and µ2 = µcan in Lemma 3.5 shows∫
X

log
( µcan,res(x)
µshyp,res(x)

)
(µshyp(x) + µcan(x)) = 0.

Multiplying (27) by (µshyp + µcan) and integrating over X, we arrive at the
relation∫
X
φAr(x)(µshyp(x) + µcan(x))

= −4π
∫
X

∫ ∞
0

(
HK hyp(t;x)− 1

volhyp(X)

)
dt (µshyp(x) + µcan(x))− 2 log(4).

Interchanging the integration, recalling the formula for the hyperbolic volume
of X in terms of gX , and using (19) gives

4π
∫
X

∫ ∞
0

(
HK hyp(t;x)− 1

volhyp(X)

)
dt µshyp(x)

= 4π
volhyp(X)

∫ ∞
0

(H TrKhyp(t)− 1)dt = cX−1
gX−1

,
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 15

which leads to the relation

(28)
∫
X
φAr(x)(µshyp(x) + µcan(x)) =

− 4π
∫
X

∫ ∞
0

(
HK hyp(t;x)− 1

volhyp(X)

)
dt µcan(x)− cX−1

gX−1
− 2 log(4).

In order to rewrite the latter integral, we recall the following formula from
[JK06b], which gives an explicit relation between the canonical and the scaled
hyperbolic metric form, namely,

(29) µcan(x) = µshyp(x) + 1
2gX

(∫ ∞
0

∆hypKhyp(t;x)dt
)
µhyp(x) ;

for the reader’s convenience, we add the proof of (29) in Appendix I. Observing
that ∆hypKhyp(t;x) = ∆hypHK hyp(t;x), we obtain by means of (29) and the
preceding calculations that

(30) 4π
∫
X

∫ ∞
0

(
HK hyp(t;x)− 1

volhyp(X)

)
dt µcan(x)

=
cX − 1
gX − 1

+
2π
gX

∫
X

∫ ∞
0

∫ ∞
0

(
HK hyp(t1;x)− 1/volhyp(X)

)
×∆hypHK hyp(t2;x)dt1 dt2 µhyp(x).

We complete the proof by substituting (30) into (28) and then observing that
∆hypHK hyp(t2;x) = ∆hypF (t2;x). �

Theorem 3.8. For any X with genus gX > 1, let

F (x) =
∫ ∞

0

(
HK hyp(t;x)− 1/volhyp(X)

)
dt.

Then we find that δFal(X) is equal to

2π
(

1− 1
gX

)∫
X
F (x)∆hypF (x)µhyp(x)− 6 log(Z ′X(1)) + 2cX + C(gX),

where
C(gX) = a(gX)− 6b(gX) + 2(gX − 1) log(4) + 6 log(volhyp(X))− 2

= 2gX(−24ζ ′Q(−1)− 4 log(π) + log(2) + 2) + 6 log(volhyp(X))

+ (48ζ ′Q(−1) + 6 log(2π)− 2 log(4)− 6).

Proof. Simply combine Lemma 3.1 with Proposition 3.7. �

Remark 3.9. Theorem 3.8 gives a precise expression for δFal(X)− C(gX)
in terms of hyperbolic data associated to X, all of which can be derived from
the trace of the hyperbolic heat kernel. As such, one can extend the hyperbolic
expression to general noncompact, finite volume hyperbolic Riemann surfaces,
including those that admit elliptic fixed points. Going further, it seems possible
to employ the techniques known as Artin formalism, which has been shown
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16 JAY JORGENSON and JÜRG KRAMER

to hold for hyperbolic heat kernels, in order to obtain analogous relations for
the Faltings delta function as well as the constant C(gX). Note that since the
Arakelov metric does not lift through covers, there is no immediate reason to
expect any relations involving δFal(X) similar to those predicted by the Artin
formalism; however, Theorem 3.8 implies that some relations are possible. We
leave this problem for further study elsewhere.

4. Analytic bounds

The main result of the section is Theorem 4.5, which states a bound for
Faltings’s delta function in terms of fundamental invariants from hyperbolic
geometry. Propositions 4.1, 4.2, and 4.3 bound the nontrivial quantities in the
expression for Faltings’s delta function given in Theorem 3.8, and these results,
together with Lemma 4.4, are used to prove Theorem 4.5.

Proposition 4.1. For any X with genus gX > 1, let F (x) be as in
Theorem 3.8, and set

dsup,X = sup
x∈X

∣∣∣∣ µcan(x)
µshyp(x)

∣∣∣∣.
Then we have the estimate

0 ≤
∫
X
F (x)∆hypF (x)µhyp(x) ≤

(dsup,X + 1)2 volhyp(X)
λX,1

.

Proof. From formula (29), we have the identity

gXµcan(x)− gXµshyp(x) = 1
2

(∫ ∞
0

∆hypHK hyp(t;x)dt
)
µhyp(x)

= 1
2∆hypF (x)µhyp(x),

which immediately gives the formula

∆hypF (x) =
2gX

4π(gX − 1)

(
µcan(x)
µshyp(x)

− 1
)

and hence leads to the estimate supx∈X |∆hypF (x)| ≤ dsup,X + 1. Since X is
compact, we can expand F (x) in terms of the orthonormal basis of eigenfunc-
tions {φX,n}∞n=0 with eigenvalues {λX,n}∞n=0 of ∆hyp, i.e.,

F (x) =
∞∑
n=0

anφX,n(x),

from which we derive ∆hypF (x) =
∑∞

n=1 λX,nanφX,n(x), taking into account
that λX,0 = 0. Therefore, we have∫

X
F (x)∆hypF (x)µhyp(x) =

∞∑
n=1

λX,na
2
n.
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 17

Observing that ∫
X

(∆hypF (x))2µhyp(x) =
∞∑
n=1

λ2
X,na

2
n,

which yields by the above calculations the trivial bound
∞∑
n=1

λ2
X,na

2
n =

∫
X

(∆hypF (x))2µhyp(x) ≤ (dsup,X + 1)2 volhyp(X),

and taking into account λX,1 ≤ λX,n for all n ≥ 1, we are finally led to the
estimate that completes the proof:

0 ≤ λX,1
∫
X
F (x)∆hypF (x)µhyp(x)

= λX,1

∞∑
n=1

λX,na
2
n ≤

∞∑
n=1

λ2
X,na

2
n ≤ (dsup,X + 1)2 volhyp(X). �

Proposition 4.2. For any X with genus gX > 1, we have the lower
bound

cX ≥ −4 log(2gX − 2).

Letting α = min{λX,1, 7/64} and ε ∈ (0, α), we have the upper bound

cX ≤ 2 +
∑

γ∈H(Γ)
`γ<5

Z ′γ
Zγ

(1) + 6
ε

(CHub,X +N
[0,1/4)

ev,X ) .

Proof. The lower bound is proved in [JK01, Th. 3.3]. The upper bound
comes from the proof of [JK01, Th 4.7]. Specifically, for any δ > 0, we recall
the inequality

cX ≤ 1 +
∑

0<λX,j<ε

1
λX,j

+
∑

γ∈H(Γ)
`γ<δ

Z ′γ
Zγ

(1) + CX,εe
−(1−sε)δ + 12N [0,ε)

ev,Xe
−δ/2

with

CX,ε = 1
ε4(4− 3sε)(CHub,X +N

[ε,1/4)

ev,X ) and sε = 1/2 +
√

1/4− ε.

By choosing δ = 5 and ε as stated above and by noting that N [0,ε)
ev,X = 1,

12e−5/2 < 1, and 7/8 < sε < 1, that is, 4(4− 3sε) < 6, the claim follows. �

Proposition 4.3. For any X with genus gX > 1, we have the lower
bound

− log(Z ′X(1)) ≥ −4 log(4gX − 4)− 1/16.
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18 JAY JORGENSON and JÜRG KRAMER

Letting α = min{λX,1, 7/64} and ε ∈ (0, α), we have the upper bound

(31) − log(Z ′X(1))

≤ −
∑

γ∈H(Γ)
`γ<5

log(Zγ(1)) + 12
(
5 + 1

ε

) (
CHub,X +N

[0,1/4)

ev,X + 1
)
.

Proof. We follow the methods that proved the bounds in Proposition 4.2.
Since these calculations are not immediate from the results in [JK01], it is
necessary to give the details. Let δ > 0, to be specified below. Then, using the
trivial bounds

H TrKhyp(t) + volhyp(X)KH(t; 0) =
∞∑
j=0

e−λX,jt ≥ 1 for δ ≤ t,

H TrKhyp(t) ≥ 0 for 0 ≤ t ≤ δ,

we get from formula (23) the bound

− log(Z ′X(1)) ≥
∫ δ

0
(e−t − 1)dt

t
+
∫ ∞
δ

(e−t − volhyp(X)KH(t; 0))dt
t
.

