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Abstract—The data for many classification problems, such as
pattern and speech recognition, follow mixture distributions. To
quantify the optimum performance for classification tasks, the
Shannon mutual information is a natural information-theoretic
metric, as it is directly related to the probability of error. The
mutual information between mixture data and the class label does
not have an analytical expression, nor any efficient computational
algorithms. We introduce a variational upper bound, a lower
bound, and three estimators, all employing pair-wise divergences
between mixture components. We compare the new bounds and
estimators with Monte Carlo stochastic sampling and bounds
derived from entropy bounds. To conclude, we evaluate the
performance of the bounds and estimators through numerical
simulations.

Index Terms—Mixture distribution, classification, Shannon
mutual information, bounds, estimation, mixed-pair

I. INTRODUCTION

A. Motivation

We study the performance of classification tasks, where
the goal is to infer the class label C from sample data x.
The Shannon mutual information I(x;C) characterizes the
reduction in the uncertainty of the class label C with the
knowledge of data x and provides a way to quantify the
relevance of the data x with respect to the class label C. As the
mutual information is related to probability of classification
error (Pe) through Fano’s inequality and other bounds [1]–
[3], it has been widely used for feature selection [4], [5],
learning [6], and quantifying task-specific information [7] for
classification.

Statistical mixture distributions such as Poisson, Wishart
or Gaussian mixtures are frequently used in the fields of
speech recognition [8], image retrieval [9], system evaluation
[10], compressive sensing [11], distributed state estimation
[12], hierarchical clustering [13] etc. As a practical example,
consider a scenario in which the data x is measured with a
noisy system, eg. Poisson noise in an photon-starved imaging
system or Gaussian noise in a thermometer reading. If the
actual scene (or temperature) has a class label, e.g. target
present or not (the temperature is below freezing or not), then
the mutual information I(x;C) describes with what confidence
one can assign a class label C to the noisy measurement data
x.

The goal of this paper is to develop efficient methods
to quantify the optimum performance of classification tasks,
when the distribution of the data x for each given class label,
pr(x|C), follows a known mixture distribution. As the mutual
information I(x;C), which is commonly used to quantify task-
specific information, does not admit an analytical expression
for mixture data, we provide analytical expressions for bounds
and estimators of I(x;C).

B. Problem Statement and Contributions

We consider the data as a continuous random variable x
and the class label as a discrete random variable C, where C
can be any integer in [1,Π] and Π is the number of classes.
The bold symbol x emphasizes that x is a vector, which can
be high-dimensional. We assume that, when restricted to any
of the classes, the conditional differential entropy of x is well-
defined, or in other words, (x, C) is a good mixed-pair vector
[14]. The mutual information between the data x and the class
label C can be defined as [15]

I(x;C) = KL( pr(x, C)||Pr(C) · pr(x) )

=
∑
C

∫
dx pr(x, C) ln

pr(x, C)

Pr(C) · pr(x)
.

(1)

When pr(x) is a mixture distribution with N components,

pr(x) =

N∑
i=1

wi pri(x), (2)

where wi is the weight of component i (wi ≥ 0 and
∑
i wi =

1), and pri is the probability density of component i. The
conditional distribution of the data, when the class label is c,
also follows a mixture distribution.

In this work, we propose new bounds and estimators of the
Shannon mutual information between a mixture distribution x
and its class label C. We provide a lower bound, a variational
upper bound and three estimators of I(x;C), all based on
pair-wise distances. We present closed-form expressions for
the bounds and estimators. Furthermore, we use numerical
simulations to compare the bounds and estimators to Monte
Carlo (MC) simulations and a set of bounds derived from
entropy bounds.
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C. Related works

Although estimation of conditional entropy and mutual
information has been extensively studied [16]–[19], research
has focused on purely discrete or continuous data. Nair et al.
[14] extended the definition of the joint entropy to mixed-pairs,
which consists of one discrete variable and one continuous
variable. Ross [20], Moon et al. [21] and Beknazaryan et
al. [15] provided methods for estimating mutual information
from samples of mixed-pairs based on nearest-neighbor or
kernel estimator. Gao et al. [22] extended the definition of
mutual information to the case that each random variable can
have both discrete and continuous components through the
Radon-Nikodym derivative. Here our goal is to study mutual
information for mixed-pairs, where the data x is continuous
and the class label C is discrete.

