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Abstract

The main conceptual contribution of this paper is investigating quantum multiparty communication com-
plexity in the setting where communication is oblivious. This requirement, which to our knowledge is satisfied
by all quantum multiparty protocols in the literature, means that the communication pattern, and in particular
the amount of communication exchanged between each pair of players at each round is fixed independently of
the input before the execution of the protocol. We show, for a wide class of functions, how to prove strong lower
bounds on their oblivious quantum k-party communication complexity using lower bounds on their two-party
communication complexity. We apply this technique to prove tight lower bounds for all symmetric functions
with AND gadget, and in particular obtain an optimal Ω(k

√
n) lower bound on the oblivious quantum k-party

communication complexity of the n-bit Set-Disjointness function. We also show the tightness of these lower
bounds by giving (nearly) matching upper bounds.

1 Introduction

1.1 Background

Communication complexity. Communication complexity, first introduced by Yao in a seminal paper [1] to
investigate circuit complexity, has become a central concept in theoretical computer science with a wide range
of applications (see [2, 3] for examples). In its most basic version, called two-party (classical) communication
complexity, two players, usually called Alice and Bob, exchange (classical) messages in order to compute a function
of their inputs. More precisely, Alice and Bob are given inputs x1 ∈ {0, 1}n and x2 ∈ {0, 1}n, respectively, and their
goal is to compute a function f : (x1, x2) 7→ {0, 1} by communicating with each other, with as little communication
as possible.

There are two important ways of generalizing the classical two-party communication complexity: one is to
consider classical multiparty communication complexity and the other one is to consider quantum two-party com-
munication complexity. In (classical) multiparty communication complexity, there are k players P1, P2, . . ., Pk,
each player Pi is given an input xi ∈ {0, 1}n. The players seek to compute a given function f : (x1, . . . , xk) 7→ {0, 1}
using as few (classical) communication as possible.1 The other way of generalizing the classical two-party com-
munication complexity is quantum two-party communication complexity, where Alice and Bob are allowed to use
quantum communication, i.e., they can exchange messages consisting of quantum bits. Since its introduction by
Yao [4], the notion of quantum two-party communication complexity has been the subject of intensive research in
the past thirty years, which lead to several significant achievements, e.g., [5, 6, 7, 8, 9, 4].

In this paper, we consider both generalizations simultaneously: we consider quantum multiparty communication
complexity for k > 2 parties. This generalization has been the subject of several works [10, 11, 12, 13] but, compared
to the two-party case, is still poorly understood.

Set-Disjointness. One of the most studied functions in communication complexity is Set-Disjointness. For
any k ≥ 2 and any n ≥ 1, the k-party n-bit Set-Disjointness function, written DISJn,k, has for input a k-tuple
(x1, . . . , xk), where xi ∈ {0, 1}n for each i ∈ {1, . . . , k}. The output is 1 if there exists an index j ∈ {1, . . . , n} such

1This way of distributing inputs is called the number-in-hand model. There exists another model, called the number-on-the-forehead
model, which we do not consider in this paper.
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that x1[j] = x2[j] = · · · = xk[j] = 1, where xi[j] denotes the j-th bit of the string xi, and 0 otherwise. The output
can thus be written as

DISJn,k(x1, . . . , xk) =

n∨
j=1

(x1[j] ∧ · · · ∧ xk[j]).

Set-Disjointness plays a central role in communication complexity since a multitude of problems can be analyzed
via a reduction from or to this function (see [14] for a good survey). In the two party classical setting, the
communication complexity of Set-Disjointness is Θ(n): while the upper bound O(n) is trivial, the proof of the lower
bound Ω(n), which holds even in the randomized setting, is highly non-trivial [15, 16]. The k-party Set-Disjointness
function with k > 2 has received much attention as well, especially since it has deep applications to distributed
computing [17]. Proving strong lower bounds on multiparty communication complexity, however, is significantly
more challenging than in the two-party model. After much effort, a tight lower bound for k-party Set-Disjointness
was nevertheless obtained in the classical setting: recent works [18, 19] were able to show a lower bound Ω(kn) for
DISJn,k, which is (trivially) tight.

