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Abstract

This paper establishes explicit quantitative bounds on the com-
putation of approximate fixed points of asymptotically (quasi-) nonex-
pansive mappings f by means of iterative processes. Here f : C → C is
a selfmapping of a convex subset C ⊆ X of a uniformly convex normed
space X . We consider general Krasnoselski-Mann iterations with and
without error terms. As a consequence of our quantitative analysis we
also get new qualitative results which show that the assumption on the
existence of fixed points of f can be replaced by the existence of ap-
proximate fixed points only. We explain how the existence of effective
uniform bounds in this context can be inferred already a-priorily by a
logical metatheorem recently proved by the first author. Our bounds
were in fact found with the help of the general logical machinery be-
hind the proof of this metatheorem. The proofs we present here are,
however, completely selfcontained and do not require any tools from
logic.
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1 Introduction

This paper is part of a series of papers which apply tools from mathemati-
cal logic to metric fixed point theory ([12, 13, 14, 16] and – for the logical
background – [15, 17]). These applications are concerned with both quanti-
tative as well as qualitative aspects of the asymptotic regularity of various
iterations of nonexpansive and other mappings in hyperbolic and normed
spaces. More specifically, we are interested in effective rates of convergence
which are uniform w.r.t. many of the parameters involved. Recently ([15]),
the first author proved general logical metatheorems which a-priorily guar-
antee the existence of such uniform bounds if the convergence statement
proved has a certain logical form, and the proof can be carried out in a
certain (rather flexible) formal setting. The proofs of these metatheorems
are constructive and allow one to actually extract effective bounds from a
given ineffective convergence proof. In this paper we apply this methodol-
ogy to Krasnoselski-Mann iterations of asymptotically quasi-nonexpansive
mappings in uniformly convex normed spaces. We first show how this con-
text fits within the scope of the metatheorems from [15] and then actually
construct uniform effective bounds in the main part of this paper which is
selfcontained and does not rely on any prerequisites from logic.
In the following, let (X, ‖ · ‖) be a uniformly convex (real) normed linear
space and C ⊆ X a nonempty convex subset.
The class of asymptotically nonexpansive mappings f : C → C was intro-
duced in [8]:

Definition 1.1 f : C → C is said to be asymptotically nonexpansive with
sequence (kn) ∈ [0,∞)IN if lim

n→∞ kn = 0 and

‖fn(x)− fn(y)‖ ≤ (1 + kn)‖x− y‖, ∀n ∈ IN,∀x, y ∈ C.

Definition 1.2 ([26]) f : C → C is said to be uniformly λ-Lipschitzian
(λ > 0) if

‖fn(x)− fn(y)‖ ≤ λ‖x− y‖, ∀n ∈ IN,∀x, y ∈ C.

In the following we use the notation Fix(f) := {p ∈ C : f(p) = p}. The
concept of quasi-nonexpansive functions was introduced in [6] (based on a
similar concept due to [4, 5]):

Definition 1.3 f : C → C is quasi-nonexpansive if

‖f(x)− p‖ ≤ ‖x− p‖, ∀x ∈ C,∀p ∈ Fix(f).

Finally, combining the notions of asymptotically nonexpansive mappings
and quasi-nonexpansive mappings we obtain the concept of asymptotically
quasi-non-
expansive mappings first studied in [29] and [20] and more recently in [22,
23, 24]:
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Definition 1.4 f : C → C is asymptotically quasi-nonexpansive with se-
quence kn ∈ [0,∞)IN if lim

n→∞ kn = 0 and

‖fn(x)− p‖ ≤ (1 + kn)‖x− p‖, ∀n ∈ IN,∀x ∈ X,∀p ∈ Fix(f).

In the context of asymptotically (quasi-)nonexpansive mappings f : C → C
the so-called Krasnoselski-Mann iteration is defined as follows

x0 := x ∈ C, xn+1 := (1− αn)xn + αnfn(xn),

where (αn) ∈ [0, 1]IN.

We will also consider Krasnoselski-Mann iterations with error terms

x0 := x ∈ C, xn+1 := αnxn + βnfn(xn) + γnun, (1)

where αn, βn, γn ∈ [0, 1] with αn + βn + γn = 1 and un ∈ C for all n ∈ IN
(this types of error terms was first considered in [31]).

In this paper we study uniform quantitative versions as well as qual-
itative improvements of the following theorem which itself seems to be
new (though kind of implicit in the literature, see below):

Theorem 1.5 Let (X, ‖·‖) be a uniformly convex (real) normed linear space
and C be a convex subset of X. Let (kn) be a sequence in IR+ with

∑
kn < ∞.

Let k ∈ IN and αn, βn, γn ∈ [0, 1] such that 1/k ≤ βn ≤ 1−1/k, αn+βn+γn =
1 and

∑
γn < ∞. Let f : C → C a uniformly Lipschitz continuous function

such that there exists a p ∈ Fix(f) with

∀x ∈ C∀n ∈ IN(‖fn(x)− p‖ ≤ (1 + kn)‖x− p‖).
Define

x0 := x ∈ C, xn+1 := αnxn + βnfn(xn) + γnun,

where (un) is a bounded sequence in C. Then the following holds:

‖xn − f(xn)‖ → 0.

Corollary 1.6 Let (αn), (βn), (γn), (kn), (un), k as well as (X, ‖ · ‖), C as
in theorem 1.5. If f : C → C is uniformly Lipschitzian and asymptotically
quasi-nonexpansive with sequence (kn) and Fix(f) 6= ∅, then ‖xn−f(xn)‖ →
0.

If f : C → C is asymptotically nonexpansive with a sequence (kn) ∈ IR+

such that
∑

kn < ∞ then f automatically is uniformly Lipschitz continuous
hence corollary 1.6 implies:

Corollary 1.7 Let (αn), (βn), (γn), (kn), (un), (X, ‖·‖), C as in theorem 1.5.
If f : C → C is asymptotically nonexpansive with sequence (kn) and Fix(f) 6=
∅, then ‖xn − f(xn)‖ → 0.
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Corollary 1.8 Let (X, ‖ · ‖) be a uniformly convex Banach space, C ⊂ X
a (nonempty) bounded closed convex subset (αn) ∈ [1/k, 1− 1/k]IN for some
k ∈ IN, f : C → C asymptotically nonexpansive with sequence (kn) such that∑

kn < ∞ and

x0 := x ∈ C, xn+1 := αnxn + (1− αn)fn(xn).