Trivially, one has e−t − 1 ≥ −t for t ≥ 0, so
∫ δ

0 (e−t − 1)(dt/t) ≥ −δ. Using the
obvious bound KH(t; 0) ≤ e−t/4/(4πt), we get∫ ∞

δ
KH(t; 0)dt

t
≤ e−δ/4

πδ2 ,

which gives∫ ∞
δ

(e−t − volhyp(X)KH(t; 0))dt
t
≥ − volhyp(X)

∫ ∞
δ

KH(t; 0)dt
t

≥ − volhyp(X)e
−δ/4

πδ2

and hence

− log(Z ′X(1)) ≥ −δ − volhyp(X)e−δ/4/(πδ2).

Taking δ = 4 log(4gX −4) and using log(4gX −4) ≥ log(4) > 1 gives the stated
lower bound.

For the upper bound, we proceed as in [JK01, §4]. A straightforward
calculation, with sw = 1/2 +

√
1/4− w for w ∈ [0, 1/4], with δ > 4, and f(u, t)

as in (11), yields

(32)
∫ ∞
eδ

f(u, t)dli(usw) = e−t/4

(4πt)1/2

∫ ∞
δ

∞∑
n=1

∞∑
m=0

e(sw−n/2−nm)ξe−(nξ)2/4tdξ.
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 19

See also the proof of [JK01, Lem. 4.3]. Writing the term with n = 1 and m = 0
as

e−t/4

(4πt)1/2

∫ ∞
δ

e(sw−1/2)ξe−ξ
2/4tdξ = e−wt − e−t/4

(4πt)1/2

∫ δ

−∞
e(sw−1/2)ξe−ξ

2/4tdξ,

we can rewrite (32) as

e−wt =
∫ ∞
eδ

f(u, t)dli(usw) + e−t/4

(4πt)1/2

∫ δ

−∞
e(sw−1/2)ξe−ξ

2/4tdξ

− e−t/4

(4πt)1/2

∫ ∞
δ

∑
(n,m)6=(1,0)

e(sw−n/2−nm)ξe−(nξ)2/4tdξ,

where the sum is taken over all integer pairs (n,m) with n ≥ 1 and m ≥ 0,
except for the pair (n,m) = (1, 0). Using this identity twice, once with w = 0,
so sw = 1, and again with w = 1/4, so sw = 1/2, and recalling formula (16),
we obtain the equality

(33) H TrKhyp,δ(t)− 1 + e−t/4 =
∫ ∞
eδ

f(u, t)d
(
πX(u)− li(u) + li(u1/2)

)
+ e−t/4

(4πt)1/2

∫ ∞
δ

∑
(n,m)6=(1,0)

e(1−n/2−nm)ξe−(nξ)2/4tdξ

+ e−t/4

(4πt)1/2

∫ δ

−∞
e−ξ

2/4tdξ

− e−t/4

(4πt)1/2

∫ ∞
δ

∑
(n,m)6=(1,0)

e(1/2−n/2−nm)ξe−(nξ)2/4tdξ

− e−t/4

(4πt)1/2

∫ δ

−∞
eξ/2e−ξ

2/4tdξ.

After these preliminary calculations, we turn to bounding − log(Z ′X(1)) from
above. For this we recall formula (25) with w = 1/4, namely

(34)
∑

γ∈H(Γ)
`γ<δ

log(Zγ(1))

− log(Z ′X(1))− log(1/4) =
∫ ∞

0

(
H TrKhyp,δ(t)− 1 + e−t/4

)dt
t
.

As in [JK01], we substitute expression (33) for the integrand on the right side
of (34), interchange the order of integration, and evaluate. First, we do this for
the two integrals coming from the term belonging to (n,m) = (1, 0). We follow
the convention that defines the K-Bessel function via the integral

Kσ(a, b) =
∫ ∞

0
e−a

2t−b2/ttσ
dt
t

for a, b ∈ R>0 and σ ∈ R.
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20 JAY JORGENSON and JÜRG KRAMER

In particular, it can be shown that

K−1/2(a, b) =
√
π
b
e−2ab.

Using this notation, we get∫ ∞
0

(
e−t/4

(4πt)1/2

∫ δ

−∞
e−ξ

2/4tdξ − e−t/4

(4πt)1/2

∫ δ

−∞
eξ/2e−ξ

2/4tdξ
)

dt
t

=
∫ 0

−∞

( 1√
4π
K−1/2(1/2,−ξ/2)− eξ/2√

4π
K−1/2(1/2,−ξ/2)

)
dξ

+
∫ δ

0

( 1√
4π
K−1/2(1/2, ξ/2)− eξ/2√

4π
K−1/2(1/2, ξ/2)

)
dξ

=
∫ 0

−∞

1
ξ

(eξ − eξ/2)dξ +
∫ δ

0

1
ξ

(e−ξ/2 − 1)dξ

= log(2) +
∫ δ

0

1
ξ

(e−ξ/2 − 1)dξ.

For the remaining terms, meaning when (n,m) 6= (1, 0), we can integrate term
by term to get∑
(n,m) 6=(1,0)

∫ ∞
0

(
e−t/4

(4πt)1/2

∫ ∞
δ

e(1−n/2−nm)ξe−(nξ)2/4tdξ

− e−t/4

(4πt)1/2

∫ ∞
δ

e(1/2−n/2−nm)ξe−(nξ)2/4tdξ
)

dt
t

=
∑

(n,m)6=(1,0)

∫ ∞
δ

(
e(1−n/2−nm)ξ
√

4π
K−1/2(1/2, nξ/2)

− e(1/2−n/2−nm)ξ
√

4π
K−1/2(1/2, nξ/2)

)
dξ

=
∑

(n,m)6=(1,0)

∫ ∞
δ

1
nξ

(e(1−n−nm)ξ − e(1/2−n−nm)ξ)dξ.

Having explicitly evaluated these integrals, we now proceed to estimate the
results. For the first case, we observe the trivial inequality

(35) log(2) +
∫ δ

0

1
ξ

(e−ξ/2 − 1)dξ = log(2)−
∫ δ

0

1
ξ

(1− e−ξ/2)dξ ≤ log(2).

For the second case, we first note that for n ≥ 1 and m ≥ 0, but (n,m) 6= (1, 0),
we have n+ nm ≥ 2, which leads to the trivial estimate∣∣∣∣ ∑
(n,m)6=(1,0)

∫ ∞
δ

1
nξ

(
e(1−n−nm)ξ − e(1/2−n−nm)ξ

)
dξ
∣∣∣∣

≤ 2
∑

(n,m)6=(1,0)

∫ ∞
δ

e(1−n−nm)ξ

nξ
dξ ≤ 2eδ

δ

∑
(n,m)6=(1,0)

e−n(m+1)δ

n(n+nm−1)
.
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 21

In order to further estimate the latter sum, we break it up into three parts, the
first one given by n ≥ 2 and m = 0, the second one by n = 1 and m ≥ 1, and
the third one by n ≥ 2 and m ≥ 1. For the first part, we have the upper bound

(36) 2eδ

δ

∞∑
n=2

e−nδ

n(n−1)
≤ 2e−δ

δ

∞∑
n=2

1
n(n−1)

= 2e−δ

δ
≤ 2
δ
.

For the second part, we estimate

(37) 2eδ

δ

∞∑
m=1

e−(m+1)δ

m
≤ 2eδ

δ
e−δ

e−δ

1−e−δ = 2
δ
· 1
eδ−1

≤ 2
δ2 .

Using the inequality nm− 1 ≥ 1, we estimate for the third part

(38) 2eδ

δ

∞∑
n=2

∞∑
m=1

e−n(m+1)δ

n(n+nm−1)
≤ 2eδ

δ

∞∑
n=2

∞∑
m=1

e−2(m+1)δ

n(n+1)

= 2eδ

δ
·1
2

∞∑
m=1

e−2(m+1)δ = eδ

δ
e−2δ e−2δ

1−e−2δ
= e−δ

δ
· 1
e2δ−1

≤ e−δ

2δ2 ≤
1

2δ2 .

Integrating (33) with respect to t from 0 to ∞ and taking into account the
estimates (35), (36), (37), and (38), we get the upper bound

(39)
∫ ∞

0
(H TrKhyp(t)− 1 + e−t/4)dt

t

≤
∫ ∞

0

∫ ∞
eδ

f(u, t)d
(
πX(u)− li(u) + li(u1/2)

)dt
t

+ 4δ+5
2δ2 + log(2).