In the quantum setting, Buhrman et al. [6] showed that the two-party quantum communication complexity of the
Set-Disjointness function is O(

√
n log n), which gives a nearly quadratic improvement over the classical case. The

logarithmic factor was then removed by Aaronson and Ambainis [20], who thus obtained an O(
√
n) upper bound. A

matching lower bound Ω(
√
n) was then proved by Razborov [21]. For k-party quantum communication complexity,

an O(k
√
n log n) upper bound is easy to obtain from the two-party upper bound from [6].2 An important open

problem, which is fundamental to understand the power of quantum distributed computing, is showing the tightness
of this upper bound. In view of the difficulty in proving the Ω(kn) lower bound in the classical setting, proving a
Ω(k
√
n) lower bound in the quantum setting is expected to be challenging.

1.2 Our contributions

Our model. The main conceptual contribution of this paper is investigating quantum multiparty communication
complexity in the setting where communication is oblivious. This requirement means that the communication
pattern, and in particular the amount of communication exchanged between each pair of players at each round is
fixed independently of the input before the execution of the protocol. (See Section 2.1 for the formal definition.) This
requirement is widely used in classical networking systems (e.g., [22, 23, 24]) and classical distributed algorithms
(e.g., [25]), and to our knowledge is satisfied by all known quantum communication protocols (for any problem)
that have been designed so far. It has also been considered in the quantum setting by Jain et al. [26, Result 3],
who gave an Ω(n/r2) bound on the quantum communication complexity of r-round k-party oblivious protocols for
a promise version of Set-Disjointness.

Our results. The main result of this paper holds for a class of functions which has a property that we call
k-party-embedding. We say that a k-player function fk is a k-party-embedding function of a two-party function f2

if the function f2 can be “embedded” in fk by embedding the inputs of f2 in any position among the inputs of
fk. Many important functions such as any k-party symmetric function (including as important special cases the
Set-Disjointness function DISJn,k and the k-party Inner-Product function) or the k-party equality function have
this property. For a formal definition of the embedding property, we refer to Definition 2 in Section 3. Our main
result is as follows.

Theorem 1 (informal) Let fk be a k-party function that is a k-party-embedding function of a two-party function
f2. Then the oblivious k-party quantum communication complexity of fk is at least k times the two-party quantum
communication complexity of f2.

Theorem 1 enables us to prove strong lower bounds on oblivious quantum k-party communication complexity
using the quantum two-party communication complexity. 3 This is useful since two-party quantum communication

2We will show later (in Theorem 3 in Section 5) how to obtain an improved O(k
√
n) upper bound based on the protocol from [20].

3Note that in the two-party setting, the notions of oblivious communication complexity and non-oblivious communication complexity
essentially coincide, since any non-oblivious communication protocol can be converted into an oblivious communication protocol by
increasing the complexity by a factor at most two. To see this, without loss of generality assume that each player sends only one qubit

2



complexity is a much more investigated topic than k-party quantum communication complexity, and many tight
bounds are known in the two-party setting. For example, we show how to use Theorem 1 to analyze the oblivious
quantum k-party communication complexity of DISJn,k and obtain a tight Ω(k

√
n) bound:

Corollary 1. In the oblivious communication model, the k-party quantum communication complexity of DISJn,k is
Ω(k
√
n).

More generally, Theorem 1 enables us to derive tight bounds for the oblivious quantum k-party communication
complexity of arbitrary symmetric functions. Since symmetric functions play an important role in communication
complexity [27, 28, 21, 29, 30], our results might thus have broad applications. Additionally, we also give lower
bounds for non-symmetric functions that have the k-party-embedding property, such as the equality function. Our
results are summarized in Table 1.

