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Bounds on Maximum Throughput for Digital 
- -  

Communications with Finite-Precision 
and Amplitude Constraints 

Abstract -The problem of finding the maximum achievable data rate 
over a linear time-invariant channel is considered under constraints 
different from those typically assumed. The limiting factor is taken to be 
the accuracy with which the receiver can measure the channel output. 
More precisely, we consider the following problem. Given a channel with 
known impulse response h( t ) ,  a transmitter with an output amplitude 
constraint, and a receiver that can distinguish between two signals only 
if they are separated in amplitude at some time 2,) by at least some small 
positive constant d, what is the maximum number of messages, N,,,,,, 
that can he transmitted in a given time interval [O, TI? Lower bounds on 
N,, ,  can he easily computed by constructing a particular set of inputs to 
the channel. Our main result is an upper bound on N,,, for arbitrary 
h ( f L  The upper bound depends on the spread of h ( f ) ,  which is the 
maximum range of values the channel output may take at some time 
t o  > 0 given that the output takes on a particular value a at time f = 0. 
For a particular h ( f ) ,  computing the spread in discrete-time is equiva- 
lent to solving a linear program with bounded variables and one equality 
constraint. Solutions to linear programs in this class can be obtained 
very fast using, for example, a linear-time algorithm due to Witzgall. 
Numerical results are shown for different impulse responses, including 
two simulated telephone subscriber loop impulse responses. Assuming 
that the receiver resolution d is small, the upper bound is typically two 
to four times the lower bound for the cases examined. 

I. INTRODUCTION 

N THE MOST elementary view of a communication I channel, we choose from among a set of N possible 
signals to transmit, and must then distinguish which was 
transmitted by measurements at the receiver over a finite 
length of time T .  If we limit the resources that can be 
used at the transmitter, characterize the distortion caused 
by the transmission channel, and limit the accuracy with 
which the received signal can be measured to f d /2, 
there is some maximum value to N for a given signaling 
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time T ,  say N,,,(T, d). The maximum channel throughput 
(MCT), can then be defined by 

This formulation for bounding communication rate was 
anticipated as early as 1928 by Hartley [ l ]  (also see [2]). 

This definition of channel throughput is motivated by 
the study of high-speed transmission over single twisted- 
wire pairs. Transmission errors in this case are caused by 
effects that are not easily modeled by random noise, such 
as precision of analog-to-digital conversion, circuit nonlin- 
earities, timing inaccuracies, and residual intersymbol in- 
terference. Thus, the MCT is an entirely deterministic 
notion, in contrast with the Shannon capacity, which is 
based on a probabilistic model of the channel. 

We will consider here the problem of estimating this 
MCT in situations where the limiting resource at the 
transmitter is the dynamic range of the electronics, which 
leads naturally to an amplitude constraint on the trans- 
mitter waveforms, and where the channel can be accu- 
rately modeled as linear and time-invariant. Furthermore, 
we will assume that the uncertainty in the amplitude of 
the received signal is determined by a single parameter d ,  
the receiver discrimination. More precisely, we assume 
that two received signals can be distinguished when and 
only when they differ in amplitude by at least d at some 
point in the time interval [0, TI. If U , ;  . ., U ,  are inputs to 
the channel defined on [O, TI and y,; . ., y, are the 
corresponding outputs, then 

max {NI min sup l y j ( t ) - y j ( t ) 1 2 d  (1.2) 

where it is assumed that lu(t)l I 1 for all t. Put another 
way, the MCT is a measure of achievable transmission 
rate with a limit on the L, norm of the input, and an L, 
criterion for discrimination at the receiver. The corre- 
sponding notion using the L ,  norm at both transmitter 
and receiver is called €-capacity [31. 

I - - 
i + i  O S I S T  U ,  ; . ' , 11,v 

I s i , j s N  

0018-9448/90/0300-0472$01 .OO 0 1990 IEEE 

Authorized licensed use limited to: Princeton University. Downloaded on January 11, 2009 at 16:53 from IEEE Xplore.  Restrictions apply.



HONICI C't U/.  1 HOlJhDS O N  M A X I M U M  TIlR0IJC;I iPIJT FOR DIGITAL. COMMI:NI<.ATIONS 473 

I t  is shown in [4] that N,,,(T,d) is easily evaluated for 
the case h ( t )  = Ape'. It is also shown that there exists a 
maximizing set of inputs u l ;  . . , u N  such that lu,(t>l = 1 
for all t .  Here we give upper and lower bounds on 
N,,,(T, d )  for any T > 0, d > 0, and impulse response 
h(t) .  

11. A LOWER BOUND ON THROUGHPUT 

The output of the channel at time t is y ( t ) =  h * u(t>,  
where d t )  is the input, h ( t )  is the channel impulse 
response, and the asterisk denotes convolution. The input 
that maximizes the output at time T ,  subject to the 
constraint l u ( s ) l s  1, 0 I s s T ,  is clearly 

U * ( ? )  = s i g n h ( T - t ) ,  O I t s T ,  (2.1) 

in which case the output at time T is 

C (  T )  = lT1h(  t )  Idt. (2.2) 
0 

The minimum time it takes to distinguish N channel 
outputs is defined as 

(2 .3)  

where it is assumed that d < 2/,;"lh(t)l dt. For the case 
N = 2 a set of inputs that achieves To = Tmin(2, d )  is clearly 
u, ( r )  = - u,(t) = u*(t) ,  where TI,  satisfies 

We can define a mapping of M source bits (N = 2M 
messages) to a channel input u, ( t ) ,  0 st 2 M T ,  as fol- 
lows: 

. 

M 

U , ( t >  = b , . k U O [ t  - ( k  - ' I T ]  (2.5) 
k = l  

where b,,k is either 1 or -1 corresponding to the kth bit 
of message i, 1 s i 1 2 ~ ,  and u , ( t ) = u * ( t ) ,  O s r  s T ,  
u, , ( t )  = 0, t > T .  If the period T = To as given by (2.4), 
then, using linearity, it is easily verified that 

m a x , , . ~ . M , l h * U , ( t ) - h * U , ( t ) 1 2 d  

for any i f  j .  In this case the time it takes to distinguish 
2M messages is exactly MT,,. 