When the underlying distribution of the data is unknown,
the mutual information can be approximated from samples
with a number of density or likelihood-ratio estimators based
on binning [23], [24], kernel methods [25]–[27], k-nearest-
neighbor (kNN) distances [28], [29], or approximated Gaus-
sianity (Edgeworth expansion [30]). To accommodate high
dimensional data (such as image and text) or large datasets,
Gao et al. [31] improved the kNN estimator with a local
non-uniformity correction term; Jiao et al. [32] proposed a
minimax estimator of entropy that achieves the optimal sample
complexity; Belghazi et al. [33] presented a general purpose
neural-network estimator; Poole et al. [34] provided a thorough
review and several new bounds on mutual information that is
capable to trade off bias for variance.

However, when the underlying data distribution is known,
the exact computation of mutual information is tractable only
for a limited family of distributions [35], [36]. The mutual
information for mixture distributions has no known closed-
from expression [37]–[39]; hence MC sampling and numerical
integration are often employed as unbiased estimators. MC
sampling of sufficient accuracy is computationally intensive
[40]. Numerical integration is limited to low-dimensional
problems [41]. To reduce the computational requirement, de-
terministic approximations have been developed using merged
Gaussian [8], [42], component-wise Taylor-series expansion
[43], unscented transform [44] and pair-wise KL divergence
between matched components [9]. The merged Gaussian and
unscented transform estimators are biased, while the Taylor
expansion method provides a trade-off between computational
demands and accuracy.

Two papers that have deeply inspired our work are [8]
and [45]. Hersey et al. [8] proposed a variational upper
bound and an estimator of the KL divergence between two
Gaussian mixtures by pair-wise KL divergence. Hersey et al.
[8] has shown empirically that the variational upper bound
and estimator perform better than other deterministic approx-
imations, such as merged Gaussian, unscented transform and
matched components. Kolchinsky et al. [45] has bounded
entropy of mixture distributions with pair-wise KL divergence
and Chernoff-α (Cα) divergence and demonstrated through

numerical simulations that these bounds are tighter than other
well-known existing bounds, such as the kernel-density esti-
mator [41], [46] and the expected-likelihood-kernel estimator
[47]–[49]. Our results are not obvious from either paper, as
the calculation of I(x;C) involves a summation of multiple
entropies or KL divergences. Instead of providing bounds for
each term (entropy) in the summation, we directly bound and
estimate the mutual information.

II. MAIN RESULTS

In this section, we provide three estimators of I(x;C)
and a pair of lower and upper bounds. All bounds and
estimators are based on pair-wise KL divergence and Cα
divergence. Furthermore, we provide proofs of the lower and
upper bounds. Before presenting our main results, we start
with a few definitions. The marginal distribution on the class
label C is

Pr(C = c) = Pc =
∑
i∈{c}

wi. (3)

Note that
∑Π
c=1 Pc = 1 and {c} is the set of the components

that have class label C = c. The conditional distribution of
the data, when the class label is c, is given by

pr(x|c) =
∑
i∈{c}

wi
Pc

pri(x). (4)

Expressing the marginal distribution in terms of the conditional
distribution, we have

pr(x) =
∑
c

Pc · pr(x|c). (5)

The joint distribution of the data and class label is

pr(x, c) = Pc · pr(x|c) =
∑
i∈{c}

wipri(x) (6)

A. Pair-wise distances

The Kullback-Leibler (KL) divergence is defined as

KL(pri||prj) =

∫
dx pri(x) ln

pri(x)

prj(x)
. (7)

The Cα divergence [50] between the two distribution pri(x)
and prj(x) is defined as

Cα(pri||prj) = − ln

∫
dx prαi (x) pr1−α

j (x), (8)

for real-valued α ∈ [0, 1]. More specifically, when α = 1/2,
the Chernoff divergence is Bhattacharyaa distance.