In order to further estimate the right side of (39), we proceed as in the first
part of the proof of [JK01, Th. 4.7 (see pp. 18–20)]. For this, we first note that
a direct computation establishes the equality

F (u) =
∫ ∞

0
f(u, t)dt

t
= − log

( ∞∏
n=0

(1− u−(n+1))
)
,

which shows that the function F (u) is decreasing in u. We now apply [JK01,
Lem. 4.6] to the right side of (39) with ε ∈ (0, α), with α = min{λX,1, 7/64},
and δ > 4 to arrive at the upper bound

(40)
∫ ∞

0

∫ ∞
eδ

f(u, t)d
(
πX(u)− li(u) + li(u1/2)

)dt
t

≤ C ′X
∫ ∞
eδ

F (u)dli(usε) + 2C ′XF (eδ)li(esεδ),

where C ′X = CHub,X +N
[0,1/4)

ev,X + 1; see also the proof of [JK01, Th. 4.7]. Now,
the inequality− log(1−v−1) ≤ v−1/(1−e−δ), which is valid for v ≥ eδ, implies
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22 JAY JORGENSON and JÜRG KRAMER

the upper bound

F (u) ≤ 1
1−e−δ

∞∑
n=0

u−(n+1) = 1
1−e−δ ·

1
u−1

≤ 2
δ(1−e−δ) ·

log(u)
u

,

where the last inequality holds since log(u) ≥ δ > 4. (Note: Although the factor
log(u)/δ in the above bound can be eliminated by estimating F (u) by other
means, the presence of this factor is helpful in the subsequent computations.)
Using the elementary inequality li(u) ≤ 2u/log(u) for u > e2, we obtain

δ

eδ
li(esεδ) ≤ 2

sε
e−(1−sε)δ, where ε < 7/64 and δ > 4.

We are now able to estimate the right side of (40) as

(41) C ′X

∫ ∞
eδ

F (u)dli(usε) + 2C ′XF (eδ)li(esεδ)

≤
2C ′X

δ(1− e−δ)

∫ ∞
eδ

log(u)
u

dli(usε) +
4C ′X

δ(1− e−δ)
δ
eδ

li(esεδ)

=
2C ′X

δ(1− e−δ)
· e
−(1−sε)δ

1−sε
+

4C ′X
eδ − 1

li(esεδ)

≤
2C ′X
δ2
· sεe

sεδ

ε
+

4C ′X
eδ − 1

· 2eδ

sεδ
e−(1−sε)δ

≤
2C ′Xe

sεδ

δ2

(
sε
ε

+ 4
sε

)
≤

2C ′Xe
sεδ

δ2

(
5 + 1

ε

)
,

Combining (34) with the estimates (39), (40), and (41), we find the upper
bound

− log(Z ′X(1)) ≤ −
∑

γ∈H(Γ)
`γ<δ

log(Zγ(1)) +
2C ′Xe

sεδ

δ2

(
5 + 1

ε

)
+ 4δ+5

2δ2 − log(2).

Since we have assumed δ > 4, we can simply choose δ = 5. Observing 1/2−
log(2) < 0 and 2e5/25 < 12, we arrive at the claimed upper bound (31). �

Lemma 4.4. With the above notations, we have the following results:

(i) For any γ ∈ H(Γ) with `γ ∈ (0, 5), we have 0 ≤ − log(Zγ(1)) ≤ π2

6`γ
.

(ii) For any γ ∈ H(Γ) with `γ > 0, we have 0 ≤
Z ′γ
Zγ

(1) ≤ 3 + log
( 1
`γ

)
.

Proof. We start with the following observation. Consider the unique (up
to scaling) cusp form of weight 12 with respect to SL2(Z) given by

∆(z) = e2πiz
∞∏
n=1

(
1− e2πinz

)24 for z ∈ H.
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 23

It satisfies the functional equation ∆(z) = (−z)−12∆(−1/z). Upon setting
z = −`γ/(2πi), we have Zγ(1)24 = e`γ∆(−`γ/(2πi)). Using the functional
equation for ∆(z), we then obtain the relation

(42) Zγ(1)24 = e`γ (`γ/(2πi))
−12 ∆

(
2πi/`γ

)
= e`γ (`γ/(2π))−12 e−(2π)2/`γ

∞∏
n=1

(
1− e−(2π)2n/`γ

)24
.

We now turn to the proof of the lemma.
(i) From the product formula for Zγ(1), it is immediate that Zγ(1) ≤ 1 for

all `γ ≥ 0; hence, we get the lower bound − log(Zγ(1)) ≥ 0. Concerning the
upper bound, we derive from (42) that

− log(Zγ(1)) = − `γ
24

+ 1
2

log
( `γ

2π

)
+ π2

6`γ
−
∞∑
n=1

log
(
1− e−(2π)2n/`γ

)
.

We now use the elementary inequality − log(1− x) ≤ x/(1− σ), which holds
whenever x ∈ [0, σ], and take σ = e−(2π)2/`γ to get

−
∞∑
n=1

log
(
1− e−(2π)2n/`γ

)
≤ 1

1−e−(2π)2/`γ

∞∑
n=1

e−(2π)2n/`γ = e(2π)2/`γ

(e(2π)2/`γ−1)2
.

Letting u = (2π)2/`γ , the upper bound becomes

eu

(eu−1)2 = 1
eu−1

+ 1
(eu−1)2 ,

which is clearly monotone decreasing in u and hence monotone increasing in `γ .
Therefore, for `γ < 5, we obtain

1
2

log
(
`γ
2π

)
+ e(2π)2/`γ

(e(2π)2/`γ−1)2
≤ 1

2
log
( 5

2π

)
+ e(2π)2/5

(e(2π)2/5−1)2
≤ 0,

where the last estimate is obtained numerically. All this proves part (i).
(ii) We begin by writing

Z ′γ
Zγ

(1) = `γ

∞∑
n=1

1
en`γ−1

.

Let N ≥ 1 be the smallest integer no less than 1/`γ , that is, N − 1 < 1/`γ ≤ N .
If n ≥ N , then n`γ ≥ 1; hence, en`γ ≥ 2. Observing en`γ − 1 ≥ en`γ/2 gives

`γ

∞∑
n=N

1
en`γ−1

≤ 2`γ
∞∑
n=N

e−n`γ = 2`γ
e−(N−1)`γ

e`γ−1
≤ 2`γ
e`γ−1

≤ 2.

For 1 ≤ n < N , we use the inequality en`γ − 1 ≥ n`γ , which implies

`γ

N−1∑
n=1

1
en`γ−1

≤
N−1∑
n=1

1
n
≤ 1 + log(N −1) ≤ 1 + log

( 1
`γ

)
and hence (ii). �
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24 JAY JORGENSON and JÜRG KRAMER

Theorem 4.5. For any X with genus gX > 1, put

h(X) = gX + 1
λX

(
gX(dsup,X + 1)2 + CHub,X +N

[0,1/4)

ev,X

)
+ 1
`X
N

(0,5)

geo,X ,

with λX = 1/2 ·min{λX,1, 7/64} and `X equal to the length of the smallest
geodesic on X. Then we have the bound δFal(X) = O(h(X)) with an implied
constant that is universal.

Proof. The result is a summary of the inequalities derived in this section,
namely Propositions 4.1, 4.2, and 4.3 and Lemma 4.4, which are then applied
to Theorem 3.8, taking, for example, ε = λX in Propositions 4.2 and 4.3. �

Corollary 4.6. Let X1 be a finite degree cover of the compact Riemann
surface X0 of genus gX0 > 1. Then we have the bound

δFal(X1) = OX0

(
gX1

(
1 + 1

λX1,1

))
.

In particular , if {Xn}n≥1 is a tower of finite degree covers of X0 such that
there exists a constant c > 0 satisfying λXn,1 ≥ c > 0 for all n ≥ 1, we have
the bound δFal(Xn) = OX0(gXn).

