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BOUNDS ON LEAST DILATATIONS
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Abstract. We consider the collection of all pseudo-Anosov homeomorphisms

on a surface of fixed topological type. To each such homeomorphism is asso-

ciated a real-valued invariant, called its dilatation (which is greater than one),

and we define the spectrum of the surface to be the collection of logarithms of

dilatations of pseudo-Anosov maps supported on the surface. The spectrum is

a natural object of study from the topological, geometric, and dynamical points

of view. We are concerned in this paper with the least element of the spectrum,

and explicit upper and lower bounds on this least element are derived in terms
of the topological type of the surface; train tracks are the main tool used in

establishing our estimates.

Introduction

Fix a surface Fs of genus g with s distinguished points and empty bound-

ary, where we assume that 2g - 2 + s > 0 and s > 0. A map tp: F* —> F*

preserving the distinguished points setwise is said to be pseudo-Anosov (to be

^ of transverse measured foliations of Fsgabbreviated pA) if there are a pair &,  of transverse measured foliations of Fs

with <p(&~±) = k±xSF± for some k > 1. (See [FLP], for instance, for definitions

and basic properties of measured foliations and pA maps.) The number k is

called the dilatation of tp, and we define the spectrum of Fs to be

y^ = {log k: kis the dilatation of a pA map ofF*}.

g

J2sg can also be described as the set of Teichmüller lengths of Teichmüller

geodesies on the moduli space of F* (see [Ab] for example), or alternatively,

as the set of topological entropies of pA automorphisms of F* (see [FLP]). An

elementary argument (see [AY]) shows that Yf c R is discrete.

In this paper, we give both upper and lower bounds to the least element Is
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of X)  . In fact, we shall find that

Is >        l0g 2

*- I2g-l2 + 4s'

and
log 11       0 log 2

S -'*- 12*-12'
The lower bounds are established by employing the train track theory and a

simple (but apparently not well known) spectral theory trick. The upper bound

comes about by applying the main result of [P1 ] to give examples of pA maps

on closed surfaces. The results of [Ba] can be used to sharpen the upper bound

when 5 = 0, and we expect they can also be used to give an analogous upper

bound in case 5^0.

Notation and background

To establish notation, we quickly recall the relevant train track theory. This

material is discussed more fully in [Pa, PI, PH, PP, Th]; the necessary back-

ground information is fully covered in [PP, PI]. In particular, we recall that the

train track x is said to be recurrent if it supports a strictly positive transverse

measure, and it is said to be trivalent provided that each switch has valence

exactly three, x fills Fs if each component of Fs - x is a (perhaps once-

punctured) topological disk.

Suppose that a and x are train tracks in the surface Fs. If a is smoothly

homotopic into x, then we say that x carries a, and we write a < x ; notice

that the relation < is transitive. In particular, if ci is a pA map of Fs, then ( as

shown in [PP, Theorem 4.1]) there is a trivalent and recurrent train track ici'

so that tp(x) < x. Given a branch of the train track x, as above, we may choose

a fiber, called the central tie over the branch, in the tie-neighborhood over the

branch. Suppose that the train track x has branches {b¡}" and define an «-by-

n matrix M = (M¡A , called the incidence matrix (for the carrying), as follows:

since x carries tp(x), there is a smooth map h: F —> F which homotopes tp(x)

into the tie-neighborhood of x keeping the train tracks transverse to the ties,

and we choose such an h , called a "supporting map for the carrying" x > tp(x) ;

My is the number of intersections (counted with unsigned multiplicity) of the

image of h o <p(bA with the central tie over b,. (Thus, the incidence matrix

evidently depends on the choice of a supporting map.)

The cone Vr of transverse measures on x is identified with a corresponding

cone in the space J£^(Fsg) of compactly supported measured foliations on

Fs (see [PI, p. 181]), and any incidence matrix (for any choice of supporting

map) M describes the action of tp on Vx. If x and the carrying of tp(x) by x

are chosen carefully, then the incidence matrix M is Perron-Frobenius (to be

abbreviated PF) in the sense that M has nonnegative entries and some iterate

of M has strictly positive entries; see [PP, Theorem 4.1]. (See [Ga] for a general

discussion of PF matrices, which are called "primitive irreducible" there.) The

unique positive eigenvector of M corresponds to the unstable foliation &~  of
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tp (see [PI, p. 189]), and it follows that the dilatation of tp is simply the spectral

radius of M.