B. Bounds and estimates of the mutual information

We adopt the convention that ln 0 = 0 and ln(0/0) = 0. An
exact expression of the mutual information is

I(x;C) = H(C)−
N∑
i=1

wiEpri

[
ln

∑N
j=1 wjprj∑

k∈{Ci} wkprk

]
, (9)

where {Ci} is the set of component index that is in the same
class with component i and Epri [f ] =

∫
dx pri(x)f(x) is



the expectation of f with respect to the probability density
function pri.

Two approximations of I(x;C) are

ÎCα(x;C) = H(C)−
N∑
i=1

wi ln

∑N
j=1 wje

−Cα(pri||prj)∑
k∈{Ci} wke

−Cα(pri||prk)
,

ÎKL(x;C) = H(C)−
N∑
i=1

wi ln

∑N
j=1 wje

−KL(pri||prj)∑
k∈{Ci} wke

−KL(pri||prk)
.

(10)

Another approximation of I(x;C) is

ÎKL&Cα(x;C) = H(C)−
N∑
i=1

wi ln

∑N
j=1 wje

−Dij∑
k∈{Ci} wke

−Dik
,

where
1

Dij
=

1

2

(
1

KL(pri||prj)
+

1

Cα(pri||prj)

)
.

(11)

As D is a function of both KL and Cα divergences, we denote
this estimator with the subscript ‘KL&Cα’.

A lower bound on I(x;C) based on pair-wise Cα is

Ilb Cα = −
Π∑
c=1

Pc ln

[
Π∑
c′=1

Pc′ ·min(1, Qcc′)

]
, where

Qcc′ =
∑
i∈{c}

∑
j∈{c′}

(
wi
Pc

)αc (wj
Pc′

)1−αc
e−Cαc (pri||prj),

(12)

and min(·) is the minimum value function.

A variational upper bound on I(x, C) based on pair-wise
KL is

Iub KL = H(C)−
∑
m

Π∑
c=1

φm,c ln

∑Π
c′=1 φm,c′e

−KL(prm,c,prm,c′ )

φm,c
,

(13)
where φm,c are the variational parameters and detailed expla-
nation of the notations is given in Section II-D.

C. Proof of the lower bound

We propose a lower bound on I(x;C) based on pair-
wise Cα divergences. For ease of notation, we denote the
conditional distribution pr(x|C = c) as prc. We first make
use of a derivation from [45] and [51] to bound I(x;C) with

class-wise divergence Cα(prc,prc′):

I(x;C) =
∑
c

Pc

∫
dx prc · ln

prc
pr(x)

=−
∑
c

Pc

∫
dx prc · ln

∑
c′ Pc′pr1−αc

c′

pr1−αc
c

−
∑
c

Pc

∫
dx prc · ln

pr(x)

prαcc
∑
c′ Pc′pr1−αc

c′

≥−
∑
c

Pc ln
∑
c′

Pc′

∫
dx prαcc · pr1−αc

c′

− ln

∫
dx
∑
c

Pcpr1−αc
c · pr(x)∑

c′ Pc′pr1−αc
c′

=−
∑
c

Pc ln

[∑
c′

Pc′e
−Cαc (prc||prc′ )

]

(14)

This inequality follows from Jensen’s inequality and the con-
vexity of function ln(x). The parameter αc, which is specific
for a class c, can be any value in [0, 1].

The class-wise Cα divergence has a minimum value of zero
and the minimum is achieved when the two class has the same
distribution. Furthermore, we can bound the Cα divergence
through the subadditivity of the function f(x) = xα when
0 ≤ α ≤ 1. In other words, as f(a + b) ≤ f(a) + f(b) for
a ≥ 0 and b ≥ 0, the Cα divergence between the conditional
distributions prc and prc′ can be bounded by:

e−Cα(prc||prc′ ) =

∫
dx

∑
i∈{c}

wi
Pc

pri

α  ∑
j∈{c′}

wj
Pc′

prj

1−α

≤ min

1,
∑
i∈{c}

∑
j∈{c′}

(
wi
Pc

)α(
wj
Pc′

)1−α

e−Cα(pri||prj)

 ,
= min(1, Qcc′).