Consider now applying the preceding inputs to a chan- 
nel with impulse response h ( t ) =  t ,  and restrict the num- 
ber of inputs to be N =  4. Fig. 1 shows the outputs 
corresponding to four inputs given by (2.5), where the b,,k 
are the four possible two bit sequences. Since h(t ) > 0, 
t > 0, the inputs are u , ( t )  = - u , ( t )  = 1, 0 I t 5 2 T ,  and 

Because of the overshoot that occurs when the input 
switches from 1 to - 1, or vice versa, if T = To,  then the 
maximum distance between any two distinct outputs over 
the interval [0,2T + 61, where 6 is a fixed sampling delay, 

-4T2 -2T21 \,*U2 

\ 
Fig. 1. Outputs t * u , ( t )  where u l ( t ) = l ,  u 2 ( t ) = - l ,  u , ( t ) = - u & t ) ,  

and u,(r) switches from 1 to - 1. 

is greater than d. The period T can therefore be de- 
creased to T '  < TI,  (thereby increasing the rate) so that 
max,, i, . 2T,+Slh * u, ( t>  - h * u,(t)l = d ,  i f j .  It is as- 
sumed in Fig. 1 that T = T'. 

Given that the inputs have the form ( 2 . 3 ,  the output of 
the channel can be sampled at times nT  + 6, n = 1,2,. . . , 
and a simple threshold detector can be used to detect 
each bit sequentially. In particular, if at time t,, = nT  + 6 ,  
y,(t, ,)- y,(r,,) = d ,  where y , ( t )  = h * u , ( t ) ,  then the thresh- 
old level is set to y,, = [y,(t , , )  + y,(t, ,)]/2. If the received 
output r ( t , , )  > y,,, then the receiver excludes U ,  as a 
possible transmitted signal, and if r ( t , , )  < y,,, then U ,  is 
excluded. The sampling phase 6 should be chosen so that 
the distance between outputs at sampling times is maxi- 
mized. Fig. 1 indicates that for the minimum T there may 
be a fixed delay 6 between when a bit is transmitted, and 
when it is detected. A more revealing illustration of this 
point is given in Fig. 2, which shows an impulse response 
consisting of two pulses separated by a delay. The optimal 
delay 6 that maximizes the distance d is shown in Fig. 2. 

Theorem 1: Given any h( t )  and discrimination d > 0, 
then 

1 
T MCT( d )  2 - (2 .7)  

where T satisfies 

max (/ '+'lh( t )  Idt - / " A (  t )  l d t )  
6 6  

d 

8 2 
= max [ C (  6 + T )  -2C( a) ]  = -.  (2 .8 )  

Proof Consider the set of inputs having the form 
(2.5), where 

and 6 and T are chosen according to (2.8). Assume that 
for the distinct inputs U ,  and U , ,  b,,All  - - b,,k,, for some - 
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k,, 2 1 and that bt.k = b,.k for k < kll .  Then 

sgn h( k0T + S - s)  ds 

. ~ , ~ ( t ’ + (  k,, - k ) T )  dt‘ I 1  
since T and 6 are chosen so that (2.8) is satisfied. Conse- 
quently, with the set of inputs previously defined, k,,  bits 
can be communicated in time k,,T + 6, so that 

ko 1 
2 lim -- -- 0 (2 .11)  

k,,+mkoT+S T ’  
If h ( t )  2 0 for all t ,  (2.8) says that if the input is initially 

1, and subsequently switches to -1 at time T ,  then the 
maximum value of the output is d / 2 .  If h ( t ) =  Ae-ar 
where A and a are positive constants, then the 6 that 
maximizes the left-hand side of (2.8) is zero for any T .  
Consequently, the preceding lower bound for the MCT is 
1 / T  where C ( T )  = d/2. I t  is shown in [41 that this is 
exactly the MCT, so that the method for constructing 
inputs (2.8), (2.9) maximizes the data rate in this case. Of 
course, it is apparent that this method gives a data rate 
equal to the MCT whenever the optimal inputs have the 
form (2.5). 

111. AN UPPER BOUND ON THROUGHPUT 

One way of upper bounding the number of distinguish- 
able signals, N,;,,, is to consider the following question: 
Given that we have control over the (bounded) input of 

the channel, and that the output of the channel is con- 
strained to take on a given value a at a given time t ,  how 
far apart can we spread the output at some future time 
T? Let h denote the channel impulse response, so that 
the output at time t is y ( t ) =  h * d t ) ,  where U is the 
input and the asterisk denotes convolution. Then the 
largest and smallest outputs at time T are 

and the spread function is defined to be, for T 2 0, 

cT( 7, a )  = cT+ (7, a )  - U - (  7 ,  a ) .  ( 3 . 2 )  

The spread function is not necessarily a monotonically 
increasing function of T. 

Before proceeding to the precise statement of results, 
we first give an overview and discussion of what follows. 
For a large set of impulse responses H ,  which will subse- 
quently be defined, we prove the following upper bound 
on the MCT. For any impulse response in H let ? be the 
first time at which the spread a(?, 0) = d. Then 
MCT(d) I l / i  in bits/s. The reason for choosing a = 0 
is that this value maximizes the spread for any fixed T 

(see Theorem 3) .  An alternative statement of this upper 
bound is that for any h( .) E H ,  if the data rate is R, then 
the maximum separation between pairs of outputs can be 
no greater than a(l/R,O).  

I t  is easily verified that this upper bound is always 
greater than or equal to the lower bound given by Theo- 
rem 1. In particular, if it is assumed that the inputs have 
the form given by (2.9, then the symbol period T must be 
greater than ? to guarantee a separation of d between 
any two distinct outputs. Otherwise, if T < ?, then by the 
definition of ?, two channel inputs corresponding to mes- 
sages which differ in only bit cannot “spread apart” by d 
in one symbol period T.  

Although our upper bound is not very tight for many 
impulse responses in the set H (see the numerical exam- 
ples in Section VII), it gives the exact MCT for the case 
of the exponential impulse response h(r)  = Ae-“‘, a 2 0 
(which is in the set H ) .  In this case the state of the 
channel at time t can be taken to be the output y ( t ) .  
Consequently, given y( t ) ,  the output at time T ,  where 
T > t ,  is independent of the input ~ ( s )  for s < t .  The 
function c ~ + ( c ~ - )  is therefore determined by selecting the 
input U ( S )  for t < s < T to maximize (minimize) y ( T ) ,  i.e., 
4 s )  = 1( - 1). In this case we therefore have that U ‘ ( ~ , 0 )  
= t- C(T), where C(T) is defined by (2.2). Therefore 
c ~ ( ~ , 0 )  = 2 C ( 7 ) ,  and the upper bound agrees with the 
lower bound given by Theorem 1 (see the discussion 
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Fig. 2. Impulse response for which optimal sampling delay 6 > 0. 

following (2.1 I)). In general, of course, y ( T )  depends not 
only on y ( t ) ,  but also on U($) for s < t ,  so that u ( T , O )  will 
be strictly greater than C ( T ) ,  which implies that the 
preceding upper bound on MCT will be strictly greater 
than the lower bound. 