Proof. We analyze the bound obtained in Theorem 4.5. The quantity
N

[0,1/4)

ev,X1
is known to have order O(gX1) with an implied constant that is univer-

sal; see [Bus92, p. 211] or [Zog82]. The main result in [Don96] states the bound
dsup,X1 = OX0(1); see also [JK02b], [JK04], and [JK06b] with related results.
In [JK02a, Th. 3.4], it is shown that CHub,X1 = OX0(gX1). As discussed in the
proof of [JK01, Th. 4.11], N (0,5)

geo,X1
= OX0(gX1) (specifically, recall the definition

of rΓ0,Γ therein). Trivially, one has `X1 ≥ `X0 . With all this, we have shown
that h(X) = OX0(gX1 + gX1/λX1). By choosing λX1 = 1/2 ·min{λX1,1, 7/64},
the result follows. �

Remark 4.7. We view Theorem 4.5 and Corollary 4.6 as complementing
known theorems answering the asymptotic behavior of Faltings’s delta func-
tion for a degenerating family of algebraic curves that approach the Deligne-
Mumford boundary of the moduli space of stable curves of a fixed positive
genus, as first proved in [J90]. The expressions derived in [J90] were well suited
for answering the question of the asymptotic behavior of δFal(X) through
degeneration, but do not appear to allow one to bound δFal(X) in terms of
more elementary information concerning X, as in Theorem 4.5 or Corollary
4.6. On the other hand, the exact expression for δFal(X) in terms of hyperbolic
geometry could possibly be used to understand δFal(X) through degeneration.
Indeed, cX and log(Z ′X(1)) are studied in [JL97] through degeneration, so it
would remain to adapt the analysis in [JL97] to study the integral that we
bound in Proposition 4.1.
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 25

5. Applications to the modular curves X0(N)

In this section we focus on the sequence of modular curves X0(N). The
purpose is to bound the geometric quantities in Theorem 4.5 in more elementary
terms in order to prove an analogue of Corollary 4.6 for the sequence of modular
curves X0(N), which admit hyperbolic metrics. As stated earlier, the set of
modular curves X0(N) that admit hyperbolic metrics does not form a single
tower of hyperbolic Riemann surfaces, and hence the results cited in the proof
of Corollary 4.6 do not apply. However, the family of hyperbolic modular curves
forms a different structure, which we refer to as a “net”. More specifically, there
is a sequence of hyperbolic modular curves, which we parametrize by a set of
integers B(p0), and every hyperbolic modular curve is a finite degree cover of
(possibly several) modular curves corresponding to elements of B(p0). In effect,
we bound the quantities in Theorem 4.5 by first obtaining uniform bounds for
all modular curves that correspond to elements in B(p0), after which we use
bounds through covers by citing the results that prove Corollary 4.6.

In the following definition, P denotes the set of primes.

Definition 5.1. (i) We call N ∈ N base hyperbolic if gX0(N) > 1 and if
there exists no proper divisor N ′ of N with gX0(N ′) > 1.

(ii) For p0 ∈ P, set

B1(p0) = {N base hyperbolic | N = pα1
1 · · · p

αk
k , pj ≤ p0, j = 1, . . . , k ∈ N}.

(iii) For p0 ∈ P with gX0(p0) > 1, set B2(p0) = {p ∈ P | p > p0}.

(iv) For p0 ∈ P with gX0(p0) > 1, set B(p0) = B1(p0) ∪B2(p0).

Remark 5.2. (i) For instance, one can choose p0 = 23.

(ii) The set B1(p0) is obviously finite.

(iii) For every N ∈ N with gX0(N) > 1, there exists an either N ′ |N with
N ′ ∈ B1(p0) or a p |N with p ∈ B2(p0). In other words, one can state that
for any N ∈ N with gX0(N) > 1, there exists N ′ ∈ B(p0) such that X0(N)
is a finite cover of X0(N ′).

Proposition 5.3. Suppose N > N0 is such that X0(N) has genus
gX0(N) > 1. Then there are positive constants c1, c2, c3, and c4, all independent
of N , satisfying

(a) λX0(N),1 ≥ c1,

(b) N [0,1/4)

ev,X0(N) ≤ c2 · gX0(N),

(c) `X0(N) ≥ c3, and

(d) N [0,5)

geo,X0(N) ≤ c4 · gX0(N).
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26 JAY JORGENSON and JÜRG KRAMER

Proof. (a) We recall from [Bro99, Th. 3.1] that

lim inf
N→∞

λX(N),1 ≥ 5/36.

Hence, there is a constant c1 > 0, independent of N , such that λX(N),1 ≥ c1

for all N > N0. Since X(N) is a cover of X0(N), the Raleigh quotient method
for estimating eigenvalues, which shows that the smallest eigenvalue decreases
through covers, now implies that λX(N),1 ≤ λX0(N),1. This proves (a).

(b) This part of the claim follows immediately by quoting the known
universal lower bound for the number of small eigenvalues applied to the special
case of the modular curves X0(N). In fact, one can choose c2 = 4; see [Bus92]
or [Cha84, p. 251].

(c) Let X0(N) ∼= ∆0(N) \H with ∆0(N) a torsionfree and cocompact sub-
group of PSL2(R). Recall that π1(X0(N)) ∼= ∆0(N) and that each homotopy
class in π1(X0(N)) can be uniquely represented by a closed geodesic path on
X0(N). Thus, we have a bijection between the elements γ ∈ ∆0(N) and closed
geodesic paths β on X0(N) (with a fixed initial point); note that the quantity
`γ introduced in Section 2.4 equals the length `X0(N)(β) of β.

Let p0 be as in Definition 5.1. Let p ∈ B2(p0). The hyperbolic Riemann
surfaceX0(p0p) is a cover ofX0(p) of degree p0+1. Let β be any closed geodesic
path onX0(p) corresponding to γ ∈ ∆0(p) of length `X0(p)(β) = `γ . Then there
exists a minimal d ∈ N with 1 ≤ d ≤ p0 + 1 such that γ′ = γd ∈ ∆0(p0p). The
element γ′ ∈ ∆0(p0p) corresponds to a closed geodesic path β′ on X0(p0p) of
length `X0(p0p)(β

′) = d · `X0(p)(β).
On the other hand, X0(p0p) is a finite cover of X0(p0); hence ∆0(p0p) is a

subgroup of ∆0(p0). Viewing γ′ ∈ ∆0(p0p) as an element of ∆0(p0), we see that
any closed geodesic path β′ on X0(p0p) descends to a closed geodesic path β′′

on X0(p0) of the same length. This proves the inequality `X0(p0p) ≥ `X0(p0). In
particular, we find for any closed geodesic path β on X0(p) of length `X0(p)(β)
lifting to the closed geodesic path β′ on X0(p0p) of length d · `X0(p)(β) the
estimate

`X0(p)(β) =
`X0(p0p)(β

′)
d

≥
`X0(p0p)(β

′)
p0 + 1

≥
`X0(p0p)

p0 + 1
≥
`X0(p0)

p0 + 1
.

Therefore, we have for any p ∈ B2(p0) the bound `X0(p) ≥ `X0(p0)/(p0 + 1). We
now define

c3 = min
N∈B1(p0)

{`X0(N), `X0(p0)/(p0 + 1)} ≤ inf
N∈B(p0)

{`X0(N)},

which depends solely on p0. Since B1(p0) is finite and `X0(N) is positive for
any N ∈ B1(p0), we conclude that c3 is positive. Now, for any modular curve
X0(N) with gX0(N) > 1, choose N ′ ∈ B(p0) so that X0(N) is a finite cover of
X0(N ′). Using the lower bound `X0(N) ≥ `X0(N ′), together with the inequality
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 27

`X0(N ′) ≥ c3 for N ′ ∈ B(p0), we find that `X0(N) ≥ c3, which completes the
proof of part (c).

(d) As in the proof of part (c), we let X0(N) ∼= ∆0(N) \H with ∆0(N) a
torsionfree and cocompact subgroup of PSL2(R). Let p0 be as in Definition 5.1,
and let p ∈ B2(p0). Recalling our notations given in Section 2.4, we have

N
[0,5)

geo,X0(p) = #{γ ∈ ∆0(p) | γ ∈ H(∆0(p)), `γ < 5}
= #{γ ∈ ∆0(p) | γ primitive, hyperbolic, `γ < 5}/∆0(p)-conjugacy

≤ #{γ ∈ ∆0(p) | γ primitive, hyperbolic, `γ < 5}/∆0(p0p)-conjugacy.

We introduce the sets

C(p) = {γ ∈ ∆0(p) | γ primitive, hyperbolic, `γ < 5}/∆0(p0p)-conjugacy,

C′(p0p) = {γ′ ∈ ∆0(p0p) | γ′ hyperbolic, `γ′<5(p0 + 1)}/∆0(p0p)-conjugacy.

As in the proof of part (c), we find for any γ ∈ ∆0(p) a minimal d ∈ N with
1 ≤ d ≤ p0 + 1 such that γ′ = γd ∈ ∆0(p0p); note that for γ ∈ ∆0(p) with
`γ < 5, we have `γ′ < 5d ≤ 5(p0 + 1). By associating the ∆0(p0p)-conjugacy
class of γ ∈ ∆0(p), with γ primitive and hyperbolic and with `γ < 5, to the
∆0(p0p)-conjugacy class of γ′ = γd ∈ ∆0(p0p), with γ′ hyperbolic and with
`γ′ < 5(p0 + 1), we obtain a well-defined map

ϕ : C(p)→ C′(p0p).