Then ‖xn − f(xn)‖ → 0.

Proof Corollary 1.8 follows from corollary 1.7 by omitting the error term
(i.e. taking an arbitrary sequence (un) in C with γn = 0) and using a
theorem from [8] stating that asymptotically nonexpansive mappings f :
C → C always have fixed points (under the given assumptions on X,C). •

The proof of theorem 1.5 is ineffective and the conclusion ‘‖xn−f(xn)‖ →
0’, i.e.

∀l ∈ IN∃n ∈ IN∀m ∈ IN(‖xn+m − f(xn+m)‖ < 2−l) (2)

has too complicated a logical form as for our metatheorems to guarantee
a computable bound on ‘∃n ∈ IN’, i.e. a computable rate of convergence.
Nevertheless, (2) is (non-constructively) equivalent to

∀l ∈ IN∀g ∈ ININ∃n ∈ IN(‖xn+g(n) − f(xn+g(n)‖ < 2−l) (3)

which does have the required logical form so that we can extract a com-
putable bound Φ on ‘∃n’ with g as an additional argument of the bound
Φ. The transformed version (3) of (2) is well-known in logic and called the
Herbrand normal form of (2). Whereas (3) trivially follows from (2), the
proof of the converse is ineffective.1 Hence an effective bound on ‘∃n’ in
(3)’ does not lead to an effective bound on ‘∃n’ in (2) unless the sequence
(‖xn− f(xn)‖) is nonincreasing (where this follows already from the special
case where g ≡ 0) which is e.g. the case for nonexpansive functions f .
Actually, a slightly more flexible form of (3) still has a the required logical
structure2

∀l ∈ IN∀g ∈ ININ∃n ∈ IN∀m ∈ [n, n + g(n)](‖xm − f(xm)‖ < 2−l)

and we will focus on effective bound Φ(l, g) on this ‘∃n’.
In practice, it will be mostly the special case where g ≡ 0, i.e.

∀l ∈ IN∃n ≤ Φ(l, 0)(‖xn − f(xn)‖ < 2−l)

which is of relevance. However, this will not always be sufficient. On gen-
eral logical grounds though, namely the soundness of the so-called monotone

1Suppose (2) fails for l ∈ IN. Then (3) fails for the same l if we take g(n) :=
min m(‖xn+m − f(xn+m)‖ ≥ 2−l).

2Here and below we write m ∈ [n, n + g(n)] for m ∈ IN ∧m ∈ [n, n + g(n)].
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functional interpretation on which our metatheorems are based and the fact
that a bound on (3) realizes the monotone functional interpretation of (the
Gödel negative translation of) (2), it follows that a bound for general g is
sufficient for a quantitative analysis of any use of theorem 1.5 in a proof of
a ∀∃-consequence. Our bounds seem to be (already in the case of asymptot-
ically nonexpansive mappings) the only known general quantitative results
of that kind (see e.g. [2] for a discussion of the lack of quantitative results
in this context).

The qualitative improvement of theorem 1.5 which is obtained via our quan-
titative analysis consists in the possibility to replace in order to show ‖xn−
f(xn)‖ → 0 for a given x ∈ C the assumption

∃p ∈ Fix(f)∀y ∈ C∀n ∈ IN(‖fn(y)− p‖ ≤ (1 + kn)‖y − p‖)
by

∃d ∈ IN∀ε > 0∃pε ∈ Fixε(x, d, f)∀y ∈ C,n ∈ IN
(‖fn(y)− fn(pε)‖ ≤ (1 + kn)‖y − pε‖),

where

Fixε(x, d, f) := {p ∈ C : ‖x− p‖ ≤ d ∧ ‖f(p)− p‖ ≤ ε}.
This, of course, is of interest mainly for asymptotically nonexpansive map-
pings where it replaces the assumption that Fix(f) 6= ∅ by

∀x ∈ C∃d ∈ IN∀ε > 0(Fixε(x, d, f) 6= ∅).

With the stronger assumption on (kn) that
∑

((kn + 1)r − 1) < ∞ for
some r > 1, corollary 1.8 is proved in [25]. For Hilbert spaces X and
r = 2 corollary 1.8 is already due to [26]. For Banach spaces satisfying
Opial’s condition ([21]) and

∑
kn < ∞, corollary 1.8 follows from [28] (note,

however, that Opial’s condition is not even satisfied for Lp except for p = 2).3

The result in the literature most close to corollary 1.6 is the main theorem
in [24] whose proof technique – together with an argument reminiscent of
a lemma in [26] – we actually use to prove theorem 1.5 and corollary 1.6.
The theorem in [24] is concerned with the convergence of (xn) towards a
fixed point of f and the assumption of C being compact.4 Without that
assumption but assuming that Fix(f) 6= ∅ the proof actually yields that

lim
n→∞ ‖xn − fn(xn)‖ = 0

3For some generalizations of the main results of [28] see also [30].
4[24] actually considers more general Ishikawa-type iterations. In order to keep the

technicalities of our paper down we confine ourselves here to the Krasnoselski-Mann type
iterations.
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which together with an argument from [26] gives

lim
n→∞ ‖xn − f(xn)‖ = 0.

[24] in turn relies on [27] (see also [30]).

2 A logical metatheorem with applications in fixed
point theory

This section – which is independent from the main part of this paper –
requires some background in logic as developed in [15]. In [15], we have de-
fined a formal system Aω[X, ‖ ·‖, C, η] for classical analysis over a uniformly
convex normed space (X, ‖ · ‖) (with a modulus of uniform convexity η) and
a bounded convex subset C ⊂ X. The system is formulated in the language
of functionals of finite type over the types X (for variables ranging over X-
elements) and IN by closure of these types under function space formation:
with ρ, τ being types, ρ → τ is the type of all functions mapping objects of
type ρ to objects of type τ. The type C is treated as a subtype of X. The
system contains full countable choice (and hence full comprehension over
integers) and even full dependent choice. It is well known in logic that such
a system allows to formalize most of existing proofs in analysis. Whereas
elements of X are treated as ‘primitive’ objects (so-called ‘atoms’) real num-
bers are – as usual – explicitly represented via Cauchy sequences of rationals
numbers with fixed rate of convergence. Both equality =IR on IR as well as
equality =X on X are defined notions where x =X y :≡ ‖x−y‖ =IR 0. There
are some subtleties, though, which have to do with the restricted availability
of extensionality of functions w.r.t. =X . These issues, however, are trivial
in our applications in this paper as full extensionality of the functions we
will consider follows from the continuity assumptions made (see below).