(15)

Therefore, Equation 12 is a lower bound on I(x;C).
The best possible lower bound can be obtained by finding

the parameters αc that maximize Ilb Cα , which is equivalent
to minimize

∑
c′ Pc′min(1, Qcc′). In a special case when all

components are symmetric and identical except the center
location, eg. homoscedastic Gaussian mixture, e−Cα(pri||prj)

achieves minimum value at α = 1/2 [45].

D. Proof of the variational upper bound

Here we propose a direct upper bound on the mutual infor-
mation I(x;C) using a variational approach. The underlying
idea is to match components from different classes. To pick
one component from each class, there are N1 × N2... × NΠ

combinations, where Nc is the number of components in
class c. Denote an integer M =

∏Π
c=1Nc. A component

i in class c can be split into M/Nc components with each
component corresponding to a component-combination in the
other Π − 1 classes. Mathematically speaking, we introduce



the variational parameters φij ≥ 0 satisfying the constraints∑M/Nc
j=1 φij = wi. Using the variational parameters, we can

write the joint distribution as

pr(x, c) =
∑
i∈{c}

wipri =
∑
i∈{c}

M/Nc∑
j=1

φijpri. (16)

Note that the set {c} has Nc components. By rearranging
indices (i, j) into a vector m of length M , we can simplify
the joint distribution to

pr(x, c) =

M∑
m=1

φm,cprm,c(x), (17)

where the subscript c emphasizes that each class has a unique
mapping from (i, j) to m and prm,c(x) equals to the corre-
sponding pri(x).

With this notation, the marginal distribution of the data x
is

pr(x) =

Π∑
c=1

pr(x, c) =

Π∑
c=1

M∑
m=1

φm,cprm,c(x). (18)

We further define a mini-batch m as

bm(x) =

Π∑
c=1

φm,cprm,c(x). (19)

Each mini-batch contains Π components with one component
from each class. With this definition, the marginal distribution
of the data can be written as pr(x) =

∑M
m=1 bm(x). The

probability of a component in the mth batch is Pm =∑
c φm,c. The probability density function of the mth batch

is pr(x|m) = bm(x)/Pm.
Now we use Jensen’s inequality, or more specificly log-sum

inequality [52], to bound I(x;C) by batch-conditional entropy,

I(x;C) = H(C) +
∑
c

∫
dx pr(x, c) · ln pr(x, c)

pr(x)

= H(C) +
∑
c

∫
dx

(∑
m

φm,cprm,c

)
ln

∑
m φm,cprm,c∑

m bm

≤ H(C) +
∑
c

∫
dx
∑
m

(
φm,cprm,c ln

φm,cprm,c
bm

)

= H(C) + H(x|m)−H(C|m)−
N∑
i=1

wiHi(x)

(20)

where H(C) = −
∑
c Pc lnPc is the entropy of the class

label; H(x|m) =
∑
m PmH(pr(x|m)) is the batch-conditional

entropy of the data; H(C|m) =
∑
m PmHm(C) is the batch-

conditional entropy of the label, where Hm(C) is the entropy
of the class label for batch m, and Hi(x) = H(pri(x)) is the
entropy of the ith component.

We can further bound the batch-conditional entropy with
pair-wise KL divergence as

I(x;C) ≤ H(C) + ĤKL(x|m)−H(C|m)−
N∑
i=1

wiHi(x)

= H(C)−
∑
m

∑
c

φm,c ln

∑
c′ φm,c′e

−KL(prm,c,prm,c′ )

φm,c

:= Iub KL

(21)

where ĤKL(x|m) is an upper bound of the batch-conditional
entropy and the inequality has been proved in [45].