The proof of the preceding upper bound assumes that 
the spread function has certain monotonicity properties, 
which are defined in the Appendix. The set H is the set 
of impulse responses for which the associated spread 
functions satisfy these properties. Conditions that an im- 
pulse response must satisfy to be in H are derived in the 
Appendix (see Theorems 7 and 8), and are stated in (3.81, 
(3.9). Although we have not been able to prove that the 
preceding upper bound holds for any h( t ) ,  neither have 
we found a counterexample. That is, we have not found 
an h( t )@ H and a set of inputs such that the resulting 
lower bound on MCT is greater than l/?. Whether or 
not such an impulse response exists remains an open 
question. 

An upper bound on MCT that holds for arbitrary 
bounded and piecewise continuous h( t )  can be obtained 
by modifying the spread function in such a way that the 
monotonicity properties referred to in the preceding 
paragraph are always valid. This new modified spread 
function, S(T ,  a ) ,  has the property that S(T ,  a )  2 U ( T ,  a )  
for any T and cy (see (3.31, (3.4)). For any impulse re- 
sponse h( t )  let T *  be the first time at which S(T*,O)= d 
(see (3.6)). Then it will be shown that MCT(d) I 1 / ~ * .  If 
h ( t ) E  H ,  then T + = ? ;  however, in general, T *  < 7  for 
h ( t )  E H .  

The rest of the paper is organized as follows. Our main 
result is Theorem 2, which, given any bounded and piece- 
wise continuous impulse response, states a lower bound 
on the minimum time it takes to distinguish N channel 
outputs for fixed receiver discrimination d. This directly 
implies the preceding upper bound on MCT, and an 
upper bound on the maximum separation between chan- 
nel outputs for a fixed number of inputs and time interval 
[O,Tl (see (3.12), (3.13)). Computation of the spread func- 

tion, which determines the upper bound on MCT for 
h E H ,  is then considered in Sections IV-VI. In general, 
computation of the spread for arbitrary h( t )  is difficult 
(see [SI). However, in the discrete-time case it is shown in 
Section IV that the calculation of spread is equivalent to 
solving a linear program with bounded variables and one 
equality constraint. The derivation of a fast algorithm for 
solving linear programs in this class is presented in Sec- 
tions V and VI. Upper and lower bounds on MCT for 
some specific sampled impulse responses are subse- 
quently presented in Section VII. Two of the examples 
correspond to existing subscriber loop twisted-wire pairs. 

A. Statement of Results 

h(t),  we define the following functions 
To compute an upper bound on the MCT for arbitrary 

S + ( t , a )  = sup a+(s , cy ' )  (3.3a) 
O < S < I  

- ~ ~ / l ~ ~ ! I 0 1 ' I a  

S - ( t , a )  = inf ~ - ( s , a ' )  (3.3b) 
O < S I l  

01 I 01'5 ll/lll ,  

and 

S + ( t , a ) = a +  sup ( S + ( t , a ' ) - a ' )  (3.4a) 

S - ( t , a ) = a -  inf ( a ' - S - ( t , a ' ) )  (3.4b) 

where llhll, = /c;"lh(s)l ds. Also, S( t ,  a )  = S'(t ,  a )  - 
S - ( t , a ) ,  and S ( t , a )  is defined similarly. Note that 
U ( T ,  a )  5 S(T ,  a )  for any T and cy. 

The proof of the next theorem is given in the Ap- 
pendix. Throughout the rest of the paper it will be as- 
sumed that h( .) is bounded and piecewise continuous. 

Theorem 2: For any impulse response h ,  discrimination 
d > 0, and positive integer fi, 

a<a'lll/7111 

- l l / l [ I , I u ' < a  

Tmin( N ,  d )  2 n T *  (3.5) 
where T,,,(N, d )  is defined by (2.3), 2"- ' < N I 2", and 
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. ,, (3.6) Theorem 3: For any fixed T ,  a + ( ~ , a )  is a concave 
function of a. Also, 

I t  will be shown (see Theorem 7) that supn S ( T , ~ ) =  
s ( T ,  0). 2 )  S U ~ , ( T ( T , ~ ) = ( T + ( T , ~ ) - - ( T ~ ( T , ~ ) .  

1) a + ( ~ , a ) =  - a p ( T ,  - a )  

Let Proof: Without loss of generality we can assume that 
t = O  in (3.1). Let u I ( s )  and u,(s) be inputs such that 
a + ( T , a , ) =  h * u , (T )  and a + ( T , a 2 ) =  h * u,(T), so that (3'7) 
h * u J 0 )  = a I  and h * u,(O) = a,. Consequently, 

Note that T * I ?  for any h.  It is shown in the Appendix 
that if the impulse response h ( t )  satisfies h [ e u ,  + ( 1  - o ) ~ , ]  ( 0 )  = oh * ~ ~ ( 0 )  + ( 1  - e ) h  * ~ ~ ( 0 )  

=oa,  + ( l - O ) a *  (3.14) 

where 0 I 0 I 1, and 
where 

oa+ ( T , a l )  + (1  - 0 ) a +  ( T , a , )  

> 1, s10 , (3.9a) B ( t ) =  s ~ { 1 h ( - s )  i h ( t - ~ )  

\ , "  I 

at time t = ~ * ,  then T * = + .  For the impulse response 
functions considered in this paper, this condition is true 
for all t so that the simpler upper bound MCT I l/? 
applies. Note, in particular, that (3.8) is true for any 
positive and nonincreasing impulse response. An impulse 
response for which (3.8) is false for some values of t is 
h ( s )  = s, 0 < s I til, h(s )  = 0 elsewhere. 

Theorem 2 implies that 

N,,,( T ,  d )  I2'T'7*', (3.10) 

for all positive T and d ,  so that 

1 
T *  

M C T ( d ) < - - .  (3.11) 

Defining the max-min distance among N outputs in a 
given time interval [O, TI as 

= e h  * u , ( T )  + ( I -  e ) h  * U , (  T )  

= h * [ o ~ ,  + ( 1  - e ) ~ , ]  ( T )  

- < a+ [ T , e a ,  + ( 1  - o ) 4 ,  (3.15) 

which proves that a+ is a concave function of a. Property 
1) is obvious from the definition of U +  and a-. Property 
1) implies that ( T ~ ( T , ( Y )  is convex in a ,  so that v + ( T , ~ ) -  

( T - ( T , ~ )  is concave and is an even function of a. Conse- 
0 quently, supu (a+ - U -  ) occurs at (Y = 0. 