To complement our lower bounds, we show tight (up to possible poly-log factors) upper bounds for these
functions. The upper bounds are summarized in Table 1 as well. Note that if we apply our generic O(k log n ·Gn(f))
bound in Table 1 to DISJn,k, we only get the upper bound O(k log n ·

√
n). We thus prove directly an optimal

O(k
√
n) upper bound (Theorem 3) by showing how to adapt the optimal two-party protocol from [20] to the k-party

setting.

Functions 2-party protocols k-party oblivious protocols
Lower Upper Lower Upper

Symmetric functions
Ω(Gn(f)) O(log n ·Gn(f)) Ω(k ·Gn(f)) O(k log n ·Gn(f))

in [21] in [21] Proposition 3 Theorem 4

Set-Disjointness
Ω(
√
n) O(

√
n) Ω(k

√
n) O(k

√
n)

in [21] in [20] Corollary 1 Theorem 3
Set-Disjointness

Ω̃(n/M) O(n/M) Ω̃(k · n/M) O(k · n/M)
in M -round

(M ≤ O(
√
n)) in [31] (folklore) Proposition 5 Corollary 2

Equality function
Ω(1) O(1) Ω(k) O(k)

(trivial) e.g., [2] Proposition 4 Proposition 6

Table 1: Our results for oblivious quantum k-party communication complexity, along with known bounds for the
two-party setting. For a symmetric function f , the notation Gn(f) refers to the quantity defined in Equation (1).

2 Models of Quantum Communication

Notations: All logarithms are base 2 in this paper. We denote [k] = {1, . . . , k}. For any set X and k ≥ 1,
X k := X × · · · × X︸ ︷︷ ︸

k

.

Here we formally define the quantum multiparty communication model. As mentioned in Section 1.2, this
communication model satisfies the oblivious routing condition (or simply the oblivious condition), meaning that the
number of qubits used in communication at each round is predetermined (independent of inputs, private randomness,
public randomness and outcome of quantum measurements). Since details of the model are important especially
when proving lower bounds, we explain the model in detail below.

2.1 Quantum multiparty communication model

In k-party quantum communication model, at each round, players are allowed to send quantum messages4 to all of
the players but the number of qubits used in communication is predetermined. This condition is called oblivious.

at each round.
4Trivially, players can send classical messages using quantum communication in this communication model.
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Therefore for any k-player M -round protocol Π, we define the functions CPi→Pj
: [M ]→ N ∪ {0} (i, j ∈ [k]) which

represent the number of qubits CPi→Pj
(m) transmitted at m-th round from i-th player to j-th player.

Procedure: Before the execution of the protocol, all players P1, . . . , Pk share an entangled state or public
randomness if needed. Each player Pi is then given an input. At each round m ≤M , every player Pi performs some
operations (such as unitary operations, measurements, coin flipping) onto Pi’s register and send CPi→P1(m) qubits
to the player P1, CPi→P2

(m) qubits to the player P2, · · · , and CPi→Pk
(m) qubits to the player Pk. All messages

from all players are sent simultaneously. This continues until M -th round is finished. Finally, each player Pi output
the answer based on the contents of Pi’s register.

We define the communication cost of this protocol as

QCC(Π) :=
∑

m∈[M ]

∑
i,j∈[k]
i 6=j

CPi→Pj
(m).

2.2 Coordinator model

Let us also describe the definition of the following coordinator model so that discussions on the upper bounds in
Section 5 become simpler.

In k-party coordinator model, there are k-players, each is given an input, and another player called a coordinator
who is not given any input. Each player can communicate only with the coordinator. Similar to the ordinary
communication model, the number of qubits used in communication is predetermined. Therefore for any k-player M -
round protocol Π in coordinator model, we define the functions CPi→Co : [M ]→ N∪{0} and CCo→Pi

: [M ]→ N∪{0}
for i ≤ k. The value CPi→Co(m) (resp. CCo→Pi

(m)) represent the number of qubits transmitted at m-th round
from i-th player to the coordinator (resp. the coordinator to i-th player).