The tightest upper bound attainable through this method
can be found by varying parameters φm,c to minimize Iub KL.
The minimization problem has been proved to be convex (see
Appendix A). The upper bound Iub KL can be minimized
iteratively by fixing the parameters φm,c′ (where c′ 6= c) and
optimizing parameters φm,c under linear constraints. At each
iteration step Iub KL is lowered, and the convergent is the
tightest variational upper bound on the mutual information.

Non-optimum variational parameters still provide upper
bounds on I(x;C). There are M × Π variational parameters,
M × Π non-equality constraints and N equality constraints.
When the number of classes or components is large, the
minimization problem will be computationally intensive. A
non-optimum solution that is similar to the matched bound [8],
[53] can be obtained by dividing all components into max(Nc)
mini-batches by matching each component i to one component
in each class. Mathematically speaking, φij = wi for one
pair of matched (i, j) and φij = 0 otherwise. To find the
mini-batches, the Hungarian method [54], [55] for assignment
problems can be applied.

III. NUMERICAL SIMULATIONS

In this section, we run numerical simulations and compare
estimators on mutual information between mixture data and
class labels. We consider a simple example of binary classifi-
cation of mixture data, where the mixture components are two-
dimensional homoscedastic Gaussians. The component centers
are close to the class boundary and uniformly distributed
along the boundary. The location of the component centers
are plotted in the Figure 1(a), where the component centers
are represented by a red star (class 1) or a yellow circle
(class 2). Each class consists 100 two-dimensional Gaussian
components with equal weights. The components have the
same covariance matrix σ2I , where I is the identity matrix
and σ represents the size of the Gaussian components. The
conditional distribution pr(x|c = 2) is plotted in the insert of
Figure 1(a) for σ = 0.5. When σ is larger, the components
of the mixtures distribution are more connected; when σ
is smaller, the components are more isolated. Estimates of
I(x;C) are calculated for varying σ.

A pair of obvious bounds of I(x;C) are [0,H(C)], where
H(C) is the entropy of the class label Pr(C). Another pair



(a) (b)

Fig. 1: (a) The locations of the center of the components and the mixture distribution pr(x|c = 2) when σ = 0.5 (insert). (b)
Estimates of I(x;C).

of upper and lower bounds of I(x;C) can be derived from
bounds on mixture entropy as

Ilb 2H = Hlb(x)−Hub(x|C)

Iub 2H = Hub(x)−Hlb(x|C),
(22)

where the upper and lower bound of entropy based on pair-
wise KL and Cα divergences have been provided by [45].
These bounds on I(x, C) are based on two entropy bounds,
hence the subscript ‘2H’.

We evaluate the following estimates of I(x, C):
1) The new variational upper bound and the new lower

bound, Iub KL and Ilb Cα , are plotted in dark red and
blue solid lines, respectively.

2) The estimates based on the pair-wise KL, Cα or D (a
function of both KL and Cα divergences) are plotted in
yellow, light blue and black dashed lines, respectively.

3) The true mutual information, I(x, C), as estimated by
MC sampling of the mixture model (grey solid line).

4) The upper and lower bounds Ilb 2H and Iub 2H are plotted
in orange and green dot-dashed lines, respectively.

The obvious bounds on I(x, C), which are [0, H(C)], are also
presented by an area in grey. The Monte-Carlo simulation
results, which can serve as the benchmark, are calculated
with 106 samples. We use α = 1/2 in the calculation of
Cα divergences, as it provides the optimum bounds for our
example. We also present details of our implementation and
results of two other scenarios in Appendix B.

Our new upper bound and lower bound appear to be tighter
than the bounds derived from entropy bounds over the range
of σ considered in our simulation. In Figure 1(b), where the
estimates of I(x, C) are plotted, the results show that the
blue and dark red solid lines are almost always within the
area covered by the green and orange dot-dashed lines. The
three estimates, ÎKL, ÎCα and ÎKL&Cα , all follow the trend of

I(x, C). More specifically, ÎKL (yellow dashed line) follows
the new variational upper bound Iub KL (deep red solid line)
closely; ÎCα (blue dashed line) is a good estimator of I(x, C)
(grey solid line); ÎKL&Cα (black dashed line) is another good
estimator of I(x, C), as the black dashed line tracks the grey
solid line closely. The differences between the three estimates
and the I(x, C) calculated from MC simulation are plotted in
Appendix B.