IV. DISCRETE-TIME FORMULATION AND LINEAR 
PROGRAM 

To calculate the spread function in practical situations, 
we consider the discrete-time case, and formulate the 
optimization problems as linear programs. The channel 
impulse response h( t )  and input u ( t )  are therefore vec- 
tors, and t ,  T ,  and s are integer-valued. Continuous-time 
computation of spread is considered in [SI. To make the 
problem have a finite number of variables, we pick T 
large enough so that the impulse response is negligibly 
small for s > T ,  and consider the signal only in the range 
0 I s I T .  The output of the channel at time T is 

d,,,(N,T) = max min SUP l y , ( t ) - y , ( t > l  (3.12) 
t ' l ~ " ' 3 L ' %  1 2 1  O l f l T  T 

y ( T )  = h ( T - s ) u ( s ) .  (4.1) 
s = 0 where 1 I i, j I N, lu,(t)l I 1 for all t > 0, and y,(O) = 0 

for each i ,  then Theorem 2 and the proof of Theorem 1 
imply that The calculation of a+ then becomes 

T 

max h( T - s ) u (  s) (4.2) 
s = 0 and 

subject to the constraints 
dm,,(2" ,nT+6")  2 S U p 2 ( c ( T + 6 ) - 2 c ( 6 ) )  (3.13b) 

6 f 

for all T >  0, and positive integers n ,  where 6* is the h ( t - s ) u ( s ) = ( Y  (4.3) 
s = 0 

value of 6 that achieves the supremum on the right. 
Solving the optimization problems embodied in (3.1) 

and (3.2) enables us to upper bound the maximum 
throughput of the channel. Before proceeding to the 
computation of the spread function, we first prove Some 
elementary facts about a+ and U-.  

[ U (  s) I 5 1 ,  s = 0; . . ,T .  (4.4) 

This is a linear program with T + 1 variables constrained 
to lie in the unit cube, with one additional equality 
constraint. To simplify the notation, we rewrite (4.2)-(4.4) 
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as 
maxg'x 

S 

f ' x  = a (4.5) 
1x1 I 1  

where g is the vector of impulse response coefficients and 
f is a shifted version of g. 

V. CHARACTERIZATION OF SOLUTIONS 

It is interesting to note that the dual program to (4.5) is 
the unconstrained I, approximation problem 

m;" { Ik - A f  II I + ha)  (5.1) 

where llxlll = C,Ix,I. This problem was considered by 
Laplace, among others [5],  who gave an O(n1ogn) algo- 
rithm for finding the optimal A .  Witzgall [61 shows that 
the linear program (4.5) can be solved directly by using a 
"weighted median" algorithm. Depending on the method 
for finding the weighted median, this leads to O(n log n )  
and O(n)  algorithms. We will next present a direct 
derivation of a somewhat different O(n log n )  algorithm, 
which will be fast enough for our application. 

We begin with some observations that will allow us to 
simplify the discussion without loss of generality. Note 
first that if a is negative, we can multiply the single 
constraint equation by - 1, so we will assume cy 2 0. Note 
next that if any f ,  = 0 we can take x ,  = sgn(g,) and 
effectively eliminate x ,  from the problem. Also, if f ,  < 0, 
we can replace x , ,  f,, and g, by - x , ,  - f,, and - g,, 
respectively, again without changing the problem. There- 
fore, we will assume that f, > 0 for all i. Finally, it will be 
convenient to order the ratios g / f  in decreasing order, 

The problem described by (4.5) is that of maximizing a 
linear function on the set resulting from the intersection 
of a hyperplane and the unit cube. Intuitively, there 
should always be a solution that lies on a bounding edge 
of the hypercube. This can be stated formally as follows. 

Theorem 4: For given vectors g and f there is an 
integer k and optimal solution x to the linear program 
(4.5) with the property that Ix,I = 1 for all i # k .  

Proofi Suppose in an optimal solution there are two 
indexes j ,  k ,  j < k such that lxll f 1 and lxkl # 1. By opti- 
mality, x ,  and xk solve the problem 

gl /f I 2 g2 / f 2  2 . . . 2 g n  / f n .  

g J x J  + gkxk (5.2) 

(5.3) subject to f , x ,  + fkxk  = c 

where c is a constant. 

x ,  by x A  + 6 , .  In order to keep f ' x  = c we must have 
Consider what happens if we replace x, by x ,  + 6, and 

As, + fk'k = O. (5.4) 

6 J f , ( g J / f , - g , / f k ) .  ( 5 . 5 )  

Using that fact, the change in the cost of the solution is 

If g, / f ,  = g, / f , ,  the cost is unaffected, so we can in- 
crease 6, until either lx,l or lxLl = 1. Otherwise, we can 
increase the cost by choosing 6, positive, which is a 
contradiction. 0 

From now on, we will always use the symbol k to 
represent an index with this property 

I x , J= l ,  i # k .  (5.6) 

We can now characterize the solution more precisely. 

the property (5.6) for which 
Theorem 5: There is always an optimal solution with 

+1, j < k  
I { -1, j > k  

x .  = (5 .7 )  

Proofi Choose an optimal solution satisfying (5.6) and 
suppose first that lxkl < 1 and the ratios g, / f , ,  i = 

1,2,3;* . ,n  are distinct. 
If j < k it follows from (5.5) that increasing x ,  while 

respecting (5.4) increases the cost, so it must be that 
x, = + 1, by optimality. Similarly, if j > k we would be 
able to increase the cost by decreasing x , ,  so x ,  = - 1. 

When x k  = + 1, the same argument shows that all x ,  to 
the left of xk are +1, but not necessarily that the x ,  to 
the right are -1. In this case, we can satisfy the condi- 
tions of the theorem by changing k to the position of the 
rightmost + 1 in the sequence of x values. Symmetrically, 
choose the leftmost - 1 when x k  = - 1. 

Finally we can deal with the case when the g , / J  are 
not distinct by a perturbation argument. In that case, 
replace the vector g by g + E ( ' ) ,  where E ( ' )  is a sequence 
of vectors that converges to zero, in such a way as to keep 
the ratios g,/f ,  distinct. From the corresponding se- 
quence of optimal solutions, choose an infinite subse- 
quence with the same value of k = K .  Every member of 
this subsequence must be the same optimal solution given 
by the conditions of the theorem and 

VI. AN O(n log n> ALGORITHM 

Theorem 5 states that one way to solve the linear 
program (4.5) is to find the set of indices k such that 

k - 1  n 

f ,  - f ,  + fkxk  = (Y, where lxkl 1. (6.1) 
, = I  1 = k + I  

Theorem 6: Given any real vector f and positive con- 
stant a,  where f, > 0 and C:=,f, 2 a,  then there exists a 
unique k such that either (6.1) is true or 

k n 

cf,- c f , = a .  (6.2) 
r = l  f = k + l  

Proofi Let 
I n 

'1 = - ff + f , '  
i = I  , = ] + I  
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I 
I 
I 
I 
I 
I 
I 
I 
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I I I I I I It 

- 

Then s, + f ,  = f,x, and 1)  Choose x,  according to (5.7) and calculate 

s, = s, ~, - 2 6 .  

IxhI I 1 implies that I s h  + f k l  I f h ,  or 

(6 .4 )  

( 6 ' 5 )  2 )  If lxkl I 1 stop. Otherwise, increment k .  - 2 f h  I Sh I 0. 