Procedure: Before the execution of the protocol, all players P1, . . . , Pk and the coordinator share an entangled
state or public randomness if needed. Each player Pi is then given input. At each round m ≤ M , each player Pi
performs some operations onto Pi’s register and send CPi→Co(m) qubits to the coordinator. After that, the coordi-
nator, who received CP1→Co(m) + · · ·+CPk→Co(m) qubits, performs some operations (such as unitary operations,
measurements, coin flipping) onto the coordinator’s register and sends back CCo→Pi

(m) qubits to each player Pi.
This continues until the M -th round is finished. Finally, each player Pi outputs the answer based on the contents
of Pi’s register.

We define the communication cost of this protocol as QCCCo(Π) :=
∑
m∈[M ]

∑
i∈[k] CPi→Co(m) + CCo→Pi(m).

2.3 Protocol for computing a function

We define a protocol computing a function as follows.

Definition 1. We say a protocol Π computes f : X1 × · · · × Xk → Y with error ε ∈ [0, 1/2) if

∀i ∈ [k], ∀x = (x1, . . . , xk) ∈ X1 × · · · × Xk, Pr(Πi
out(x) 6= f(x)) ≤ ε

where Πi
out(x) denotes Pi’s output of the protocol on input x.

We denote by Pk(f, ε) the set of k-party protocols computing a function f with error ε in the quantum multiparty
communication model. The quantum communication complexity of function f with error ε in the model is defined
as QCC(f, ε):= minΠ∈Pk(f,ε) QCC(Π).

We also define the bounded round communication complexity of function f as QCCM (f, ε) := minΠ∈PM
k (f,ε) QCC(Π)

where we use the superscript M to denote the set of M -round protocols PMk (f, ε). Regarding the coordinator model,
we define Pk(f, ε)Co,QCCCo(f, ε),PMk (f, ε)Co, and QCCMCo(f, ε) in similar manners as above.

As is easily seen5, QCC2M (f, ε) ≤ QCCMCo(f, ε) ≤ 2 QCCM (f, ε) holds. This means the two models asymptoti-
cally have the same power even in bounded round setting.

5To show QCC2M (f, ε) ≤ QCCM
Co(f, ε), assign P1 the role of the coordinator. To show QCCM

Co(f, ε) ≤ 2 QCCM (f, ε), consider the
coordinator only passes messages without performing any operation.
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2.4 Symmetric functions

A function f : {0, 1}n × {0, 1}n → {0, 1} is symmetric6 if there exists a function Df : [n] ∪ {0} → {0, 1} such that
f(x, y) = Df (|x ∩ y|), where x ∩ y is the intersection of the two sets x, y ⊆ [n] corresponding to the strings x, y.
This means that the function f depends only on the Hamming weight of (the intersection of) the inputs. For any
symmetric function f : {0, 1}n × {0, 1}n → {0, 1}, let us write

Gn(f) =
√
nl0(Df ) + l1(Df ), (1)

where

l0(Df ) = max
{
l | 1 ≤ l ≤ n/2 and Df (l) 6= Df (l − 1)

}
,

l1(Df ) = max
{
n− l | n/2 ≤ l < n and Df (l) 6= Df (l + 1)

}
.

Razborov [21] showed the lower bound Ω(Gn(f)) on the quantum two-party communication complexity of any
symmetric function f , and also obtained a nearly matching upper bound O(Gn(f) log n). We also note that for any
function Df , this function is constant on the interval [l0(Df ), n− l1(Df )] by the definitions of l0(Df ) and l1(Df ).
In Section 5.2, we use this fact to prove a nearly matching upper bound on the oblivious quantum multiparty
communication model.

Analogously, a k-party function f : {0, 1}n·k → {0, 1} is symmetric when represented as f(x1, . . . , xk) = Df (|x1∩
· · · ∩ xk|) using some function Df : [n] ∪ {0} → {0, 1}. The k-party n-bit Set-Disjointness function DISJn,k defined
in Section 1 is a symmetric function. The k-party n-bit (generalized) Inner-Product function IPn,k, defined for any
x1, . . . , xk ∈ {0, 1}n as

IPn,k(x1, . . . , xk) = (x1[1] ∧ · · · ∧ xk[1])⊕ · · · ⊕ (x1[n] ∧ · · · ∧ xk[n])

is also symmetric.
On the other hand, the k-party n-bit equality function Equalityn,k, defined for any x1, . . . , xk ∈ {0, 1}n as

Equalityn,k(x1, . . . , xk) =

{
1 if x1 = x2 = · · · = xk,

0 otherwise,

is not symmetric.