Definition 2.1 A formula F is called ∀-formula (resp. ∃-formula) if it has
the form F ≡ ∀aσFqf (a) (resp. F ≡ ∃aσFqf (a)) where aσ = aσ1

1 , . . . , aσk
k ,

Fqf does not contain any quantifier and the types in σi are IN or C.5

Remark 2.2 The notions of ∀-formula and ∃-formula (as well as the theo-
rem corresponding to theorem 2.4 below) from [15] allow more general types.
For simplicity we formulate above just the special case needed in this paper.

Every (real) normed space (X, ‖ · ‖) together with a bounded convex subset
C of X gives rise to the ‘full’ model Sω,X over X,C of Aω[X, ‖ · ‖, C]. If

5Recall from [15] that the type ‘C’ is a defined type where – using the notation from
[15] – ‘∀xCA’ and ‘∃xCA’ stand for ‘∀xX(χC(x) =IN 0 → A)’ and ‘∃xX(χC(x) =IN 0∧A)’,
where χC represents the characteristic function of C in X.
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(X, ‖·‖) is uniformly convex and η : IN → IN a modulus of uniform convexity6

than this model will be a model of Aω[X, ‖ · ‖, C, η]. We say that a sentence
A ∈ L(Aω[X, ‖ · ‖, C, η]) holds in (X, ‖ · ‖) and C if it holds in this model
(see [15] for details on all this).

Definition 2.3 For functionals xρ, yρ of type ρ = IN → IN we define x ≤ρ y
by

x ≤ρ y :≡ ∀zIN(x(z) ≤IN y(z)).

Theorem 2.4 ([15]) Let η be a constant of type IN → IN, σ, ρ = IN → IN
and τ = C, IN → C or C → C. s is a closed term of type σ → ρ and B∀, C∃
are ∀- resp. ∃-formulas.
If the sentence

∀xσ∀y ≤ρ s(x)∀zτ (∀uINB∀(x, y, z, u) → ∃vINC∃(x, y, z, v))

is provable in Aω[X, ‖·‖, C, η], then one can extract a computable functional7

Φ : ININ × IN× ININ → IN such that

∀y ≤ρ s(x)∀zτ [∀u ≤ Φ(x, b, η)B∀(x, y, z, u) → ∃v ≤ Φ(x, b, η)C∃(x, y, z, v)]

holds in any non-trivial (real) uniformly convex normed linear space (X, ‖·‖)
with convexity modulus η and any non-empty b-bounded convex subset C ⊂
X.
Instead of single variables x, y, z, u, v we may also have finite tuples of vari-
ables x, y, z, u, v as long as the elements of the respective tuples satisfy the
same type restrictions as x, y, z, u, v.
Moreover, instead of a single premise of the form ‘∀uINB∀(x, y, z, u)’ we may
have a finite conjunction of such premises.

Using the so-called standard representation of compact Polish spaces like
[0, 1]IN (with the product metric) theorem 2.4 implies the following corollary
(see [15]):

Corollary 2.5 Let B∀, C∃ be ∀- resp. ∃-formulas and ϕ : IN → IN be a
(primitive recursive function).
If the sentence

∀nIN, gIN→IN, (ak) ∈ [0, ϕ(n)]IN, xC , (uk)IN→C , fC→C

(∀wINB∀(w) → ∃vINC∃(v))

6I.e. ∀x, y ∈ X, k ∈ IN(‖x‖, ‖y‖ ≤ 1 ∧
∥∥ x+y

2

∥∥ ≥ 1− 2−η(k) → ‖x− y‖ ≤ 2−k).
7In the sense type-2 computability theory, i.e. Turing computability w.r.t. oracle

Turing machines.
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is provable in Aω[X, ‖ ·‖, C, η], then one can extract a computable functional
Φ(n, g, b, η) such that

∀n, b ∈ IN, α, η ∈ ININ, (ak) ∈ [0, ϕ(n)]IN, x ∈ C, (uk) ∈ CIN, f : C → C

(∀w ≤ Φ(n, g, b, η)B∀(w) → ∃v ≤ Φ(n, g, b, η)C∃(v))

holds in any non-trivial (real) uniformly convex normed linear space (X, ‖·‖)
with convexity modulus η and any non-empty b-bounded convex subset C ⊂
X.
Instead of single variables n, g, (an) we may also have finite tuples of each
of these variables.
Moreover, instead of a single premise of the form ‘∀wINB∀(w)’ we may have
a finite conjunction of such premises.

A crucial feature in the above corollary is that the bound Φ(n, α, b, η) does
not depend on (ak), x, (uk) or f at all and on X and C only via η and b.

Theorem 1.5 can be proved in Aω[X, ‖ · ‖, C, η] and even in a weak fragment
thereof (as the proof of the quantitative strengthened form of theorem 1.5
given below shows, neither dependent choice DC nor countable choice is
needed). Problems in connection with the restricted availability of exten-
sionality inAω[X, ‖·, ‖, C, η] (see [15]) do not apply here since the assumption
on f being (even uniformly) Lipschitz continuous implies the extensionality
(see the detailed discussion in the case of nonexpansive functions given in
[15]). Hence corollary 2.5 is applicable and guarantees a-priorily a strong
uniform effective version of theorem 1.5 in the sense explained in the intro-
duction.

Remark 2.6 (for logicians) There is a minor problem having to do with
the fact that our formal system proves only weak extensionality of the con-
stant χC representing the characteristic function of C. As a consequence of
this we have to make sure that the condition (we discuss things for notational
simplicity here only for the special case of constant sequences) α+β +γ = 1
becomes provable which can be achieved by replacing

(∗) ∀α, β, γ ∈ [0, 1](α + β + γ = 1 → A(α, β, γ))

officially by

(∗∗)∀α, β ∈ [0, 1]A(α,min(1− α, β), 1 − α−min(1− α, β)).