IV. CONCLUSION

We provide closed-form bounds and approximations of
mutual information between mixture data and class labels.
The closed-form expressions are based on pair-wise distances,
which are feasible to compute even for high-dimensional data.
Based on numerical results, the new bounds we proposed
are tighter than the bounds derived from bounds on entropy
and the approximations serve as good surrogates for the true
mutual information.

APPENDIX A
THE MINIMIZATION OF Iub KL

The minimization problem of Iub KL by varying φmc
is convex, which we prove in this section. The convexity
of the minimization problem can be checked through the
first and second-order derivatives. For ease of notation, we
define Sm,c =

∑
c′ φm,c′e

−KL(prm,c,prm,c′ ) and Em,cc′ =
exp(−KL(prm,c,prm,c′)). The first derivative of Iub KL is:

∂Iub KL
∂φm,c

= − ln

(
Sm,c
φm,c

)
− φm,c
Sm,c

−
∑
c′ 6=c

φm,c′Em,c′c
Sm,c′

+ 1

(23)



The second derivative is:

Hcc =
∂2Iub KL
(∂φm,c)2

=
(Sm,c − φm,c)2

(Sm,c)2φm,c
+
∑
c′ 6=c

φm,c′(Em,c′c)
2

(Sm,c′)2

(24)

for the diagonal terms and

Hcc′ =
∂2Iub KL

∂φm,c∂φm,c′

=
φm,c − Sm,c

(Sm,c)2
Em,cc′ +

φm,c′ − Sm,c′
(Sm,c′)2

Em,c′c,

(25)

for c′ 6= c. For any given vector θ of length Π,

θTHθ =
∑
c

θ2
cHcc +

∑
c′ 6=c

θcθc′Hcc′


=
∑
c

[
θ2
c

(Sm,c − φm,c)2

(Sm,c)2φm,c
+
∑
c′ 6=c

θ2
c′
φm,c(Em,cc′)

2

(Sm,c)2

+
∑
c′ 6=c

2θcθc′
φm,c − Sm,c

(Sm,c)2
Em,cc′

]

=
∑
c

 (Sm,c − φm,c)θc
Sm,c

√
φm,c

−
∑
c′ 6=c

√
φm,cEm,cc′θc′

Sm,c

2

≥0.
(26)

Therefore, Iub KL is convex when φm,c are considered as the
variables.

APPENDIX B
ON THE NUMERICAL SIMULATIONS

This appendix provides more simulation results and the
detailed expressions used in the numerical simulations. The
additional results consider two different distributions of the
component-center locations. We further present the difference
between the the estimated and the true mutual information.
Last but not least, the closed form expressions include the
KL and Cα divergences between Gaussian components, the
bounds on I(x;C) derived from entropy bounds, and the
relation between Shannon mutual information and bounds on
binary classification error (Pe).

A. Numerical simulation results

We consider three scenarios: (1) the component centers
are uniformly distributed along the class boundary, (2) the
component centers are bunched into one group, and (3) the
component centers are bunched into several groups. Results
on the first scenario has been presented in the Section III. In
this section, we report on Scenarios 2 and 3. Illustration of the
two scenarios are shown in Figure 2(a) and 3(a), respectively.

The results demonstrated in these two scenarios are similar
to that of Scenario 1. To further demonstrate that our estima-
tors are good surrogates for the true mutual information, we

plot the difference between the three estimates and the true
mutual information calculated from MC sampling in Figure 4.

B. Closed form expressions for Gaussian mixtures

Gaussian functions are often used as components in mixture
distributions and have closed form expressions for pair-wise
KL and Cα divergences. Denoting the difference in the means
of two components as µij = µi−µj and Σα,ij = (1−α)Σi+
αΣj , the Cα divergence between two Gaussian components
are

Cα(pri||prj) =
α(1− α)

2
µTijΣ

−1
α,ijµij +

1

2
ln

|Σα,ij |
|Σi|1−α|Σj |α

,

(27)

where | · | is the determinant. The KL divergence between the
same two Gaussian components are

KL(pri||prj) =
1

2

[
µTijΣ

−1
j µij + ln

|Σj |
|Σi|

]
+

tr(Σ−1
j Σi)− d

2
,

(28)
where tr(·) is the trace of the matrix in the parenthesis and d
is the dimension of the data.