3 Lower bounds

Here we show Proposition 1, which relates the oblivious communication complexity of a k-party function fk : X k →
Y to the oblivious communication complexity of a two-party function f̃2 : X×X → Y when fk is a k-party-embedding
function of f̃2 in the following sense.

Definition 2. A function fk : X k → Y is a k-party-embedding function of f̃2 : X ×X → Y if for any i ∈ [k], there
is a map x−i : X → X k−1 such that

∀x1, x2 ∈ X f̃2(x1, x2) = fk([x−i(x2), i, x1])

holds, where [y, i, x] := (y1 . . . , yi−1, x, yi, . . . , yk−1) for y = (yi)i≤k−1 ∈ X k−1 and x ∈ X .

For example, DISJn,k (k ≥ 2) is a k-party-embedding function of DISJn,2 because we can take X = {0, 1}n,
Y = {0, 1} and x−i(x) = (x, 1n, . . . , 1n).

Using this definition, we show the following proposition.

Proposition 1. Let fk : X k → Y be a function and suppose fk is a k-party-embedding function of f̃2 : X ×X → Y
. For any protocol Πk ∈ Pk(fk, ε), there is a two-party protocol Π̃ ∈ P2(f̃2, ε) such that QCC(Π̃) ≤ 2QCC(Πk)

k holds.
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Figure 1: Example of Πk for fk when k = 3. (Prior
entanglement is omitted.) Assume QCC1(Πk) ≤
QCC(Πk)/k, i.e., i0 = 1.

Alice
𝑥!

𝑈!

𝑈"

𝑈#

𝑈$

𝑈!%&' 𝑈#%&'𝑈"%&'

𝐶(!

𝐶("

𝐶#

𝑥"
𝑥)!: 𝒳 → 𝒳 ×𝒳

Bob

𝐶(#

!𝑓! 𝑥", 𝑥! = 𝑓#([𝑥$" 𝑥! , 1, 𝑥"])

Figure 2: Protocol Π̃ for f̃2 created from Πk when
i0 = 1. Here, the communication C3 is internally
computed by Bob and the entire communication cost
is QCC(Π̃) = QCC1(Πk).

Proof. Without loss of generality, we assume that at each round only one player sends a message in the protocol
Πk. Let QCCi(Πk) denote the communication cost of player i, which we define as the sum of the number of qubits
exchanged, either sent or received, by player i. For example, in Fig 1 showing an example7 of the k-party protocol
Πk,

QCC1(Πk) = C1 + C2 + C4, QCC2(Πk) = C1 + C3, QCC3(Πk) = C2 + C3 + C4.

where Cm denotes the number of qubits sent at the m-th round. This value satisfies the equation 2QCC(Πk) =∑
i≤k QCCi(Πk) where the factor of two comes from the fact that for each communication Cm, there are two

players, one sending Cm and one receiving Cm. This equation implies that there is i0 ∈ [k] such that QCCi0(Πk) ≤
2QCC(Πk)/k (independent of the inputs). (This is where the oblivious condition is used. If the protocol is not
oblivious, the coordinate i0 usually varies depending on the player’s inputs.)