In the following, though, we will continue to write (∗) instead of (∗∗) for
better readability.
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The assumptions on αn, βn, γn, kn all become ∀-formulas once we express
‘
∑

kn < ∞’ and ‘
∑

γn < ∞’ explicitly with bounds K,E ∈ IN, i.e.

A1 :≡ ∀n ∈ IN

(αn + βn + γn =IR 1 ∧ 1
k ≤IR βn ≤IR 1− 1

k ∧
n∑

i=0
ki ≤IR K ∧

n∑
i=0

γi ≤IR E).

The existential quantifier ‘∃p ∈ C’ in the premise

∃p ∈ C(f(p) =X p ∧ ∀x ∈ C∀i ∈ IN(‖f i(x)− p‖ ≤IR (1 + ki)‖x− p‖)).

can be moved out as a universal quantifier in front of the whole implication
leaving back the ∀-premise

A2 :≡ f(p) =X p ∧ ∀x ∈ C∀i ∈ IN(‖f i(x)− p‖ ≤IR (1 + ki)‖x− p‖).

Finally, we have the condition on f being uniformly Lipschitz continuous
which becomes an ∀-formula once stated with a Lipschitz constant λ ∈ IN

A3 :≡ ∀n ∈ IN∀x, y ∈ C(‖fn(x)− fn(y)‖ ≤IR λ · ‖x− y‖).
Hence in total, theorem 1.5 can be reformulated as

∀λ, k, l,K,E ∈ IN, g ∈ ININ, (kn) ∈ [0,K]IN, (αn), (βn), (γn) ∈ [0, 1]IN

∀xC , pC , (un)IN→C , fC→C

(A1 ∧A2 ∧A3→∃n∀m ∈ [n, n + g(n)](‖xm − f(xm)‖ <IR 2−l).

Since the conclusion is (relative to Aω[X, ‖ · ‖, C, η] equivalent to) an ∃-
formula and the premise is a conjunction of ∀-formulas, we can apply corol-
lary 2.5 to get an effective bound Φ(λ, k, l,K,E, g, b, η) on ‘∃n’, i.e.

∃n ≤ Φ(λ, k, l,K,E, g, b, η)∀m ∈ [n, n + g(n)](‖xm − f(xm)‖ <IR 2−l), (4)

that does not depend on (αn), (βn), (γn), x, p, f, (kn), (un) but only on λ, k, l,
K,E, g as well as a bound8 b on C and the modulus η.

Corollary 2.5 not only provides an effective bound for the conclusion but
also allows one to to replace ∀-premises by approximate versions thereof.
We are here only interested in one of the premises, namely A2, which can
be also written as

∀m ∈ IN(
(‖f(p)− p‖ ≤IR 2−m) ∧ ∀x ∈ C∀i ∈ IN(‖f i(x)− f i(p)‖ ≤IR (1 + ki)‖x− p‖)

)
,

(5)
8This requirement will be weakened below.
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where

(‖f(p)− p‖ ≤IR 2−m) ∧ ∀x ∈ C∀i ∈ IN(‖f i(x)− f i(p)‖ ≤IR (1 + ki)‖x− p‖)
itself is a ∀-formula. By the corollary we get an effective bound
Ψ := Ψ(λ, k, l,K,E, g, b, η) on ‘∀m’ such that in order to obtain the conclu-
sion (4) we can replace (5) by

∀m ≤ Ψ(
(‖f(p)− p‖ ≤IR 2−m) ∧ ∀x ∈ C∀i ∈ IN(‖f i(x)− f i(p)‖ ≤IR (1 + ki)‖x− p‖)

)
and hence – since Ψ does not depend on p – by


∀m ∈ IN∃p ∈ C

(
(‖f(p)− p‖ ≤IR 2−m) ∧ ∀x ∈ C∀i ∈ IN

(‖f i(x)− f i(p)‖ ≤IR (1 + ki)‖x− p‖)
)
.

So in effect we have replaced the assumption on f having real fixed points
by the weaker assumption on f having approximate fixed points.

The proof of theorem 2.4 in [15] (and hence that of corollary 2.5) is con-
structive and provides algorithm for actually extracting a bound Φ from
the proof of theorem 1.5 together with a proof verifying the bound which –
moreover – only uses the existence of ε-fixed points of f. The latter will be
shown to always exist for asymptotically nonexpansive mappings by a com-
pletely elementary argument, while the existence of real fixed points requires
the completeness of X and closedness of C and is based on the non-trivial
convex intersection property of uniformly convex Banach spaces, see [8] and
also [7]. All this will be carried out in the reminder of this paper. The ex-
plicit extraction of the bounds will, furthermore, show that the assumption
on C being bounded (needed in the conclusion of the application of theorem
2.4 and hence corollary 2.5) can be replaced by the assumption that (un) is
bounded (as in theorem 1.5) and that there exists a d ∈ IN such that within
the d-neighbourhood of x ∈ C there are approximate fixed points pε ∈ C of
f for any ε > 0 (which is trivially satisfied if Fix(f) 6= ∅). Hence we indeed
get in the end a uniform quantitative version of the ‘original’ theorem 1.5.

3 Some helpful lemmata

Lemma 3.1 Let (an) be a sequence in IR+ with an+1 ≤ an for all n. Then

∀ε > 0∀g : IN → IN∃n ≤ max
i<ba0/εc

gi(0)
(
an − ag(n) ≤ ε

)

Proof The inequality can fail in at most ba0/εc − 1 steps of applying g,
thus it has to be true for at least the one remaining. •

10



Lemma 3.2 (Quantitative version of a lemma by Qihou, [23]) Let
(an), (bn), (cn) be sequences in IR+, A ∈ Q∗

+, B,C ∈ Q+, such that an+1 ≤
(1 + bn)an + cn; a0 ≤ A;

∑
bn ≤ B;

∑
cn ≤ C. Then the following hold:

1) (A + C)eB is an upper bound on an.

2) Let
Φ(A,B,C, g, ε) := max

i<b(4BD+4C+D)/εc
gi(0),

where D = (A + C)eD. Then

∀ε ∈ (0, 1]∀g ∈ IN → IN∃n ≤ Φ(A,B,C, g, ε)(
g(n) > n → |ag(n) − an| ≤ ε

)
.

(6)

3) Let
Ψ(A,B,C, g, ε) = Φ(A,B,C, g, ε/3).