Let now [γ1], [γ2] ∈ C(p) be such that ϕ([γ1]) = ϕ([γ2]), i.e., there exists
d1, d2 ∈ N with 1 ≤ d1,d2 ≤ p0 + 1 and δ ∈ ∆0(p0p) such that γd11 = δγd22 δ−1.
Since γ1, γ2 are hyperbolic elements, there exists an α ∈ PSL2(R) such that

αγd11 α−1 =
(
e` 0
0 e−`

)
= α(δγd22 δ−1)α−1

with ` ∈ R>0, i.e., we have

γ1 = α−1

(
e`/d1 0

0 e−`/d1

)
α and δγ2δ

−1 = α−1

(
e`/d2 0

0 e−`/d2

)
α.

This shows that γ1 and δγ2δ
−1 commute in ∆0(p), i.e., δγ2δ

−1∈ Cent∆0(p)(γ1).
Since γ1 is primitive, it generates its own centralizer, that is, δγ2δ

−1 = γn1 with
n ∈ Z. But since δγ2δ

−1 is also primitive, we must have n = ±1. This proves
[γ1] = [γ±1

2 ], i.e., the map ϕ is two-to-one. From this we immediately deduce
the estimate N [0,5)

geo,X0(p) ≤ #C(p) ≤ 2 ·#C′(p0p) for all p ∈ B2(p0). Introducing
the set

C′′(p0) = {γ′′ ∈ ∆0(p0) | γ′′ hyperbolic, `γ′′ < 5(p0 + 1)}/∆0(p0)-conjugacy,

we have the obvious map ϕ′ : C′(p0p) → C′′(p0) given by associating the
∆0(p0p)-conjugacy class of γ′ ∈ ∆0(p0p) with γ′ hyperbolic and `γ′ < 5(p0 + 1)
to the ∆0(p0)-conjugacy class of γ′ viewed as an element of ∆0(p0). Since
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28 JAY JORGENSON and JÜRG KRAMER

[∆0(p0) : ∆0(p0p)] = p+ 1, at most (p+ 1) ∆0(p0p)-conjugacy classes collapse
to a single ∆0(p0)-conjugacy class, i.e., ϕ′ maps at most p + 1 elements of
C′(p0p) to the same element of C′′(p0). Therefore, we obtain the estimate

N
[0,5)

geo,X0(p) ≤ 2 ·#C′(p0p) ≤ 2(p+ 1) ·#C′′(p0).

Since the set C′′(p0) depends solely on p0 and since the set B1(p0) is finite, we
arrive at the bound

N
[0,5)

geo,X0(N) = O(gX0(N)) for any N ∈ B(p0),

with an implied constant depending solely on p0. Finally, in general and in
particular for N ∈ B(p0), it is well known (see for example [Hej76, p. 45]) that

#{γ ∈ ∆0(N) | γ hyperbolic, `γ < 5}/∆0(N)-conjugacy =
∞∑
n=1

N
[0,5/n)

geo,X0(N).

But from part (c), we know that N [0,5/n)

geo,X0(N) = 0 provided 5/n < c3, i.e., we
have n ≤ 5/c3 in the above sum. Therefore, we find

(43) #{γ ∈ ∆0(N) | γ hyperbolic, `γ < 5}/∆0(N)-conjugacy

≤
⌈ 5
c3

⌉
·N [0,5)

geo,X0(N) = O (gX0(N))

for any N ∈ B(p0), with an implied constant that depends solely on p0.
To complete the proof of part (d), let now X0(N) be any modular curve

with gX0(N) > 1. By definition, we have that N [0,5)

geo,X0(N) is equal to

#{γ ∈ ∆0(N) | γ primitive, hyperbolic, `γ < 5}/∆0(N)-conjugacy.

Given N , choose N ′ ∈ B(p0) so that X0(N) is a finite cover of X0(N ′). We
then associate the ∆0(N)-conjugacy class of γ ∈ ∆0(N) with γ primitive and
hyperbolic and with `γ < 5 to the ∆0(N ′)-conjugacy class of γ viewed as
an element of ∆0(N ′). Since at most deg(X0(N)/X0(N ′)) ∆0(N)-conjugacy
classes collapse to a single ∆0(N ′)-conjugacy class, we find by arguing as before
that

N
[0,5)

geo,X0(N) ≤ deg(X0(N)/X0(N ′))

×#{γ′ ∈ ∆0(N ′) | γ′ hyperbolic, `γ′ < 5}/∆0(N ′)-conjugacy.

By equation (43), we conclude

N
[0,5)

geo,X0(N) = deg(X0(N)/X0(N ′)) ·O
(
gX0(N ′)

)
,

where the implied constant depends solely on p0. The proof of part (d) is now
complete since deg(X0(N)/X0(N ′)) · gX0(N ′) = O(gX0(N)) with an implied
constant that is universal. �
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 29

Proposition 5.4. Choose N > N0 so that X0(N) has genus gX0(N) > 1.
Then we have the bound dsup,X0(N) = O(1), where the implied constant is
independent of N .

Proof. For n ∈ N, let Y0(n) = Γ0(n) \ H, so that X0(n) is (isomorphic to)
the compactification of Y0(n) by adding the cusps and re-uniformizing at the
elliptic fixed points. For n1 a divisor of n2, denote by πn2,n1 : X0(n2)→ X0(n1)
the natural projection. For 0 < ε < 1, let B(ε) = {w ∈ C | |w| < ε} be
equipped with the complete hyperbolic metric

µhyp,B(ε)(w) = i
2
· dw∧dw̄

(1−|w|2)2 .

Denote by X ′0(1) the Riemann surface obtained from X0(1) by removing neigh-
borhoods centered at the three points corresponding to the unique cusp and the
two elliptic fixed points of Y0(1). Let X ′0(N) = π−1

N,1(X ′0(1)); we may assume
that

X ′0(N) = X0(N) \
s⋃

k=1

Uk,

where the neighborhoods Uk are isometric to the complex disc B(ε).
In this proof, we will use the hyperbolic metric on X0(N) and Y0(N);

we will distinguish them by respectively denoting them by µhyp,X0(N) and
µhyp,Y0(N). (This is slightly different from our previous notation and will be
used in this proof alone.) For x ∈

⋃s
k=1 Uk, we now have

µhyp,X0(N)(x) ≥ i
2

dz(x) ∧ dz̄(x),

which leads to the estimate

gX0(N) · µcan,X0(N)(x)
µhyp,X0(N)(x)

≤
gX0(N)∑
j=1

|fj(z(x))|2 .

Since the functions fj(z(x)) for j = 1, . . . , gX0(N) are bounded and holomor-
phic on the neighborhoods Uk for k = 1, . . . , s, the functions |fj(z(x))|2 are
subharmonic on Uk, as is the sum of these functions (see for example [Rud66,
p. 362]). By the strong maximum principle for subharmonic functions (see for
example [GT83, Th. 2.2, p. 15]), we then have

sup
x∈Uk

( gX0(N)∑
j=1

|fj(z(x))|2
)
≤ sup

x∈∂Uk

( gX0(N)∑
j=1

|fj(z(x))|2
)

for k = 1, . . . , s.

In the given local coordinate, the conformal factor for the hyperbolic metric is
constant on ∂Uk. Thus we have shown that

sup
x∈Uk

(
gX0(N) · µcan,X0(N)(x)

µhyp,X0(N)(x)

)
= Oε

(
sup
x∈∂Uk

(
gX0(N) · µcan,X0(N)(x)

µhyp,X0(N)(x)

))
.
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30 JAY JORGENSON and JÜRG KRAMER

Therefore, in order to prove the proposition, it suffices to show

sup
x∈X′

0(N)

(
gX0(N) · µcan,X0(N)(x)

µhyp,X0(N)(x)

)
= O(1)

with an implied constant that is independent of N . Recalling that µcan,X0(N)

on X ′0(N) equals µcan,Y0(N) on Y ′0(N) = Y0(N) \
⋃s
k=1 Uk, we can consider the

formal identity

(44)
gX0(N) · µcan,X0(N)(x)

µhyp,X0(N)(x)
=
gX0(N) · µcan,Y0(N)(x)

µhyp,Y0(N)(x)
·
µhyp,Y0(N)(x)
µhyp,X0(N)(x)

on the set X ′0(N) = Y ′0(N). The argument given in [Don96], [JK02b], or [JK04]
proves a sup-norm bound for the ratio of the canonical metric by the hyperbolic
metric through compact covers; however, the argument is adapted easily to
towers of noncompact surfaces when restricting attention to compact subsets,
such as the subsets Y ′0(N). Thus, the first factor on the right side of (44) is
bounded through covers, with a bound depending solely on the base Y0(1), i.e.,
one that is independent of N . For the second factor on the right side of (44),
we argue as follows. Put

F (N) = sup
x∈Y ′

0(N)

µhyp,Y ′
0(N)(x)

µhyp,X′
0(N)(x)

,

where

µhyp,X′
0(N) = µhyp,X0(N)|X′

0(N) and µhyp,Y ′
0(N) = µhyp,Y0(N)|Y ′

0(N).