If sk = 0 or sk = - 2fk ,  then (6.4) implies that (6.5) and 
(6.2) are satisfied for unique k .  If - 2 f k  < sk < 0, then 
(6.4) implies that s, < - 2 6  for j > k ,  and s, > 0 for j < k .  
Consequently, (6.5) is satisfied for a unique k .  

If an optimal solution exists, we are assured of at least 
one such xk by Theorem 5. If the original problem is 
infeasible, no xk can be feasible. 

The Fk can be computed recursively using a constant 
It is now easy to see how to solve the problem: Starting number of operations for each value of k .  Remembering 

the assumptions a 2 0 and f ,  > 0, the recursive relation with k = 1 we have the following. 
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0.6 
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log,o(~rn,) 

( c )  
Fig. 3. (a) Oscillatory Impulse Response. (b) Upper and lower bounds on d,,, for impulse response in (a). Top curve is 

a(t,O) and bottom curve is lower bound (3.13b). (c) Upper and lower bounds on MCT for impulse response in (a). 
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can be written 

f , F , = a +  C f f  (6.7) 

(6.8) 

r > l  

f k t  I F k +  I = f k  Fk - f k +  I - f k .  

In this way, after sorting the g / f  ratios, the solution 
can be found in an additional O ( n )  arithmetic operations, 
and the entire solution in O(n  log n )  steps. 

It has been pointed out by Witzgall [6] that the k for 
which (6.1) or (6.2) is true can be found in O ( n )  opera- 
tions without sorting the g / f  ratios by using a median 
finding algorithm. Consequently, the solution to the linear 
program (4.5) can be found in linear time (O(n) ) .  Never- 

2 m  

I 

I I I I I I I 

theless, the n logn  term in the time complexity of our 
algorithm is due only to the sorting operation, and there- 
fore has a very small constant associated with it. In our 
case n is never more than 1000, so our algorithm is 
preferable in this application. 

VII. NUMERICAL RESULTS 

According to (3.13) and Theorems 7 and 8, 
 SUP^,<^ a(t',O) is an upper bound on the max-min dis- 
tance d,,,ax(2'7, nt), defined by (3.12), provided that (3.8) is 
true. An equivalent condition to (3.8), which is easy to 
check for the discrete-time problem, is that A I 1, where 
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d m a x  
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0.05 

0.0 

0 200 400 600 800 1000 1200 1400 1600 0 20 40 60 80 
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log lo(dmax)  

(C) 
Fig. 4. (a) Subscriber loop impulse response. (b) Upper and lower bounds on d,,, for impulse response in (a). (c) Upper 

and lower bounds on MCT for impulse response in (a) .  
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A is the solution to the 1, approximation problem (5.1), 
where LY = 0. This can easily be derived from the proof of 
Theorem 8 and the fact that (5.1) is the dual program to 
(4.5). In addition, it is easily shown [5]  that A = g, / f k ,  
where k is the index specified by (5.7). In each of the 
following three examples it was verified numerically that 
A I 1 for each (discrete) t .  

In the first example, we take the impulse response to 
be a sampled version of the artificially generated damped 
sinusoidal function 

h ( t )  = e-'cos2xt, t 2 0. (7.1) 
Fig. 3(a) shows the impulse response, and Fig. 3(b) shows 

0.14 
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0.10 

0.08 

0.06 

0.04 

0.02 

0.0 

0 50 100 150 200 

time (x 8x109 

(a) 

Fig. 5. 

the spread function 

V ( T  - t , O )  = v+(T - t , O ) - K ( T -  t,o) (7.2) 
where the signal is constrained to pass through the value 
(Y = 0 when t = 5. (There are 100 samples per unit time.) 
Also shown in Fig. 3(b) is the lower bound on d,,, given 
by (3.13b). It is interesting to note that the spread oscil- 
lates in synchronism with the impulse response, and actu- 
ally comes down to touch the lower bound at periodic 
points. Of course, the MCT(d) defined by (1.1) will 
nevertheless be a monotonically decreasing function of d. 
Upper and lower bounds on MCT(d) for this case are 
shown in Fig. 3(c). 
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(a) Subscriber loop impulse response. (b) Upper and lower bounds on d,,, for impulse response in (a). (c) Upper 
and lower bounds on MCT for impulse response in (a). 
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The impulse response for example 2 is shown in Fig. 
4(a), and was computed from a transmission line model of 
12 kilofeet of 24 gauge twisted-pair cable. This approxi- 
mates a typical telephone subscriber loop impulse re- 
sponse without bridge taps. The impulse response is not 
oscillatory, and as shown in Fig. 4(b), the spread function 
and corresponding lower bound are monotonic. The im- 
pulse response for example 3 is shown in Fig. 5(a) and 
was computed from a transmission line model of a sub- 
scriber loop with bridge taps. The secondary peak in the 
impulse response is a reflection from a bridge tap. 

For small receiver discriminations d, the upper and 
lower bounds on MCT obtained from Figs. 4(c) and 5(c) 
are within a factor of two to four. For the subscriber loop 
impulse response shown in Fig. 4(a), it appears that a 
receiver discrimination of d = 25 mvolts allows a rate 
between approximately 800 and 1600 kbps. For the im- 
pulse response shown in Fig. %a), a rate of 1 Mbps can be 
achieved with a receiver discrimination between approxi- 
mately 30 and 60 mV. 

VIII. DISCUSSION 

The preceding numerical results indicate that the dif- 
ference between the upper and lower bounds on MCT is 
greater for oscillatory types of signals than for "baseband" 
signals. This is due to the fact that for the oscillatory 
impulse response shown in Fig. 3(a), the derivative of the 
spread function near the origin increases with the fre- 
quency of oscillation. This is a direct consequence of the 
definition of spread, which is essentially the maximum 
amount the output amplitude can change in a given time 
in response to an amplitude limited input. 

To be more specific, consider a channel strictly ban- 
dlimited to [ w  - W/2, w + W/2], and any fixed d < 
2/,;"lh(t)l dt. It can be shown that the MCT and, of course, 
the lower bound, are bounded for all center frequencies 
w .  However, the corresponding upper bound on MCT 
tends to infinity with w .  Note that for this channel it is 
likely that the MCT depends on w .  In contrast, this is not 
true of the Shannon capacity for a power-limited additive 
Gaussian noise channel, and also €-capacity, which as- 
sumes an L ,  constraint at the transmitter and the L ,  
criterion to distinguish channel outputs [3]. 