Then

∀ε ∈ (0, 1]∀g : IN → IN∃n ≤ Ψ(A,B,C, g, ε)
∀i, j (g(n) ≥ j > i ≥ n → |aj − ai| ≤ ε) . (7)

Proof 1: By induction on m one shows

an+m ≤ an ·
m−1∏
j=0

(1 + bn+j) +
m−1∑
i=0

cn+i ·
m−1∏

j=i+1

(1 + bn+j)

and also (by the arithmetic-geometric mean inequality)

m−1∏
j=0

(1 + bn+j) ≤ (1 +
∑m−1

j=0 bn+j

m
)m < e

∑m−1

j=0
bn+j

and combined

an+m ≤ (an +
m−1∑
j=0

cn+j) · e
∑m−1

j=0
bn+j , (8)

am ≤ (A + C) · eB

for all m ∈ IN.
2: Consider (a∗n) in which a∗0 = a0 and a∗n+1 = (1 + bn)a∗n + cn. Note

D ≥ a∗n+1 ≥ a∗n+1−an+1 ≥ (1+ bn)(a∗n−an) ≥ a∗n−an. Build the two series

En = 4(BD + C −
∑
i≤n

(biD + ci))

11



and
Dn = D − (a∗n − an).

Their sum satisfies the conditions of Lemma 3.1, therefore there exists
n ≤ Φ(A,B,C, g, ε), such that En −Eg(n) ≤ ε and Dn −Dg(n) ≤ ε, but this
means

g(n)∑
i=n

biD +
g(n)∑
i=n

ci ≤ ε

4
.

Then (using ex ≤ 1 + 2x for 0 ≤ x < 1)

aj − ai < (ai +
ε

4
)e

ε
4D − ai ≤

(ai +
ε

4
)(1 +

ε

2D
)− ai ≤

εD

2D
+

ε

4
+

ε2

8D
< ε

for all i, j, such that n ≤ i < j ≤ g(n). That is, if the series grows (i.e.
ag(n) > an), it will satisfy the inequality. If it decreases, then

an − ag(n) ≤ an − ag(n) + a∗g(n) − a∗n = Dn −Dg(n) ≤ ε.

3: By the proof of the previous point, there is an n ≤ Ψ(A,B,C, g, ε),
for which we have |ag(n) − an| ≤ ε/3 and also ∀i, j(g(n) ≥ j > i ≥ n ∧ aj >
ai → aj − ai ≤ ε/3). Therefore, for any i with g(n) ≥ i ≥ n we have
ag(n) − ε/3 ≤ ai ≤ an + ε/3 and hence ∀i, j ∈ [n, g(n)](ai ≤ an + ε/3 ≤
ag(n) + 2ε/3 ≤ aj + ε), from which the needed inequality follows directly. •

Lemma 3.3 Let D : IN → Q∗
+, B,C : IN → Q+, and for all q, let (an)q,

(bn)q, (cn)q be sequences in IR+, such that aq
n+1 ≤ (1+bq

n)aq
n+cq

n; aq
n ≤ D(q);∑

bq
i ≤ B(q);

∑
cq
i ≤ C(q) for all n, q ∈ IN. Then:

1) Let

Φ(D,B,C, g, ε,m) = max
i<b 1

ε

∑m−1

q=0
(4B(q)D(q)+4C(q)+D(q))c

gi(0).

Then

∀ε ∈ (0, 1]∀m ∈ IN∀g ∈ IN → IN∃n ≤ Φ(D,B,C, g, ε,m)

∀q < m
(
g(n) > n → |aq

g(n) − aq
n| ≤ ε

)
.

2) Let Ψ(D,B,C, g, ε,m) = Φ(D,B,C, g, ε/3,m). Then

∀ε ∈ (0, 1]∀m ∈ IN∀g ∈ IN → IN∃n ≤ Ψ(D,B,C, g, ε,m)

∀q < m∀i, j
(
g(n) ≥ j > i ≥ n → |aq

j − aq
i | ≤ ε

)
.
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Proof As in the previous proof, we can represent every (aq
n) by two

series (Dq
n) and (Eq

n) in a common sum, to which we can apply Lemma 3.1.
Then we can carry on the rest of the proof for the individual sequences. •

Definition 3.4 (Clarkson, [3]) A modulus of uniform convexity of a uni-
formly convex space (X, ‖ · ‖) is a mapping η : (0, 2] → (0, 1], such that for
all x, y ∈ X, ε ∈ (0, 2]

‖x‖, ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε →
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− η(ε).

Lemma 3.5 (Groetsch, [9]) Let (X, ‖ · ‖) be uniformly convex with mod-
ulus η. If ‖x‖, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε > 0, then

‖λx + (1− λ)y‖ ≤ 1− 2λ(1− λ)η(ε), 0 ≤ λ ≤ 1.

The next lemma is an adaptation (and improvement) of a lemma from
[26] to our situation, i.e. Mann iterations with error term instead of Ishikawa
iterations without error term as considered by Schu:

Lemma 3.6 Let X be a normed linear space, C ⊆ X a convex subset of
X, f : C → C uniformly l-Lipschitzian, and (xn) be a Krasnoselski-Mann
iteration starting from x ∈ C with error vector (un) where ‖un − xn‖ is
bounded by u for all n ∈ IN.

Then if ‖xn − fn(xn)‖ ≤ εn and ‖xn+1 − fn+1(xn+1)‖ ≤ εn+1, then
‖xn+1 − f(xn+1)‖ ≤ εn+1 + (εn + γnu)(l + l2).

Proof

‖xn+1 − f(xn+1)‖ ≤ ‖xn+1 − fn+1(xn+1)‖+ ‖fn+1(xn+1)− f(xn+1)‖
≤ εn+1 + l‖fn(xn+1)− xn+1‖
≤ εn+1 + l‖fn(xn+1)− αnxn − βnfn(xn)− γnun‖
≤ εn+1 + l‖fn(xn+1)− fn(xn)‖+

+l(αn + γn)‖fn(xn)− xn‖+ lγn‖un − xn‖
≤ εn+1 + lεn + l2‖xn+1 − xn‖+ γnul

≤ εn+1 + lεn + l2‖βnfn(xn)− (βn + γn)xn + γnun‖+
+γnul

≤ εn+1 + lεn + l2βn‖fn(xn)− xn‖+ γnu(l + l2)
≤ εn+1 + (εn + γnu)(l + l2).