The quantity F (N) is easily shown to be finite, since µhyp,X0(N) is nonvanishing
everywhere on the compact Riemann surface X0(N), and µhyp,Y0(N) is non-
vanishing on Y0(N) and decaying at the cusps of Y0(N). Let then p0 be as in
Definition 5.1, and let p ∈ B2(p0). Since X ′0(p0p) is an unramified cover of
X ′0(p) and Y ′0(p0p) is an unramified cover of Y ′0(p), we have (denoting both
covering maps by π′p0p,p)

π′∗p0p,p(µhyp,X′
0(p)) = µhyp,X′

0(p0p) and π′∗p0p,p(µhyp,Y ′
0(p)) = µhyp,Y ′

0(p0p).

Hence F (p0p) = F (p) for all p ∈ B2(p0). Symmetrically, X ′0(p0p) and Y ′0(p0p)
are unramified covers of X ′0(p0) and Y ′0(p0), respectively, which analoguously
implies (denoting both covering maps by π′p0p,p0)

π′p0p,p0∗
(
π′∗p0p,p(µhyp,X′

0(p))
)

= (p+ 1) · µhyp,X′
0(p0),

π′p0p,p0∗
(
π′∗p0p,p(µhyp,Y ′

0(p))
)

= (p+ 1) · µhyp,Y ′
0(p0).

Hence F (p0p) = F (p0) for all p ∈ B2(p0). In summary, F (p) = F (p0) for all
p ∈ B2(p0). Since the set B1(p0) is finite, we have

c = sup
N∈B(p0)

{F (N)} = sup
N∈B1(p0)

{F (N), F (p0)} <∞,
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 31

which just depends on p0. It remains to bound F (N) for anyN such thatX0(N)
is a modular curve with gX0(N) > 1. Given such an N , we choose N ′ ∈ B(p0)
so that X0(N) is a finite cover of X0(N ′). Noting that X ′0(N) and Y ′0(N) are
unramified covers of X ′0(N ′) and Y ′0(N ′), respectively, of the same degree, we
show as above that F (N) = F (N ′). Since F (N ′) ≤ c, we find F (N) ≤ c with
c depending solely on p0 and hence being independent of N . This completes
the proof. �

Proposition 5.5. Choose N > N0 so that X0(N) has genus gX0(N) > 1.
Then CHub,X0(N) = O(gX0(N)), where the implied constant is universal , i.e.,
independent of N .

Proof. Before entering into the proof we begin with the following general
observation. Let X1 be a finite isometric cover of the compact Riemann surface
X0 of genus gX0 > 1. As usual, if λX1,j is an eigenvalue for the hyperbolic
Laplacian on X1 satisfying λX1,j ≥ 1/4, we write λX1,j = 1/4 + r2

X1,j
with

rX1,j ≥ 0. For r ≥ 0, we put

NX1(r) = #{rX1,j | 0 ≤ rX1,j ≤ r}.

Similarly, we can define NX0,ψ(r), if ψ is a finite dimensional, unitary represen-
tation of the fundamental group π1(X0) of X0. From [Ven81, Th. 6.2.2] (see
also [JK02a, Lem. 3.2(e)]), we recall that the system of functions NX1(r) and
{NX0,ψ(r)} satisfies the additive Artin formalism, i.e.,

NX1(r) =
∑

ψ
mult(ψ) ·NX0,ψ(r),

where the sum is taken over all irreducible representations ψ occurring with
multiplicity mult(ψ) in the representation indπ1(X0)

π1(X1)(1).
After these preliminary remarks, we begin the proof of Proposition 5.5.

For this, we let p0 be as in Definition 5.1, and we let p ∈ B2(p0). Since X0(p0p)
is a finite isometric cover of X0(p0), we have by the additive Artin formalism

NX0(p0p)(r) =
∑

ψ
mult(ψ) ·NX0(p0),ψ(r).

Now, by [JK02a, Lem. 3.3], there is a constant Ap0 depending solely on p0 such
that

|NX0(p0),ψ(r)| ≤ Ap0 · rk(ψ) · r2.

Using the relation
∑

ψ mult(ψ) · rk(ψ) = deg(X0(p0p)/X0(p0)) = p + 1, we
find

NX0(p0p)(r) ≤ Ap0
∑

ψ
mult(ψ) · rk(ψ) · r2 = Ap0 · (p+ 1) · r2.

On the other hand, viewing X0(p0p) as a finite isometric cover of X0(p), we get
the trivial estimateNX0(p)(r) ≤ NX0(p0p)(r), since every eigenfunction onX0(p)
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32 JAY JORGENSON and JÜRG KRAMER

lifts to an eigenfunction on X0(p0p) with the same eigenvalue. Combining the
last two inequalities yields the crucial bound

(45) NX0(p)(r) ≤ Ap0 · (p+ 1) · r2.

The bound (45) leads to a bound of the Huber constant CHub,X0(p) for
p ∈ B2(p0). To see how, we analyze the proof of the prime geodesic theorem
on X0(p) as given in [Cha84, pp. 295–300], which we now review.

Let G(T ) = πX0(p)(u) with T = log(u) be the prime geodesic counting
function. Let ϕ(x) be a nonnegativeC∞-function with support on [−1,+1] with
L1-norm equal to one. Let ε > 0, to be chosen later, let ϕε(x) = ε−1ϕ(x/ε),
and let IT (x) be the indicator function of [−T,+T ]. We define

gεT (x) = 2 cosh(x/2)(IT ∗ ϕε)(x),

which is a valid test function for the Selberg trace formula whose Fourier
transform is denoted by hεT (r). If we define

Hε(T ) =
∑

γ∈H(Γ)

∞∑
n=1

`γ

en`γ/2 − e−n`γ/2
gεT (`γ),

the Selberg trace formula yields

(46) Hε(T ) =
∑

0≤λX0(p),j<1/4

hεT (sX0(p),j) +
∫ ∞

0
hεT (r) dNX0(p)(r).

By taking ε = e−T/4, it is shown on [Cha84, p. 298] that

hεT (sX0(p),j) = ET (sX0(p),j) +O(ε · exp(sX0(p),jT )), where ET (x) = eTx/x.

Since 1/2 < sX0(p),j ≤ 1 and N
[0,1/4)

ev,X0(p) = O(gX0(p)) = O(p + 1) by
Proposition 5.3(b), this leads to

(47)
∑

hεT (sX0(p),j) =
∑

ET (sX0(p),j) + (p+ 1) ·O(e3T/4),

where the sums are taken over 0 ≤ λX0(p),j < 1/4 and where the implied con-
stant is universal. Continuing with the argument on [Cha84, p. 299], together
with our bound (45), we find that

(48)
∫ ∞

0
hεT (r)dNX0(p)(r) = (p+ 1) ·Op0(e3T/4),

where the implied constant depends solely on p0. Substituting (47) and (48)
into (46) yields

Hε(T ) =
∑

0≤λX0(p),j<1/4

ET (sX0(p),j) + (p+ 1) ·Op0(e3T/4),

where the implied constant depends solely on p0.
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 33

Let
H(T ) =

∑
γ∈H(Γ), n≥1

n`γ≤T

`γ

en`γ/2 − e−n`γ/2
.

One hasHε(T−ε) ≤ H(T ) ≤ Hε(T+ε), which follows easily from the definition
of gεT (x). Using these bounds together with the elementary estimates

ET±ε(sX0(p),j) = ET (sX0(p),j) +O(e3T/4),

we get∑
0≤λX0(p),j<1/4

ET±ε(sX0(p),j) =
∑

0≤λX0(p),j<1/4

ET (sX0(p),j) +N
[0,1/4)

ev,X0(p) ·O(e3T/4),

where the implied constant is universal. Using Proposition 5.3(b) again, we
arrive at the bound

(49) H(T ) =
∑

0≤λX0(p),j<1/4

ET (sX0(p),j) + (p+ 1) ·Op0(e3T/4),

where the implied constant depends solely on p0.
The prime geodesic theorem, i.e., the asymptotic behavior of the function

G(T ), can now be derived applying standard methods from (49) (see [Cha84,
pp. 296–297] for a detailed proof). In order to arrive at the assertion

πX0(p)(u)−
∑

0≤λX0(p),j<1/4

li(usX0(p),j ) = (p+ 1) ·Op0(u3/4(log(u))−1),

one needs to also use Proposition 5.3(b) in the derivation of the asymptotics of
G(T ) from (49). Finally, since u3/4(log(u))−1 ≤ u3/4(log(u))−1/2, we conclude
that CHub,X0(p) = O(p+ 1) = O(gX0(p)) for any p ∈ B2(p0), with an implied
constant that depends solely on p0. Since the set B1(p0) is finite, we end up
with the estimate CHub,X0(N) = O(gX0(N)) for any N ∈ B(p0), again with an
implied constant that depends solely on p0.