We conclude by mentioning two alternative approaches 
to obtaining bounds on the MCT. The first approach is 
based on volume arguments, and is analogous to the 
technique used by Root to obtain upper and lower bounds 
on €-capacity [3]. In discrete-time the set of channel 
outputs in response to amplitude-limited inputs on a 
finite time interval is a parallelopiped in Euclidean space. 
Bounds on the MCT can be obtained by bounding the 
number of cubes, of length d on a side, that can be 
packed into this parallelopiped. The resulting upper 
bound is likely to be looser than the spread bound for 
impulse responses that are "close" to e-'; however, it is 
likely to be tighter than the spread bound for oscillatory 
types of impulse responses. 

Finally, one can, in principle, obtain an upper bound on 
the MCT for a channel with impulse response h ( t )  by 
considering a channel with impulse response h( t )  fol- 
lowed by an additive noise source n( t ) ,  where In(t)l < d/2 .  
The Shannon capacity of this channel with amplitude 
constrained inputs must be at least as large as MCT(d) 
evaluated for h( t ) .  This is easily shown by applying the set 
of inputs that achieves the MCT(d) to the preceding 
channel with noise. The receiver selects the message j 
corresponding to the channel output h * U , ,  which is clos- 
est in L, norm to the received signal. MCT(d) is there- 
fore an achievable rate in the Shannon sense. This is true 
for any random process n ( t )  such that In(t)l < d / 2  for all 
t .  The analogous approach in the context of €-capacity is 
considered in [9]. Of course, evaluating the Shannon 
capacity of the preceding channel with specific noise 
statistics and amplitude constrained inputs is likely to be 
very difficult. 

APPENDIX 
PROOF OF THEOREM 2 

Thc  proof consists of two parts. In the first, we consider a 
class of impulse response functions h ( t )  for which a+ and a- 
have certain properties, which arc listed next. For any impulse 
response in this class, we first prove that 

T,,,,( N , d )  2 n? ('4.1) 

where ? is defined by (3.7). The  second part of the proof then 
shows how the proof in part one can be  extended to apply to an 
arbitrary impulse response h ( t )  by using the functions s' and 
3- defined by (3.4) instead of a+ and a-. Following the proof 
of Theorem 2 we subsequently prove conditions for which f = T*, 

where T* is defined by (3.6). 
Let H denote a set of impulse response functions that have 

the following properties, i.e., h ( . )  E H if and only if 

I )  (T+ and a- arc continuous functions of t and a ;  
2) a + ( t , a )  is a nondecreasing function of t for fixed a 

(Theorem 3 then implies that a- ( t , a )  is a nonincreasing 
function of t ) ;  
a + ( t , a )  is a nondecreasing function of a for fixed t 
(Theorem 3 then implies that (T- ( t ,  a )  is a nondecreasing 
function of a);  and 
0 ~ a + ( t , a ) - a + [ t  -~ , , ,a - ( t , , , cu)]~a( t , , ,a )  for any a E 

1- Ilhll, llhllll and t 2 t,, 2 0. 

The set H is not empty. In particular, property 1)  is satisfied if 
h ( . )  is bounded and piecewise continuous, and properties 21-41 
are  satisfied for any positive nonincreasing impulse response 
(see [81 and Theorem 8). 

Wc  now provc (A.l)  given that h E H .  Let y , ;  . ' , y N  be a set 
of outputs corresponding to an optimal set of inputs, i.e., the 
outputs are distinguished in the minimum time Tm,, E T,,,(N, d ) .  
Consider the set of outputs for T I t I T,,,, where T is any fixed 
time such that 0 I T < T,,,. We will say that a set of outputs A 
has not been distinguished at time T if for any two outputs y ,  E A 
and y, E A ,  Iy , ( t ) -  y,(t)l < d for t I T. Define the sampling time 
for distinct outputs y ,  and y,  as 

3) 

4) 

('4.2) 
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Let A ( T )  denote a set of outputs that has not been distinguished 
at time 7 ,  and let t ,  = t , ,  be the first sampling time for y, which 
is greater than 7 ,  where y ,  E A ( T ) ,  i.e., 

t ,  = min { t,,lt,, > T ,  y, E A(  i - ) }  . (A.3)  
J 

The number of elements in the set A ( T )  will be denoted as 
1 A ( T ) ~ .  

Given some a,) E [  - l~hlll , l lh~ll] define the following subset of 
outputs, 

Y ( 7 1 a , ) )  = { y, lo- ( t ,  - 7 3 a, ) )  I y ,  ( t ,  ) 5 U + ( t ,  - 7 > a ( ) ) }  . 
( '4.4) 

Given any y ,  E Y ( T , ( Y ( , ) ,  we can replace it by the following 
function j ,  for T I t 5 T,,": 

Y , ( T ) = ~ , , ,  j j , ( t ) = y , ( t ) ,  t z t , .  

P, and the set of y ,  corresponding to all ji's that satisfy (A.7b) 
as P2, and observe that neither of these sets can be empty. 

We now show that the set P,(P,) satisfies the conditions of 
Lemma A. l  for 7 = t *  and aO=j j i ( t * )  where y ,  E P l ( P z ) .  In 
particular, we show that the set PI has not been distinguished at 
time I * ,  and that yi E Y[t*,j ,( t*)].  Let tmi, = min, t,. Observe 
that t* is independent of any particular output y , ,  and that 
t *  I I,,,. If t* < t,,,, then the original set of outputs A ( 7 )  = PI 
U P2 has not been distinguished at time t * .  If t* = tmin, then at 
timc t* any member of PI is separated by d from any member 
of Pr ;  however, each set of outputs PI and Pz has not been 
distinguished. (Otherwise, there would exist some sampling time 
t ,  < tmi,.) Consequently, there are at least max(lP,I, JP,I) 2 IN /21  
outputs that have not been distinguished a t  f = f*. 

Suppose that y ,  E P I .  The assumption y ,  E Y ( T , ( Y ~ , )  implies 
that 

1 d S )  
-=<  s 51, - 7  U +  (1 - 7 ,  a ( ) ) ,  7<t<t , '  

. (A.6a)  
a - [ t  - t , ' ,o+( t , '  - * , a , , ) ] ,  t ;  I t < t ,  Assume that the supremum is achieved by the input u*(s), and 

let y * ( t * )  denote the associated output value at time t*. Ob- 
serve that y * ( t * )  I o+(t* - T ,  ao)  = j , ( t * ) .  Consequently, 

a - ( t  - T > a I l ) ,  T I t < f :  
(A.6b) a+( t ,  - 7,ao)  

? 'A t )=  a + [ t  - t , ' ,o-(t , ' -  7 , a 0 ) ] ,  t: I t < t ,  
I sup { y ( t ,  - t*)(y(O) = Y * ( t * ) ,  I.(s)ls 1) 

L d S )  
- -z<  s 5 I ,  - f *  

i 
where t,' is selected so that j , ( t , ) =  y,( t , ) .  The definition of 
Y ( T , ~ , , )  and property 1) ensures that such a t,' exists. We will 
refer to this substitution of j ,  for yi as the leftpinch substitution. 