•
In [8] it is shown – using that reflexive and hence a-fortiori uniformly

convex Banach spaces have the so-called ‘convex intersection property CIP’
– that asymptotically nonexpansive selfmappings of bounded closed convex
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subsets C ⊂ X have fixed points. Our quantitative results reduce the need
of fixed points to that of approximate fixed points. For the latter we now
give a fully elementary proof which does not need CIP (nor the complete-
ness/closedness of X/C):

Lemma 3.7 Let (X, ‖ · ‖) be a uniformly convex space with modulus η, and
C ⊆ X be nonempty, convex and bounded. Let f : C → C be asymptotically
non-expansive with sequence (kn).

Then Fixε(f) := {x ∈ C : ‖f(x)− x‖ ≤ ε} 6= ∅,∀ε > 0.

Proof Let y ∈ C. Consider

ρ0 := inf
{
ρ ∈ IR+ : ∃x ∈ C∃k ∈ IN∀i > k.‖f i(y)− x‖ ≤ ρ

}
Since C is bounded, the set is non-empty and ρ0 exists. We also have

ρ0 ≥ 0 and

∀δ > 0∃x ∈ C∃k ∈ IN∀i > k.‖f i(y)− x‖ ≤ ρ0 + δ/2. (9)

Case 1. ρ0 > 0:
Let ε ∈ (0, 4] and choose δ ∈ (0, 1] such that

η

(
ε

2(ρ0 + 1)

)
> 1− ρ0 − δ

ρ0 + δ
.

By (9), there is an xδ ∈ C, such that

∃k ∈ IN∀i > k.‖f i(y)− xδ‖ ≤ ρ0 + δ/2. (10)

Assume that

∀k ∈ IN∃n > k.‖fn(xδ)− xδ‖ ≥ ε/2. (11)

Let n be large enough that (using (11))

(1 + kn)(ρ0 + δ/2) ≤ ρ0 + δ ∧ ‖fn(xδ)− xδ‖ ≥ ε/2, (12)

and m ≥ n be large enough that (using (10))

‖fk(y)− xδ‖ ≤ ρ0 + δ/2

for all k ≥ m− n. Then

‖fn(xδ)− fk(y)‖ ≤ (1 + kn)‖xδ − fk−n(y)‖ ≤ ρ0 + δ (13)

and
‖xδ − fk(y)‖ ≤ ρ0 + δ/2 ≤ ρ0 + δ (14)

for all k ≥ m.

14



(12), (13) and (14) yield by uniform convexity and δ ≤ 1
∥∥∥∥xδ − fn(xδ)

2
− fk(y)

∥∥∥∥ ≤
(

1− η

(
ε

2(ρ0 + 1)

))
(ρ0 + δ) < ρ0 − δ

for all k ≥ m, which contradicts the minimality of ρ0.
Hence (11) is false, i.e.

∃k∀n ≥ k.‖fn(xδ)− xδ‖ < ε/2,

which implies that there exists a k, such that

‖fk+1(xδ)− xδ‖ < ε/2 and ‖fk+2(xδ)− xδ‖ < ε/2

and hence ‖f(x)− x‖ < ε for x := fk+1(xδ).
Since ε ∈ (0; 4] was arbitrary, this implies Fixε(f) 6= ∅.
Case 2. ρ0 = 0:
Let ε > 0. Then (9) implies

∃x ∈ C∃k ∈ IN∀i > k.‖f i(y)− x‖ ≤ ε/2

and therefore xε := fk+1(y) is an ε-fixed point of f , and again Fixε(f) 6= ∅.
•

4 Main results

Throughout this section, (X, ‖ · ‖) will be a uniformly convex space with
modulus of uniform convexity η and C a convex subset of X. f will be a
mapping from C to C, x ∈ C and the series (xn) will be a Krasnoselski-
Mann iteration with error terms (1), and (αn), (βn), (γn), (un) as defined in
(1).

Theorem 4.1 Let f be uniformly l-Lipschitzian and

∀ε > 0∃pε ∈ C



‖f(pε)− pε‖ ≤ ε ∧
‖pε − x‖ ≤ d ∧
∀y ∈ C∀n (‖fn(y)− fn(pε)‖ ≤ (1 + kn)‖y − pε‖)



(15)

where d ∈ Q∗
+, kn ∈ IR+ and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1− 1/k for some k ∈ IN,
∑∞

n=0 γn ≤ E ∈ Q+, and (un)
be bounded with ‖un − x‖ ≤ u ∈ Q+.

Then

∀δ ∈ (0, 1]∀g : IN → IN∃n ≤ Φ∀m ∈ [n, n + g(n)] (‖xm − f(xm)‖ ≤ δ)
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where Φ = Φ(K,E, u, k, d, l, η, δ, g) and

Φ(K,E, u, k, d, l, η, δ, g) = hi(0)
h = λn.(g(n + 1) + n + 1)

i =

⌊
3(5KD + 6E(U + D) + D)k2

εη (ε/(D(1 + K)))

⌋

D = eK(d + EU)
U = u + d

ε = δ/(2(1 + l(l + 1)(l + 2))). (16)

Proof Let ν ∈ (0, 1)∩Q, p be a pε from (15), and for the moment assume
‖f(p)− p‖ ≤ νn+1/(n + K) is satisfied for all n. Set U := u + d ≥ ‖un − p‖.
Then we also have ‖fn(p)− p‖ = ‖fn−1(f(p)) − fn−1(p) + fn−1(p) − p‖ ≤
νn+1

n+K

∑n−1
i=0 (1 + ki) ≤ νn+1 by the third clause in (15), and

‖xn+1 − p‖ = ‖αnxn + βnfn(xn) + γnun − p‖
= ‖αn(xn − p) + βn(fn(xn)− fn(p)) + γn(un − p) + βn(fn(p)− p)‖
≤ αn‖xn − p‖+ βn‖fn(xn)− fn(p)‖+ γnU + βnνn+1

≤ αn‖xn − p‖+ βn(1 + kn)‖xn − p‖+ γnU + νn+1

≤ (1 + kn)‖xn − p‖+ γnU + νn+1. (17)

By Lemma 3.2 for all m ∈ IN

‖xm − p‖ ≤ D, (18)

where D := eK · (d + EU + ν(1− ν)).
For any n, assume ‖xn − p‖ ≥ ε + νn+1 and ‖fn(xn)− xn‖ ≥ ε + νn+1.