Finally, given any modular curve X0(N) with gX0(N) > 1, we choose
N ′ ∈ B(p0) so that X0(N) is a finite cover of X0(N ′). Then (15) states that

CHub,X0(N) ≤ deg(X0(N)/X0(N ′)) · CHub,X0(N ′).

Since we showed above that CHub,X0(N ′) = O(gX0(N ′)) with implied constant
depending only on p0, and since deg(X0(N)/X0(N ′)) · gX0(N ′) = O(gX0(N))
with a universal implied constant, the proof is now complete. �

Theorem 5.6. Let N > N0 be such that X0(N) has genus gX0(N) > 1.
Then, we have δFal(X0(N)) = O(gX0(N)), where the implied constant is uni-
versal , i.e., independent of N .

Proof. Beginning with Theorem 4.5, we follow the method of proof of
Corollary 4.6 by citing results from this section, namely Propositions 5.3, 5.4,
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34 JAY JORGENSON and JÜRG KRAMER

and 5.5 to bound the six geometric invariants, aside from the genus gX0(N)

appearing in Theorem 4.5. �

Remark 5.7. In the finite number of cases when X0(N) is not hyperbolic,
Faltings’s delta function δFal(X0(N)) can be explicitly evaluated. If X0(N)
has genus zero, then Faltings’s delta function is simply a universal constant. If
X0(N) has genus one, then Faltings’s delta function is expressed in terms of
the Dedekind delta function, the unique holomorphic cusp form of weight 12
with respect to PSL2(Z); see [Fal84].

Remark 5.8. The analysis in this section establishes Theorem 5.6 for other
families of modular curves, namely {X1(N)} and {X(N)}.

6. Arithmetic implications

6.1. Faltings height of the Jacobian of X0(N). In this section, we let N
be a squarefree natural number such that 2 and 3 do not divide N . We then
let X0(N)/Z denote a minimal regular model of the modular curve X0(N)/Q.
In [AU97], A. Abbes and E. Ullmo computed the arithmetic self-intersection
number of the relative dualizing sheaf ωX0(N) on X0(N) equipped with the
Arakelov metric. They came up with the following upper bound (see [AU97,
Th. B, p. 3]):

ω2
X0(N) ≤ −8π · gX0(N) − 1

volhyp(X0(N))
· lim
s→1

(Z ′Γ0(N)\H

ZΓ0(N)\H
(s)− 1

s−1

)
+ gX0(N)

∑
p |N

p+1
p−1

log(p) + 2gX0(N) log(N) + o(gX0(N) log(N)).

Using [MU98, Cor. 1.4, p. 649] (see also [JK01, § 5.3]), in combination with a
corresponding lower bound for ω2

X0(N) (see [AU97, Pro. C]), one then finds

(50) ω2
X0(N) = 3gX0(N) log(N) + o(gX0(N) log(N)).

Using Noether’s formula, one obtains the formula

(51) 12·hFal(J0(N)) = ω2
X0(N)+

∑
p |N

δp log(p)+δFal(X0(N))−4gX0(N) log(2π)

for the Faltings height hFal(J0(N)) of the Jacobian J0(N)/Q of the modular
curve X0(N); here δp denotes the number of singular points in the special
fiber of X0(N) over Fp. This leads to the following asymptotic behavior of the
Faltings height of the Jacobian of X0(N).

Theorem 6.2. With the above notations, we have

hFal(J0(N)) =
gX0(N)

3
log(N) + o(gX0(N) log(N)).

Proof. The claim is immediate from (51) using (50) and Theorem 5.6. �
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 35

Remark 6.3. If E/Q is a semistable elliptic curve of conductor N , one
conjectures (see also [Ull00, Conj. 1.4]) that

(52) hFal(E) ≤ a · hFal(J0(N))
gX0(N)

with an absolute constant a > 0. Assuming the validity of the conjectured
inequality (52) with constant a = 3/2, one can derive Szpiro’s conjecture by
means of Theorem 6.2 as in [Ull00], that is, ∆E ≤ c(ε) ·N6+ε for the minimal
discriminant ∆E of E. (Note that in [Ull00] it was speculated that one could
take the value 1 for the constant a.)

6.4. Congruences of modular forms. We start by saying that Theorem
5.6 improves the bounds for δFal(X0(N)) given in [Ull00, Cor. 1.3], namely

(53) −4gX0(N) log(N) + o(gX0(N) log(N)) ≤ δFal(X0(N))

≤ 2gX0(N) log(N) + o(gX0(N) log(N)).

Furthermore, Theorem 6.2 improves the bounds for the Faltings height of the
Jacobian of X0(N) given in [Ull00, Th. 1.2], namely

(54) −BgX0(N) ≤ hFal(J0(N)) ≤ 1
2gX0(N) log(N) + o(gX0(N) log(N));

here B > 0 is an absolute constant. The latter upper bound was obtained by
means of the formula (see [Ull00, Th. 1.1])

(55) hFal(J0(N)) = 1
2 log|δT| − 1

2 log|det(MN )| − log(α),

in which the Faltings height of the Jacobian of X0(N) is expressed in terms of
a suitably defined discriminant δT of the Hecke algebra T of J0(N), the matrix
MN of all possible Petersson inner products of a certain basis of eigenforms of
weight 2 for Γ0(N), and a suitable natural number α with support contained
in the support of 2N . In order to obtain the upper bound in (54), E. Ullmo
established the bounds

log|δT| ≤ 2gX0(N) log(N) + o(gX0(N) log(N)),

− log|det(MN )| ≤ −gX0(N) log(N) + o(gX0(N) log(N)).

The lower bound in (54) is due to unpublished work of J.-B. Bost. Combining
equation (51) with the asymptotics (50) and the estimates (54), one immediately
derives the bounds (53) for δFal(X0(N)).

Theorem 6.5. With the above notations, we have

(56) log|δT| ≥ 5
3gX0(N) log(N) + o(gX0(N) log(N)).

Proof. Using (55) in combination with Theorem 6.2, we get

1
2 log|δT| − 1

2 log|det(MN )| − log(α) = 1
3gX0(N) log(N) + o(gX0(N) log(N)).
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36 JAY JORGENSON and JÜRG KRAMER

The claim now follows immediately from the upper bound for − log|det(MN )|
given above. �

Remark 6.6. The lower bound given in Theorem 6.5 improves the lower
bound

log|δT| ≥ gX0(N) log(N) + o(gX0(N) log(N))

given in [Ull00, Th. 1.2]. Since the fundamental invariant δT controls congru-
ences between modular forms, the lower bound (56) thus improves the lower
bound for the minimal number of such congruences.

Appendix I: Comparing canonical and hyperbolic metrics

In the proof of Proposition 3.7 we used the explicit relation

µcan(x) = µshyp(x) + 1
2gX

(∫ ∞
0

∆hypKhyp(t;x)dt
)
µhyp(x).

The purpose of this appendix is to prove this identity, rather than referring
to [JK06b] or [JK06a], and thus make the present article more self-contained.
Our approach uses analytic aspects of the Arakelov theory for algebraic curves.

Proposition 6.7. With the above notations, we have the equality

gXµcan(x) = µshyp(x) + 1
2c1(Ω1

X , ‖ · ‖hyp,res)

of forms on X; here Ω1
X denotes the canonical line bundle on X.

Proof. By choosing µ1 = µshyp and µ2 = µcan, the identity in Lemma 3.3
can be rewritten as

(57) ghyp(x, y)− gcan(x, y) = φ(x) + φ(y),

where

φ(x) =
∫
X
ghyp(x, ζ)µcan(ζ)− 1

2

∫
X

∫
X
ghyp(ξ, ζ)µcan(ζ)µcan(ξ).

Taking dxdcx in relation (57), we get the equation

(58) µshyp(x)− µcan(x) = dxdcxφ(x).

On the other hand, we have by definition that

log‖dz(x)‖2hyp,res = lim
y→x

(
ghyp(x, y) + log|z(x)− z(y)|2

)
,

log‖dz(x)‖2can,res = lim
y→x

(
gcan(x, y) + log|z(x)− x(y)|2

)
.

From this we deduce, again using (57),

(59) log‖dz(x)‖2hyp,res − log‖dz(x)‖2can,res

= lim
y→x

(ghyp(x, y)− gcan(x, y)) = 2φ(x).
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 37

Now, taking −dxdcx of equation (59) yields

(60) c1(Ω1
X , ‖ · ‖hyp,res)− c1(Ω1

X , ‖ · ‖can,res) = −2dxdcxφ(x).