Lemma A.1: Given any subset of outputs, A ( T ) ,  ;hat has not 
and 

n+, where 2 r z -  I < 

= a + [ t , - t * , y * ( t * ) ] ~ a + [ t , - t * , Y , ( t * ) ] ,  (A.lO) 

been distinguished a t  timc T ,  and such that  IA(T) l  = 

y ( T , a , ) ) ,  A ( T )  for Some 
M I 2". 

where the last inequality follows from property 3). Also, since 
t ,  - t *  2 t ,  - t ;  where t,' is defined by (A.6), and j j , ( t * )  5 j j ( t l )  
(follows from property 211, properties 2)  and 3) imply that 

then . - min 

Proof The proof is by induction on the size of the set A(7) .  
Suppose that lA(7)1= 2. Denote the elements of A ( 7 )  as y ,  and 
y i ,  and assume that y,( t , )> y,(t,),  where t ,  is defined by (A.3). 
Since y ,  and y, are elements of Y ( T , ~ , , ) ,  we can perform the 
left pinch substitution giving j ,  and j Let tki, = rnin(f:, t,') and 
tkaX = max(t,',t,') where t,' is defined in (A.6). Divide the inter- 
val [ ~ , t , ]  into the subintervals I, = [ ~ , t & ~ " ] ,  I, =[tiln,t&,,],  and 
I, = [t;,,, t ,]. Since h ( . )  E H ,  property 2)  implies that j , ( t ) -  j , ( t )  
is a nonincreasing function for t E I,, so that j,(tkaX)- 
j , ( t k a x ) 2  d. Replacing t by tLax and t,, by thin in property 4) 
implies that j j ( r ; i , ) -  j,(tki,) 2 j , ( t k a X ) -  j,(t,',,ax) 2 d. Conse- 
quently, there exists a t* I t&,, such that j , ( t * ) -  j , ( t * )  = d. 
(A.6) therefore implies that 

j , ( t * ) = U + ( t * -  T , a 0 ) ,  (A.7a) 

j , ( f * )  =6 ( t *  - T , a I l ) ,  (A.7b) 

1 :  

and 

j , (  r * )  - j , (  t * )  = a(  t* - 7 ,  a ( , )  = d .  ('4.8) 

y,( t , )  = U -  [ t ,  - t,', j ,  ( t,')] 2 6 [ t ,  - t * ,  j , (  t * ) ] .  (A.11) 

(A.9)-(A.11) imply that y ,  E Y[t*,j,(t*)]. It is easily verified that 
this remains true if y ,  E P,. Consequently, the induction as- 
sumption implies that T,,, - * 2 ( t *  - T I +  n i  > ( n  + 1)? where 

0 
T o  complete the first part of the proof we need only verify 

that any set of N outputs that are distinguished in time 
T,,,(N,d) must satisfy the conditions of Lemma A.l  at t = 0. 
Since y,(O) = 0 for each i ,  the set of outputs y,, i = 1; . ., N ,  has 
not been distinguished at t = 0. Finally, the definition of (T' 

implies that y , ( t )  E Y(0,O) for each i = 1; . ., N .  This completes 
the proof that MCT I 1 / ?  for h E H .  

We now complete the proof of Theorem 2 by showing that the 
proof of Lemma A.l  can be extended to arbitrary h ( t )  by 
substituting 5' and s-, defined by (3.3) and (3.4), for (T+ and 
o-, respectively. Of course, 7 in the statement of Lemma A . l  
must be replaced by T *  defined by (3.6). It is ezisily verified that 
the proof of Lemma A.l remains valid if S' satisfies the 
following properties. 

2"- '  < [ N / 2 ]  I 2", or equivalently, 2" < N I  2 " + ' .  

Since a(t* - ~ , a ( , )  < s u p c r a ( t *  - T , C Y ) ,  it follows that T,,, - 7 > 
t* - 7 2 ?, which proves the lemma for the case IA(T)I = 2. 

Assume now that ~A(T) I  = N ,  and that Lemma A. l  is true for 
I A ( T ) ~ =  IN/21,  where N is a positive integer. Denote the ele- 
ments of AT)  as y , ;  . ., y N .  Since the members of A ( T )  are also 

1) o + ( t , a ) i  S ' ( t ,a )  and c r - ( t , a ) ~  S - ( t , a ) ,  for all 

2)  S satisfies properties 1)-4) satisfied by a ' when h E H .  
3) (A.12) 

t > O  and a ~ [ - l l h l l ~ , l l h l l , ] .  

S + ( t ,  a )  I s+ [ t  - t,,, S + ( t , , ,  all. 
in Y(T,cx,,), we can again perform the left pinch substitution 
giving the functions j , ;  . . , j j , , , .  Observe that the argument pre- 
ceding (A.7) again applies to each j j , ,  i = 1; . ., N ,  so that j , ( t * )  
satisfies either (A.7a) or (A.7b) for each i = 1; . ., N. Denote the 
set of outputs y ,  corresponding to all j , ' s  that satisfy (A.7a) as 

This guarantees that (A.10) remains true when (T' is replaced 
by s', for t 2 t,, > 0. In what follows we still assume that h ( . )  is 
bounded and piecewise continuous so that 3' is continuous. 

We now prove the preceding statements, which will establish 
Theorem 2. Property 1) follows directly from the definition of 
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S', and (A.12) follows directly from (A.10) and definitions (3.3) 
and (3.4). The next lemma establishes property 2). 

Lemma A.2: S ' ( t ,a )  is a nondecreasing function of t for 
fixed a ,  and a nondecreasing function of a for fixed t .  Also, 

1) 
2) ~ ~ S ' ~ t , a ~ - S + [ t - t , , , S ~ ~ t , , , a ~ I ~ S ~ t , , , a ~ ,  for any 

Proof: The definition (3.3) directly implies that S ' ( t , a )  is a 
nondecreasing function of t for fixed a and a nondecreasing 
function of a for fixed t .  Consequently, (3.4) implies that 
S ' ( t , a )  is a nondecreasing function of t for fixed a. Assume 
that S ' ( t ,a , )  < S'(t ,a,)  for a1 > a z .  Definition (3.4) implies 
that there exists an a; 2 a2 such that 

S + ( t ,  a )  = - s- ( t ,  - a )  

t 2 t,, > 0. 

a l +  SUP (S+(t,ai)-aLY;) < a , + ( S ' ( t , a $ ) - a ; ) .  (A.13) 
ai 2 a ]  

If a; 2 a l r  then taking a ;  = a ;  leads to a contradiction. Conse- 
quently, a 2  I a; < a l .  But this implies that 

S' ( t , a , )  I 3' ( t , a l )  < S' ( f , a 2 )  

= a 2  + S ' ( t , a i ) -  a i  I S ' ( t , a ; ) ,  (A.14) 

which is a contradiction since a$ < a ,  and S ' ( t ,  a )  is a nonde- 
creasing function of a. This establishes that S' ( t ,  a )  is a nonde- 
creasing function of a. 