The lower bound

We begin with an easy estimate on the spectral radii of certain PF matrices.

Lemma. Suppose that A is an n-by-n integral PF matrix, where n > 1. If k

denotes the spectral radius of A, then

log k > log 2/n.

Proof. Suppose that the vector iel" has coordinates (xA", and consider the

function
n

\x\ = J2xt
i

defined on the "cone"

C = {ieR":x(>0 for each i and x ^ 0}.

We claim that for any x e C, we have

\A"x\/\x\ > 2.

The lemma follows easily from this claim since the eigenvector of A corre-

sponding to k itself lies in (the interior of) C. By linearity of the norm, the

claim will follow once we show that \Ane] > 2 for any unit coordinate vector

ee C.
Given a matrix Anxn with nonnegative entries, we define the oriented graph

G = G(A) of A to be the graph on n vertices with an oriented edge running

from the fth vertex to the ;th vertex if A¡} #0. If Am = (A™), then A™ is

exactly the number oriented edge-paths in G of length m from the ith to the

jth vertex.

Since we assume that A is PF, some power of A has strictly positive entries,

so in particular, the oriented graph G of A is strongly connected (i.e., for any

pair of vertices vx and v2, there is an oriented path in G from vx to v2 ).

It follows that for each vertex v of G there are at least two distinct oriented

paths in G of length n starting from v , for otherwise G has the topological

type of a circle, so that A is a permutation matrix, contradicting our assumption

that A is PF. Thus, \A"e\ > 2 as was claimed, and the proof is complete.   D

Suppose that tp is a pA map of F*. It is well known (see for instance [PP,

Theorem 4.1]) that there is some trivalent and recurrent train track x filling

F* so that tp(x) < x with PF incidence matrix. Insofar as the spectral radius

of the incidence matrix is the dilatation of the pA map, we might bound above

the number of branches of x and apply the lemma to obtain a lower bound on

the dilatation of tp. This estimate can be improved, however (by roughly § ),

using some techniques which we introduce presently.
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Figure 1

A branch b of a recurrent trivalent train track x is said to be large at an

endpoint w if every smooth path in x through w meets the interior of b ;

otherwise b is called small at w. A branch is called simply large (small,

respectively) if it is large (small) at both its endpoints; branches that are neither

small nor large are called mixed. A mixed branch has a natural orientation

starting at its large endpoint.

We claim that there can be no imbedded closed edge-path on a recurrent

train track consisting entirely of mixed branches. Such an edge-path c inherits

an orientation from the orientation on each of its mixed branches. If ,u is a

positive measure on x, then the /¿-weight of branches must strictly increase as

we traverse c in the prescribed orientation, and this is evidently impossible.

It follows easily that if x c F* is a recurrent and trivalent train track, then

each component of

[J{ mixed branches of t}

is contractible.
Now, suppose that tp: Fs -► Fs is pA, and let x be a trivalent and recur-

rent train track so that tp(x) < x. Consider the train track a, arrived at by

collapsing each component of |J{ mixed branches of x} to a point; see Figure

1. By construction, a has no mixed branches, but the switches of a may have

very large valence. A measure on a is determined by its values on the small

branches, and there is one linear constraint arising from each large branch; these

constraints are not necessarily independent.

Since a < x, x < a , and tp(x) < x by construction, we find

tp(o) < tp(x) < x < a,

and one easily isotopes tp transversely to the fibers of the tie-neighborhood of x

to get a map (of the same name) so that an incidence matrix of the supporting

map of the carrying tp(tr) < a is PF.

To proceed, we furthermore isotope tp s0 tnat the image of a large branch

of a is contained in the tie neighborhood about a large branch of a. To

accomplish this, if b is a large branch of a, then there are two possibilities:

either tp(b) meets the central tie of a large branch of a , or tp(b) is contained

entirely in the tie neighborhood of a single small branch of a . In the former

case, we can isotope cp(x) transversely to the ties and shrink tp(x) as in Figure

2a, and in the latter case, we isotope tp(b) as in Figure 2b.

Consider the small incidence matrix that records the intersections of small

branches of tp(tj) with central ties of small branches of a. By construction,
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Figure 2a

central tie

\V7/      >\Y7/
Figure 2b

the small incidence matrix is PF and describes the action of tp on measured

foliations carried by a .