The latter implies

‖(xn − p)− (fn(xn)− fn(p))‖ ≥ ‖xn − fn(xn)‖ − ‖p + fn(p)‖ ≥ ε.

Hence by Lemma 3.5, using kn ≤ K, and (18),
∥∥∥∥(1− βn)

xn − p

(1 + kn)‖xn − p‖ + βn
fn(xn)− fn(p)

(1 + kn)‖xn − p‖
∥∥∥∥ ≤

1− 2βn(1− βn) · η
(

ε

(1 + K)D

)
. (19)
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Thus

‖xn+1 − p‖ = ‖αnxn + βnfn(xn) + γnun − p‖
= ‖(1− βn − γn)(xn − p) + βn(fn(xn)− fn(p)− p + fn(p))

+ γn(un − p)‖
≤ ‖(1− βn)(xn − p) + βn(fn(xn)− fn(p))‖+ γn‖un − xn‖+ νn+1

≤ ((1 + kn)‖xn − p‖)
(

1− 2βn(1− βn)η
(

ε

(1 + K)D

))

+ γn(U + D) + νn+1

≤ ‖xn − p‖+ knD + γn(U + D) + νn+1 − ε · 2 1
k2

η

(
ε

(1 + K)D

)
(20)

but ‖xn− p‖ ≤ ‖xn+1− p‖+ |‖xn − p‖ − ‖xn+1 − p‖|, therefore (20) implies

0 ≤ |‖xn − p‖ − ‖xn+1 − p‖|+knD+γn(U+D)+νn+1−2εk−2η

(
ε

(1 + K)D

)
,

where the positive additives can be made arbitrarily small by Lemma 3.2,
and the negative is a constant greater than 0. Assume we have made the
positive sum smaller than this constant for two consecutive members of the
series starting at n. By contradiction we will have for both i = n and
i = n + 1

‖xi − p‖ < ε + νi+1 or ‖f i(xi)− xi‖ < ε + νi+1. (21)

Consider the following cases:
Case 1. ‖xn+1 − p‖ < ε + νn+2.
Here we have

‖f(xn+1)− xn+1‖ ≤ ‖f(xn+1)− f(p)‖+ ‖p − xn+1‖+ ‖p − f(p)‖
≤ (1 + l)‖xn+1 − p‖+ νn+1 ≤ (2 + l)(ε + νn+1). (22)

Case 2. ‖xn+1−fn+1(xn+1)‖ < ε+νn+2 and ‖xn−fn(xn)‖ < ε+νn+1.
Then, using Lemma 3.6 with εn+1 = εn = ε + νn+1, we have

‖xn+1 − f(xn+1)‖ ≤ (ε + νn+1 + γn(U + D))(1 + l + l2).

Case 3. ‖xn+1 − fn+1(xn+1)‖ < ε + νn+2 and ‖xn − p‖ < ε + νn+1.
In this case we have (reasoning as in (22))

‖xn − fn(xn)‖ ≤ (2 + l)(ε + νn+1)

and again using Lemma 3.6

‖xn+1 − f(xn+1)‖ ≤ (ε + νn+1 + γn(U + D))(1 + l(l + 1)(l + 2)).
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In either case, if we denote

pn = |‖xn − p‖ − ‖xn+1 − p‖|
qn = knD + 2γn(U + D) + 2νn+1

and we have

pn, qn < εk−2η

(
ε

(1 + K)D

)
(23)

and

pn+1, qn+1 < εk−2η

(
ε

(1 + K)D

)
,

(note that |‖xn − p‖ − ‖xn+1 − p‖| + knD + γn(U + D) + νn+1 ≤ pn + qn

< 2εk−2η
(

ε
(1+K)D

)
) where ε = δ/(2(1 + l(l + 1)(l + 2))), then (using that

qn+1 < ε)

‖xn+1 − f(xn+1)‖ ≤
(

ε +
qn+1

2

)
(1 + l(l + 1)(l + 2)) ≤ δ (24)

Next, construct the two series

an = ‖xn − p‖ and

bn = KD + 2E(U + D) +
2ν

(1− ν)
−

n−1∑
i=0

(kiD + 2γi(U + D) + 2νi+1))

(note pn = an+1 − an, and qn = bn+1 − bn). We know from (17) that
an+1 ≤ (1 + kn)an + γnU + νn+1, and bn+1 ≤ bn, therefore by Lemma 3.3

∀k ∈ IN∀g : IN → IN∃m < Φν∀i, j(
m− 1 ≤ i < j ≤ m + g(m) → |aj − ai|, |bj − bi| ≤ εk−2η

(
ε

(1+K)D

))
,

where

Φν(K,E, u, k, d, l, η, δ, g) = hi(0)
h = λn.(g(n + 1) + n + 1)

i =

⌊
3(5KD + 6E(U + D) + 6ν/(1 − ν) + D)k2

εη (ε/(D(1 + K)))

⌋

D = eK(d + EU + ν/(1− ν))
U = u + d

ε = δ/(2(1 + l(l + 1)(l + 2))).

This is enough to ensure (21) and hence (24) for all n ∈ [m,m + g(m)]
and therefore

∀δ ∈ (0, 1]∀g : IN → IN
∃n ≤ Φν(K,E, u, k, d, l, η, δ, g)∀m ∈ [n, n + g(n)] (‖xm − f(xm)‖ ≤ δ) .
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It only remains to throw away the assumption that ‖f(p)−p‖ ≤ νn+1/(n+
K) holds for all n. This we can do by simply relaxing it to only the n’s for
which the inequality was used in the proof, i.e. for all n ≤ Φν . This is
certainly satisfied by pνΦν+1/(Φν+K) using (15).

The value of ν was arbitrary within (0, 1) ∩Q, thus we can take it arbi-
trarily small and the bound will get lower at the expense of requiring better
approximate fixed points (which we have). Therefore Φ = inf ν∈(0,1) Φν will
be sufficient for the bound.

Computing the infimum yields the form (16). •

Remark 4.2 Using the argument about the Herbrand normal form (3) in
Section 1, this theorem and all its corollaries allow us to also conclude

‖f(xn)− xn‖ → 0.