For i0, by the definition of the k-party-embedding property, there is a map x−i0 : X → X k−1 such that
f̃2(x1, x2) = fk([x−i0(x2), i0, x1]) holds for any x1, x2 ∈ X . Using the protocol Πk, we then create a two-party
protocol Π̃ ∈ P2(f̃2, ε) with communication cost QCCi0(Πk). We name the two players in the protocol Π̃ Alice

and Bob. Each is given x1, x2 respectively. In the protocol Π̃, Alice plays the role of Pi0 and Bob plays the other
k − 1 roles of P1, . . . , Pi0−1, Pi0+1, . . . , Pk. Playing these roles, Alice and Bob simulate the original Πk with the
input [x−i0(x2), i0, x1]. The communication cost of Π̃ is QCCi0(Πk) because the communication between Alice
and Bob is made only when the player Pi0 needs to communicate with others in the original protocol Πk. The
other communications are internally computed by Bob. (Fig 2 shows the two-party protocol Π̃ created from
Πk.) When the simulation is finished, Alice and Bob can output the answer with error ≤ ε because for the
original protocol Πk for any i ∈ [k], Pr(Πi

out([x−i0(x2), i0, x1]) 6= fk([x−i0(x2), i0, x1]) ≤ ε holds. By the k-party-
embedding property, we have fk([x−i0(x2), i0, x1]) = f̃2(x1, x2) which indicates Π̃ ∈ P2(f̃2, ε) with communication

cost QCCi0(Πk) ≤ 2QCC(Πk)
k .

We also show a proposition which considers the bounded round setting.

6Although a function f : {0, 1}n → {0, 1} is generally said to be symmetric when any permutation on the input does not change the
value of f , in this paper we focus on functions of the form f : {0, 1}n × {0, 1}n → {0, 1}, and use the same definition for symmetric
functions (predicates) as in [21].

7In Fig 1, Ui and Uout
i denote classical or quantum operations and ⊗ denotes the operation of attaching registers. Uout

i usually
includes measurement operations to output fk(x1, x2, x3).
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Proposition 2. Let fk and f̃2 be the same as in Proposition 1. For any protocol Πk ∈ PMk (fk, ε), there is a protocol

Π̃ ∈ PM2 (f̃2, ε) such that QCC(Π̃) ≤ QCC(Πk)
k holds.

Proof. In a similar manner as in Proposition 1, we see that there is i0 ∈ [k] such that QCCi0(Πk) ≤ 2
kQCC(Πk)

holds. (Note that in this case, we do not restrict the number of players communicating at each round.) We create
the desired two-party protocol Π̃ by Alice simulating Pi0 and Bob simulating all the other players, except for Pi0 . In
the protocol Π̃, Alice and Bob need to communicate only if the player Pi0 need to communicate with other players
in the original protocol Πk. Therefore, the communication cost of the protocol satisfies

QCC(Π̃) =
∑

m∈[M ]

∑
j∈[k]\{i0}

CPi0
→Pj

(m) + CPj→Pi0
(m) ≤ 2QCC(Πk)

k
.

We also observe the protocol Π̃ is M -round protocol, completing the proof.

Using Proposition 1, we next show the following theorem.

Theorem 1 (formal version). Let fn,k : {0, 1}n·k → {0, 1} be a k-party-embedding function of f̃n. Then

∀n, k, QCC(fn,k, ε) ≥
k

2
·QCC(f̃n, ε).

Proof. Let Πn,k be an optimal protocol for fn,k, i.e., QCC(Πn,k) = QCC(fn,k, ε) = minΠ∈Pk(fn,k,ε) QCC(Π). By

Proposition 1, there is a two-party protocol Π̃ ∈ P2(f̃n, ε) satisfying QCC(Π̃) ≤ 2QCC(Πn,k)
k . This yields

QCC(f̃n, ε) ≤
2QCC(Πn,k)

k
=

2QCC(fn,k, ε)

k

which means ∀n, k, k
2 QCC(f̃n, ε) ≤ QCC(fn,k, ε).

We can also prove a similar proposition in the bounded round scenario using Proposition 2:

Theorem 2. Let fn,k and f̃n be the same as Theorem 1. Then for any n, k, QCCM (fn,k, ε) ≥ k
2 · QCCM (f̃n, ε)

holds.