Statement 1) follows directly from Theorem 3 and (3.3), (3.4). 
To  prove 21, observe that the definition (3.4) implies that 
S'(t  - [, , ,a,)-  S'(t  - t,,, a,) is a nonincreasing function of t 
for a l > a ,  and t > t , , 2 0 .  Taking a,=S'( t , , ,a)  and a*= 
S-( t , , ,a) ,  (A.12) implies that 

a1 - a 2 = S ( ~ , ) , a ) 2 S + ( t - f [ ) , a 1 ) - S + ( ~ - ~ ( ) , a 2 )  

2 S' ( t , a )  - S' ( t  - t,,,",) 2 0 (A.15) 
for t 2 t , , ,  where the last inequality follows from the facts that 
a 2  = S-( t , , ,a)  I a and S'( t ,a)  is a nondecreasing function of f 
and a.  0 

Remark: The  proof of Lemma A.l  can be modified slightly to 
improve the lower bound on Tmin given by Theorem 2. Define a 
set of bifurcating functions f,,. . . , fN  as follows. 

1) f j ( 0 ) =  a for each i ,  where - Ilhll, I a I Ilhll,. 
Define the separation time between f l  and f ,  as 

71, = min(t l I f1( t ) - f , ( t )J  = d } >  (A.16) 

and assume that T ~ , ~ ~ ,  < T , , ~ ~ ,  < . . . < t l , , n N - , ,  are the 
successive separation times for f,. (Separation time is 
used instead of sampling time to emphasize the distinc- 
tion between y,  and 6.) 
Either f , ( t ) =  ~ ' [ t , f l ( f , , n , j ) l  or  f l ( t ) =  S - [ t , f l ( t l , n r , ) l  for 
t l , , , l j  < t < t l , , , l ,+ l ,  j = 1,. . ., N - 2. 
fi,. . . , fN  are defined similarly. 

2) 

The  number of functions that increase (decrease) at  each 
separation time has not been specified. This is determined by 
some rule R. According to a particular rule, R ,  if m functions 
are the same for 0 I t I i, where i is a separation time, then 
l m / 2 ]  functions are equal to S' at  t = i+. 

Let T,,,,(N,d,a; R )  be the time it takes to distinguish N 
functions fl; . . , fN given by the previous construction, assum- 
ing that the functions bifurcate according to rule R. Clearly, for 
any rule R ,  

Th, , (2" ' , d , a ;R)  2 mT*, (A.17) 

where T *  is defined by (3.6). It is easily verified that the 
preceding proof can be slightly modificd to show that 

Tmi,( N , d )  2 minT ,,,, ( N , d , O ;  R ) .  (A.18) 

This bound is tighter than the upper bound given by Theorem 2; 
however, it is more difficult to compute for arbitrary impulse 

We now derive conditions on the impulse response h ( . )  that 

R 

response h. 0 

imply T* = ?. 

Theorem 7: For any impulse response h and any t 2 0, 

Note that Theorem 7 and (3.4) imply that supcr S(t ,  a )  = s(t, 0). 
Theorem 7, the definition of T * ,  and the fact that S ( t , a )  is a 
nondecreasing function of t imply that if S ( T * , ~ ) =  S(T*,O),  
then S ( T * , ~ ) =  a ( ~ * , 0 ) ,  which implies that T *  = ?. T o  prove 
Theorem 7 the following lemma is needed. 

Lemma A.3: For any impulse response h and fixed time t ,  

sup , ,S ( t , a )=  S(t ,O)= sup[ ,s , , s ,a( t ' ,O) .  

s u p a + ( t , ~ ) = a + ( t , ~ , , ) = I l ~ I I I ,  (A.19) 
N 

where a,,(t)= l!!=sgn[h(t - s ) ] h ( -  s)ds 

Proof: Choose thc input u ( t ) =  sgn[h(t  - s)] and note that 
0 

Proof of Theorem 7: Theorem 3 and the definition of S ' ,  
(3.3), imply that S ( t , a )  is a concave and even function o f  a ,  
which implies the left equality. To prove the right equality it is 
sufficient to show that 

a ' ( t , a ) i  ilhlll for any t and a.  

S ' ( t , O ) =  sup o+( t ' , a ' )  = SUP a ' ( t ' ,O) .  (A.20) 
Osf'sr O S f ' S f  

~ /lhll] 5 N ' S  0 

Theorem 3 and Lemma A.2 will then imply that S - ( t , O ) =  
sup,, ~ ,, ~ , U -  ( t ' ,  0). Suppose (A.20) is false. Then there exists a 
time 

a + ( i , a ' )  > sup a + ( t ' , 0 )  > a + ( f , O ) .  (A.21) 

Since a' is a concave function of a ,  it has a unique maximum 
at a,, defined in Lemma A.3, and is an increasing function of a 
for - llhll, I a I ao. Therefore (A.21) implies that a&f) I 0. It 
is easily shown from the definition that a,,(t) is a continuous 
function of t for bounded and piecewise continuous h ( .  ). Fur- 
thermore, a&0) = llhll l  > 0. Consequently, there exists some 
time to  I f for which ao(t,,) = 0, which implies that 
supO~, , . , ,a ' ( t ' ,0)= o'(t,,,O)= Ilhil,, which contradicts (A.21). 

0 

Theorem 8: Suppose that a(t ,O) = S( t , 0 ) .  Then S(t ,0) = 

t and an a' < 0 such that 

0 s I ' S  f 

a(t ,O) if and only if 

where B ( t )  and B ( t )  are defined by (3.9). 

Theorems 7 and 8 imply that if (A.22) is true for t = T * ,  and if 
( ~ ( ~ * , O ) = s u p , , ~ , , ~ . ~ ( ~ ( t ' , 0 ) ,  then T*=?. 

Proof: Theorem 3 implies that it is sufficient to show that 
(A.22) is true if and only if s ' ( t ,O)=a+( t ,O) .  Since a '( t ,O)= 
S+(t,O),  S + ( ~ , O )  = a+(r,O) if f ( t , a )  = a + ( t , a ) -  a is monotoni- 
cally decreasing in a for 0 I a I Ilhll,. Since a+ is a concave 
function of a ,  d f / d a  is a decreasing function of a for a 2 0. 
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Therefore a’(t,O)= S’(t,O) if and only if REFERENCES 

(A.23) 

and that h is a monotonically decreasing function of a. Conse- 
quently, S(t ,O)=a(t ,O) if and only if A ( f , O ) <  1, which com- 

0 bined with (A.24) implies (A.22). 
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