Combining equations (58) and (60) leads to

(61) 2(µshyp(x)− µcan(x)) = c1(Ω1
X , ‖ · ‖can,res)− c1(Ω1

X , ‖ · ‖hyp,res).

Recalling c1(Ω1
X , ‖ · ‖can,res) = (2gX − 2)µcan(x), we derive from (61) that

µshyp(x)− µcan(x) = 1
2(2gX − 2)µcan(x)− 1

2c1(Ω1
X , ‖ · ‖hyp,res). �

Proposition 6.8. With the above notations, we have the following for-
mula for the first Chern form of Ω1

X with respect to ‖ · ‖hyp,res:

c1(Ω1
X , ‖ · ‖hyp,res) = 1

2π
µhyp(x) +

(∫ ∞
0

∆hypKhyp(t;x)dt
)
µhyp(x).

Proof. Our proof involves analysis similar to the proof of Lemma 3.6. By
our definitions, we have for x ∈ X

c1(Ω1
X , ‖ · ‖hyp,res) = −dxdcx log‖dz(x)‖2hyp,res

= −dxdcx lim
y→x

(ghyp(x, y) + log|z(x)− z(y)|2)

= −dxdcx lim
y→x

(
4π
∫ ∞

0

(
Khyp(t;x, y)− 1

volhyp(X)

)
dt+ log|z(x)− z(y)|2

)
= −dzdcz lim

y→x

(
4π
∫ ∞

0
KH(t; z(x), z(y))dt+ log|z(x)− z(y)|2

)
− dzdcz lim

y→x

(
4π
∫ ∞

0

( ∑
γ∈Γ:γ 6=id

KH(t; z(x), γz(y))− 1
volhyp(X)

)
dt
)
.

Using the formula for the Green’s function gH(x, y) on H, we obtain for the first
summand in the latter sum

A = −dzdcz lim
y→x

(
4π
∫ ∞

0
KH(t; z(x), z(y))dt+ log|z(x)− z(y)|2

)
= −dzdcz lim

y→x

(
gH(z(x), z(y)) + log|z(x)− z(y)|2

)
= −dzdcz log|z(x)− z̄(x)|2 = − 2i

2π
∂z ∂̄z log(z(x)− z̄(x))

= i
π
∂z

dz̄(x)
z(x)− z̄(x)

= − i
π
· dz(x) ∧ dz̄(x)

(z(x)− z̄(x))2

= − i
π
· dz(x) ∧ dz̄(x)

(2i Im(z(x)))2
= 1

2π
· µhyp(x).
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38 JAY JORGENSON and JÜRG KRAMER

For the second summand we obtain

B = −dzdcz lim
y→x

(
4π
∫ ∞

0

( ∑
γ∈Γ:γ 6=id

KH(t; z(x), γz(y))− 1
volhyp(X)

)
dt
)

= −4πdzdcz

∫ ∞
0

( ∑
γ∈Γ:γ 6=id

KH(t; z(x), γz(x))− 1
volhyp(X)

)
dt.

Since the latter integral converges absolutely, we are allowed to interchange
differentiation and integration; this gives

B = −4π
∫ ∞

0
dzdcz

( ∑
γ∈Γ:γ 6=id

KH(t; z(x), γz(x))− 1
volhyp(X)

)
dt

= −4π
∫ ∞

0

∑
γ∈Γ:γ 6=id

dzdczKH(t; z(x), γz(x))dt.

The claimed formula then follows because KH(t; z(x), z(x)) is independent of x
and because of the identity (under our normalization of the Laplacian as stated
in (7))

(62) dxdcxf(x) = −(4π)−1∆hypf(x)µhyp(x),

for any smooth function f on X. �

Theorem 6.9. With the above notations, we have for all x ∈ X the
formula

µcan(x) = µshyp(x) + 1
2gX

(∫ ∞
0

∆hypKhyp(t;x)dt
)
µhyp(x).

Proof. We simply have to combine Propositions 6.7 and 6.8 and to use
that 1/volhyp(X) + 1/(4π) = gX/volhyp(X). �

Appendix II: The Polyakov formula

We shall work from the article [OPS88]. Let us begin using the notation
in that article and then in the end indicate the changes needed to conform with
other conventions.

Let us consider two metrics, whose area forms are written as dA0 and dA1.
In a local coordinate z on the Riemann surface X, setting z = x + iy, let us
write

dA0(z) = e2ρ0(z) · i
2

dz ∧ dz̄ and dA1(z) = e2ρ1(z) · i
2

dz ∧ dz̄.

If we then write dA1 = e2ϕdA0 (see [OPS88, form. (1.11), p. 155]), we then
have ϕ = ρ1 − ρ0. The convention for the Laplacian is established in [OPS88,
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BOUNDS ON FALTINGS’S DELTA FUNCTION THROUGH COVERS 39

form. (1.1), p. 154]. In the above coordinates, we have

(63) ∆0(z) = e−2ρ0(z) ·
(
∂2

∂x2 + ∂2

∂y2

)
and ∆1(z) = e−2ρ1(z) ·

(
∂2

∂x2 + ∂2

∂y2

)
.

The Gauss curvature K0 is then K0 = −∆0ρ0. Note that if dA0 is the standard
hyperbolic metric, then e2ρ0 = y−2, so ρ0 = − log(y), and it is easy to show
that K0 = −1 as expected.

The Polyakov formula, [OPS88, (1.13)], is proved in [OPS88, p. 156]; it
says

log
(det′∆ϕ

Aϕ

)
= − 1

6π

(1
2

∫
X
|∇0ϕ|2 dA0 +

∫
X
K0ϕdA0

)
+ C.

If we take ρ1 = ρ0, then ϕ = 0, so we get C = log(det′∆0/A0). Therefore, in
obvious notation, we find

log
(det′∆1

A1

)
− log

(det′∆0

A0

)
= − 1

6π

(1
2

∫
X
|∇0ϕ|2dA0 +

∫
X
K0ϕdA0

)
.

Let us work with the right side. Recall that, with the above notational con-
ventions, we have for any smooth f the formula ∆(f)dA = 4πddc(f), for any
metric. (Note: The normalization of the Laplacian in [OPS88] as stated in (63)
does not include the minus sign as in our normalization, see (7); as a result, the
formula relating ddc to the Laplacian of [OPS88] does not contain the minus
sign appearing in (62).) Therefore, if we integrate by parts, we have

1
2

∫
X
|∇0ϕ|2dA0 = − 1

2

∫
X
ϕ∆0ϕdA0 = −2π

∫
X
ϕddcϕ.

Also, we have∫
X
K0ϕdA0 = −

∫
X
ϕ∆0ρ0 dA0 = −4π

∫
X
ϕddcρ0.

Therefore we find

log
(det′∆1

A1

)
− log

(det′∆0

A0

)
= − 1

6π

(
−2π

∫
X
ϕddcϕ− 4π

∫
X
ϕddcρ0

)
= 1

3

∫
X
ϕ (ddcϕ+ 2ddcρ0) .

However, since ϕ = ρ1 − ρ0, this becomes

log
(det′∆1

A1

)
− log

(det′∆0

A0

)
= 1

3

∫
X
ϕ (ddcρ0 + ddcρ1) .

Let us now fit this into our notation. Since dA1 = e2ρ1 i
2dz ∧ dz̄, we have

c1(Ω1
X , ‖ · ‖1) = ddc(2ρ1). Similarly, c1(Ω1

X , ‖ · ‖0) = ddc(2ρ0), so then

ddcρ0 + ddcρ1 = 1
2(c1(Ω1

X , ‖ · ‖1) + c1(Ω1
X , ‖ · ‖0)).
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40 JAY JORGENSON and JÜRG KRAMER

In our notation, we write µ1 = eφµ0, so then φ = 2ϕ. Therefore, we get

log
(det′∆1

A1

)
− log

(det′∆0

A0

)
= 1

3

∫
X
ϕ(ddcρ0 + ddcρ1)

= 1
6

∫
X
φ · 1

2(c1(Ω1
X , ‖ · ‖1) + c1(Ω1

X , ‖ · ‖0)).

Now consider the special case when µ0 = µhyp is the hyperbolic metric, with
Gauss curvature equal to −1. Equivalent to the statement K0 = −1 is the
statement that c1(Ω1

X , ‖ · ‖0) = (2gX − 2)µshyp. If µ1 is the Arakelov metric,
then c1(Ω1

X , ‖ · ‖1) = (2gX − 2)µcan, where µcan is the canonical metric. If we
write µAr = eφArµhyp, then the above identity becomes

log
(det′∆Ar

AAr

)
− log

(det′∆hyp

Ahyp

)
=
gX − 1

6

∫
X
φAr(µcan + µshyp).
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