When all mixture components have equal covariance ma-
trices Σi = Σj = Σ, we can denote λij = µTijΣ

−1µij and
have

Cα(pri||prj) = α(1− α)λij/2,

KL(pri||prj) = λij/2.
(29)

With these expressions, the bounds and estimates of I(x;C)
have simple forms.

C. Expressions of Ilb 2H and Iub 2H

The detailed expression for the mutual information bounds
derived from entropy bounds are:

Ilb 2H = H(C)−
N∑
i=1

wi ln

∑N
j=1 wje

−Cα(pri||prj)∑
k∈{Ci} wke

−KL(pri||prk)
,

Iub 2H = H(C)−
N∑
i=1

wi ln

∑N
j=1 wje

−KL(pri||prj)∑
k∈{Ci} wke

−Cα(pri||prk)
.

(30)

D. Bounds on Pe for binary classification

Bounds on I(x;C) can be used to calculate bounds on Pe.
The Fano’s inequality [1] provides a lower bound on Pe for
binary classification, as following

Pe ≥ h−1
b [H(C)− I(x;C)], (31)

where hb(x) = −x log2(x)− (1−x) log2(1−x) is the binary
entropy function, h−1

b (·) is the inverse function of hb(·). More
specifically, one can calculate Pe by placing the value H(C)−
I(x;C) on the left side of the binary entropy function and
solving for x.



(a) (b)

Fig. 2: Scenario 2, where the center of the components are bunched into one group, illustration (a), the mixture distribution
pr(x|c = 2) when σ = 0.5 (insert), and estimates of I(x;C) (b).

(a) (b)

Fig. 3: Scenario 3, where the center of the components are bunched into multiple groups, illustration (a), the mixture distribution
pr(x|c = 2) when σ = 0.5 (insert), and estimators of I(x;C) (b).
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Fig. 4: Î(x; C)− I(x; C) for (a) Scenario 1, (b) Scenario 2 and (c) Scenario 3. The I(;C) is calculated from MC simulations.



A tight upper bound on binary classification error Pe has
been reported recently [3],

Pe ≤ min
{
Pmin, f

−1[H(C)− I(x;C)]
}

:= P̂e ub, (32)

where Pmin is min{P1, P2}, and f(x) is a function defined
by

f(x) = −Pmin log2

Pmin
x+ Pmin

− x log2

x

x+ Pmin
, (33)

and f−1(·) is the inverse function of f(·).
When Pe � 1, −Pe(log Pe − logPmin) .

H(C) − I(x;C) . −Pe log Pe. Therefore, Pe is on the
same order of magnitude as H(C)− I(x;C), when Pe � 1.

E. Pe estimates

When σ is small, all estimates of I(x, C) converges to 1.
To compare the estimates for 0.1 > σ > 0.01, we calculate
and present an estimate of Pe in this section. This estimate of
Pe is the upper bound on Pe presented in the previous section.
When a lower bound of I(x, C) is used in the calculation (blue
solid line and green dashed line), the estimates of Pe are upper
bounds on Pe. The other lines in the Pe plots are neither upper
bound nor lower bound. The black lines in the plots, which is
the estimate of Pe calculated from IMC , is also not the true
Pe but can serve as a benchmark for an upper bound on Pe.

In Figure 5, the blue and dark red solid lines are significantly
closer to the grey line than the green and orange dashed lines.
The results demonstrated that our new bounds is tighter than
the bounds derived from entropy bounds. Furthermore, the
three estimators (blue, black and yellow dashed lines) are good
surrogates for the true mutual information.
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Fig. 5: Estimates of Pe calculated from a number of estimators of I(x; C).
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