Proof. Note that in Proposition 2, the new protocol for f̃n preserves the round of the original protocol Πk ∈
PMk (fn,k, ε). Therefore in a similar manner as Theorem 1, we get

∀n, k, k

2
QCCM (f̃n, ε) ≤ QCCM (fn,k, ε).

4 Applications

Here we investigate the lower bounds of some important functions such as Symmetric functions, Set-disjointness
and Equality.

We first apply Theorem 1 to symmetric functions. Recall that any k-party symmetric function f can be
represented as f(x1, . . . , xk) = Df (|x1 ∩ · · · ∩ xk|) (each player is given xi(1 ≤ i ≤ k) as input) using some function
Df : [n] ∪ {0} → {0, 1}.

Proposition 3. QCC(fn,k, 1/3) ∈ Ω
(
k{
√
nl0(Dfn,k

) + l1(Dfn,k
)}
)
holds for any k-party n-bit symmetric function

fn,k.

7



Proof. For i ∈ [k], define x−i(x) := (x, 1n, . . . , 1n) ∈ {0, 1}n·(k−1). Then we have that for any i ∈ [k] and any x1, x2 ∈
{0, 1}n, fn,2(x1, x2) = fn,k([x−i(x2), i, x1]). This implies fn,k is a k-party-embedding function of fn,2. Therefore,
Theorem 1 yields QCC(fn,k, 1/3) ∈ Ω(k ·QCC(fn,2, 1/3)). Applying the well known lower bound Ω(

√
nl0(Dfn,2

) +
l1(Dfn,2)) of the two-party function fn,2 [21], we obtain

QCC(fn,k, 1/3) ∈ Ω
(
k{
√
nl0(Dfn,k

) + l1(Dfn,k
)}
)
.

This lower bound is so strong that we get the optimal Ω(n ·k) bound for Inner-Product function (as l0(Dfn,k
) =

l1(Dfn,k
) = Θ(n) holds) and Ω(k

√
n) lower bound for Set-disjointness function (as l0(Dfn,k

) = 1 and l1(Dfn,k
) = 0

holds), which turns out to be optimal in our setting as described in Section 5.
Next, we examine the lower bound of Equality function.

Proposition 4. QCC(Equalityn,k, 1/3) ∈ Ω(k).

Proof. For i ∈ [k], define x−i : {0, 1}n → {0, 1}n·(k−1) as x−i(x) = (x, x, . . . , x) (i.e., making k − 1 copies of x).
Then we have that for any i ∈ [k], any x1, x2 ∈ {0, 1}n, Equalityn,2(x1, x2) = Equalityn,k([x−i(x2), i, x1]). Therefore
by Theorem 1, the trivial lower bound Ω(1) of two-party n-bit Equality function yields QCC(Equalityn,k, 1/3) ∈
Ω(k).

We also prove a lower bound in bounded round scenario using Theorem 2.

Proposition 5. QCCM (DISJn,k, 1/3) ∈ Ω
(
n · k/(M log8M)

)
.

Proof. Since the two-party M -round Set-disjointness requires Ω
(
n/(M log8M)

)
communication [31], we obtain

QCCM (DISJn,k, 1/3) ∈ Ω
(
n · k/(M log8M)

)
. This is nearly tight as shown in Section 5.

5 Matching upper bounds

In this section, we show the upper bound O(k
√
n) for DISJn,k, the upper bound O(k log n(

√
nl0(Df ) + l1(Df )))

for symmetric functions and the upper bound O(k) for Equalityn,k by creating efficient protocols for each function.
Without being noted explicitly, all of our protocols satisfy the oblivious routing condition. These are (sometimes
nearly) matching upper bounds since we have the same lower bounds in Section 4.

5.1 Optimal protocol for DISJn,k

Here, we adopt the arguments from [20, Section 7], which gives a two-party protocol for DISJ with O(
√
n)-

communication cost, and present the protocol with O(k ·
√
n) cost in coordinator model.