Theorem. We have the estimate

f>_!5|2_
*- I2g- 12 + 45'

Proof. Adopt the notation above, so that tp: FJ ^ Fs is a pA map, tcFs is

a trivalent recurrent train track so that tp(x) < x, and a c Fs arises from x by

collapsing the mixed branches. We bound above the number of small branches

of a and apply the lemma to the small incidence matrix. To this end, suppose

that x has ßs small and ßl large branches, let ß > ßs + ß{ denote the total

number of branches of x, and let r denote the number of switches. Of course,

since x is trivalent, we have 3r = 2ß , and since there is one linear condition

on measures for each switch of x, we find that dimR Vr > ß - r. Thus,

6g - 6 + 25 = dimRjr^0(Fsg) > dimR Vx > ß - r = ßß,

whence

ßs + ßi<ß<l8g- 18 + 65.

Furthermore, since there is one linear condition on measures for each large

branch of a, we conclude

£ - ¿8, < dimR Kff < 6^-6 + 25,

and arithmetic gives

ßs< 12#-12 + 45.

Since the small incidence matrix for the carrying <p(a) < a is PF of dimension

at most ßs and its spectral radius is the dilatation of tp, the lemma gives the

asserted estimate.   D
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We remark that one would hope to sharpen the bounds of this section using

the fact that a homeomorphism of Fs induces a map on J'^(Fs%) which

preserves both the geometric intersection pairing and especially the symplectic

pairing. (See [PH] or [Pa] for instance.)

AN UPPER BOUND BY EXAMPLE

Consider the surface Fg , g > 2, as a sphere with g symmetrically placed

handles, let L denote the axis of the natural g-fold symmetry, and let a, b, c

be the simple closed curves indicated in Figure 3a. Let p denote rotation by

2n/g about L, xx denote the righthand twist along the curve x , and consider

the map

tp = p o Tc o T~    oTj,

It follows immediately from [PI, Theorem 2.1] that the gth iterate tp8 is pA,

and hence tp itself is also pA. A train track t c F° so that <p(x) < x is

illustrated in Figure 3b.

Let x¡, i = I, ... , 3g, denote the curves a, b, c, p(a), p(b), p(c), p (a),

... , pg~x(b), ps~x(c) respectively. Since xi is carried by x, there is an as-

sociated integral measure pi on x, for i = I, ... , 3g. Furthermore, since

4>(xA is also carried by x, for i = I, ... , 3g (as in [PI, p. 194]), the cone

77 c Vz spanned by {p¡}x8 is invariant under tp, and the unstable foliation of

tp is contained in 77. By expressing the measure on x associated to tp(Xj) as

a linear combination of {p,}^ , for each j = I, ... , 3g, one easily computes

the action of tp on 77 with respect to the spanning vectors px, p2, ... , pig

Figure 3a Figure 3b
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(in this order) to be

M =

{0
A

0
0

0
B
I
0

0
0
0
7

iO    0   0

0 7\

0 C
0 0
0 0

1 0)

where 7 denotes the 3-by-3 identity matrix, 0 denotes the 3-by-3 zero matrix,

and

B = and   C =

We claim that (provided g > 4 ) the gth power of M is given by

M8 =

( A
CA
0

0

\BA

B
D + CB

C

0
0

0
BA
D

0
0

0
0

BA

0
0

0
0
0

0
0

0
0
0

c
0

0
0
0

D

c

where D = A + BC =

To prove the claim, first prove by induction that, for 1 < k < g,

0      0     ■•■     0
0
0

KT

0
0
0

o
c
o

o
D

C

I
BA
D

0
0

BA

0
0

0
0
0 0

0\
0
0

BA

ABO

0 7 0
0       0     7

C D
0 C

... o

... o

V ;
Here the first g - k blocks in the first row (of blocks) are 0 ; the next k - 1

rows (of blocks) have the blocks C, D, and BA shifting to the right. The last

g - k - 1 rows (of blocks) have the identity matrix shifting to the right. Our

formula for Mg follows easily.

Since the spectral radius of a PF matrix is majorized by its greatest column

sum (see [Ga]), we conclude that k8 < 11, where k is the dilatation of tp, and

we have the estimate log A < log 11 ¡g provided g > 4. One checks directly
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that this bound also holds in the cases g - 2 and g = 3, and we conclude

Theorem. We have the estimates

log U      ,o log 2
g    -ls-l2g-12-

Remark. [Ba] can produce analogous examples of pA maps on Fg and establish

the upper bound log 6/^ > / .

To close, we remark that it is likely to be a subtle problem to exhibit a pA

map of Fg realizing the infimal dilatation Is .
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