In particular, theorem 4.1 implies theorem 1.5 from the introduction and is
in fact a quantitative strengthening of the latter.

Corollary 4.3 Let f be uniformly l-Lipschitzian and asymptotically quasi-
nonex-
pansive with sequence (kn), Fix(f) 6= ∅, and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1− 1/k for some k ∈ IN,
∑∞

n=0 γn ≤ E ∈ Q+, and (un)
be bounded with ‖un − x‖ ≤ u ∈ Q+.

Then

∀δ ∈ (0, 1]∀g : IN → IN∃n ≤ Φ∀m ∈ [n, n + g(n)] (‖xm − f(xm)‖ ≤ δ)

where Φ is as defined in theorem 4.1 with d ≥ ‖x− p‖ for some p ∈ Fix(f).

Proof Direct corollary of the main theorem, where the first and second
clauses of (15) are satisfied by the existence of real fixed points of f , and the
third clause follows from the assumption on f being asymptotically quasi-
nonexpansive. •

Corollary 4.4 If we only need to find a single xn, which is an approximate
fixed point of the function, taking g(n) ≡ 0 gives

∀δ ∈ (0, 1]∃n ≤ Φ1(K,E, u, k, d, l, η, δ) (‖xn − f(xn)‖ ≤ δ) (25)

where

Φ1(K,E, u, k, d, l, η, δ) =

⌊
3(5KD + 6E(U + D) + D)k2

εη (ε/(D(1 + K)))

⌋

D = eK(d + EU)
U = u + d

ε = δ/(2(1 + l(l + 1)(l + 2))).
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Remark 4.5 If the modulus of uniform convexity of the space can be written
in the form η(ε) = εη̃(ε) where η̃ is monotone (0 < ε1 ≤ ε2 ≤ 2 → η̃(ε1) ≤
η̃(ε2)), the proof of Theorem 4.1 allows to extract a bound with η replaced by
η̃ (by changing η

(
ε

(1+K)D

)
to η

(
ε

(1+kn)‖xn−p‖
)

in (19) we can replace (20)

by ‖xn+1 − p‖ ≤ ‖xn − p‖ + knD + γn(U + D) + νn+1 − ε · 2 1
k2 η̃

(
ε

(1+K)D

)
and the change carries on through the proof).

Disregarding the various constants, the ε-dependency of our bounds in
the case g ≡ 0 is ε · η(ε).

It is well-known that the Banach spaces Lp with 1 < p < ∞ are uniformly
convex ([3]). For p ≥ 2, εp

p2p is a modulus of convexity ([10], see also [12]).
Since

εp

p2p
= ε · η̃p(ε)

where

η̃p(ε) =
εp−1

p2p

is monotone, we can apply the previous remark. Hence we get – disregarding
again constants – that the ε-dependency of our bounds in the case of Lp

(p ≥ 2) is εp.
For the case X := IR with the Euclidean norm, where we can choose η̃(ε) :=
1
2 (since ε/2 is a modulus of convexity), we have a linear dependency in ε.
These results match in quality the bounds obtained in [11, 12, 14] for the
case of nonexpansive functions and the usual Krasnoselski-Mann iteration
(without error terms). In that case, the deep work in [1] even established a
quadratic bound in arbitrary normed spaces for the special case of constant
λn = λ ∈ (0, 1). For general (λn) (satisfying λn ∈ (0, 1 − 1/k) and

∑
λn =

∞), the first bounds for Krasnoselski-Mann iterations in arbitrary normed
and even hyperbolic spaces were established in [13, 16].

In the case of asymptotically nonexpansive mappings f : C → C (C ⊂ X
bounded, closed and convex) it is an open problem whether Fixε(f) 6= ∅,
∀ε > 0, for general (i.e. not uniformly convex) Banach spaces X (see [7],
p.135).

Corollary 4.6 Let f be asymptotically nonexpansive with sequence (kn), d
is such that Fixε(x, d, f) 6= ∅ for all ε > 0 and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1− 1/k for some k ∈ IN,
∑∞

n=0 γn ≤ E ∈ Q+, and (un)
be bounded with ‖un − x‖ ≤ u ∈ Q+.

Then

∀δin(0, 1]∀g : IN → IN∃n ≤ Φ∀m ∈ [n, n + g(n)] (‖xm − f(xm)‖ ≤ δ)

where Φ is as defined in theorem 4.1 with l = 1 + K.
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Proof Direct corollary to the main theorem, using 1 + K ≥ 1 + kn for any
n as the Lipschitz constant. •

Corollary 4.7 Let C be a bounded convex subset of X with diameter d ∈
Q∗

+ and f be asymptotically nonexpansive with sequence (kn), and also∑∞
n=0 kn ≤ K ∈ Q+.
Let 1/k ≤ βn ≤ 1− 1/k for some k ∈ IN,

∑∞
n=0 γn ≤ E ∈ Q+.

Then

∀δ ∈ (0, 1]∀g : IN → IN
∃n ≤ Φ2(K,E, k, d, η, δ, g)∀m ∈ [n, n + g(n)] (‖xm − f(xm)‖ ≤ δ)

where

Φ2(K,E, k, d, η, δ, g) = hi(0)
h = λn.(g(n + 1) + n + 1)

i =

⌊
3(5Kd + 6Ed + d)k2

εη (ε/(d(1 + K)))

⌋

ε = δ/(2(1 + (K + 1)(K + 2)(K + 3))).

Proof Using Lemma 3.7 we can fulfill the conditions of the previous corol-
lary, and the boundedness of C allows us to replace all bounds on the dis-
tances in the proof with d. •

Concluding remark:

1) With somewhat more complicated bounds our analysis also extends to
the case where f : C → C is instead of being l-uniformly Lipschitzian
only ω-uniformly continuous, i.e.

∀ε > 0, n ∈ IN, x, y ∈ X(‖x− y‖ < ω(ε) → ‖fn(x)− fn(y)‖ < ε),

where ω : IR∗
+ → IR∗

+ (i.e. ω is what in constructive analysis is called
a modulus of uniform continuity for all fn). In particular, this covers
the case of λ-α-uniformly Lipschitzian functions (see [24]).

2) We expect that our analysis can be adapted also to Ishikawa-type it-
erations. However, this would further complicate the technical details.
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