Let us first briefly describe the two-party protocol given in [20]. In the two-party protocol, inputs are represented
as (xijk)(i,j,k)∈[n1/3]3 ∈ {0, 1}n to Alice and (yijk)(i,j,k)∈[n1/3]3 ∈ {0, 1}n to Bob.8 They cooperate and communicate
with each other to perform the following five operations (and their inverse operations) onto their registers:
Denoting the register for Alice (for Bob) as |ψ〉A (|ψ〉B) and Alice holding an additional one qubit register |z〉,

• O : |(i, j, k), z〉A|(i, j, k)〉B 7→ |(i, j, k), z ⊕ (xijk ∧ yijk)〉A|(i, j, k)〉B

• W : |(i, j, k), z〉A|(i, j, k)〉B 7→ (−1)z|(i, j, k), z〉A|(i, j, k)〉B

• SV : For a subset V ⊂ [n1/3]3,

SV : |(i, j, k), z〉A|(i, j, k)〉B 7→

 (−1)δ0z |(i, j, k), z〉A|(i, j, k)〉B
if (i, j, k) ∈ V

|(i, j, k), z〉A|(i, j, k)〉B otherwise
.

8If n1/3 is not an integer, inputs are embedded to a larger cube of size dn1/3e3. In this case, for any coordinate i ∈ dn1/3e3 \ [n],
the i-th inputs xi and yi are set to 0.
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• For d = 1, 2, 3,

Zdplus : |(i, j, k), z〉A|(i, j, k)〉B 7→


|(i+ 1, j, k), z〉A|(i+ 1, j, k)〉B if d = 1,

|(i, j + 1, k), z〉A|(i, j + 1, k)〉B if d = 2,

|(i, j, k + 1), z〉A|(i, j, k + 1)〉B if d = 3.

• Zdα,β (d = 1, 2, 3; α, β ∈ C s.t. |α|2 + |β|2 = 1)
For specific subsets V1, V2 and V3 (defined in the original paper [20]),

Z1
α,β : |(i, j, k), z〉A|(i, j, k)〉B 7→


(α|i〉⊗2

AB + β|i+ 1〉⊗2
AB)|z〉A|j, k〉⊗2

AB

if (i, j, k) ∈ V1,

|(i, j, k), z〉A|(i, j, k)〉B otherwise.

Z2
α,β : |(i, j, k), z〉A|(i, j, k)〉B 7→


(α|j〉⊗2

AB + β|j + 1〉⊗2
AB)|z〉A|i, k〉⊗2

AB

if (i, j, k) ∈ V2,

|(i, j, k), z〉A|(i, j, k)〉B otherwise.

Z3
α,β : |(i, j, k), z〉A|(i, j, k)〉B 7→


(α|k〉⊗2

AB + β|k + 1〉⊗2
AB)|z〉A|i, j〉⊗2

AB

if (i, j, k) ∈ V3,

|(i, j, k), z〉A|(i, j, k)〉B otherwise.

As shown in [20], each operation is achieved by at most two qubits of communication: O and Zdα,β requires two

qubits of communication and other operations W,SV and Zdplus are achieved without any communication. In the

two-party protocol, Alice and Bob use these operations O(
√
n) times to compute Set-Disjointness. Therefore in

total 2O(
√
n) = O(

√
n) communication is sufficient in two-party case.

In the following theorem, we explain how to extend these operations appropriately for the quantum multiparty
communication model.

Theorem 3. QCC(DISJn,k, 1/3) ∈ O(k
√
n).

Proof. Without loss of generality, we assume that the communication model is the coordinator model. In our
extension, the coordinator plays the role of Alice and k-players play the role of Bob. For example, the query
operation O is extended to

Ok : |(i, j, l), z〉Co|(i, j, l)〉⊗kP1···Pk
7→ |(i, j, l), z ⊕ (x1

ijl ∧ · · · ∧ xkijl)〉Co|(i, j, l)〉⊗kP1···Pk
.

Note that in this case each player Pi′ who is given an input (xi
′

ijk) holds the register |i, j, l〉. We now explain how to
extend each operation to that of coordinator model and how many qubits are needed to perform these operations.

• Ok : |(i, j, l), z〉Co|(i, j, l)〉⊗kP1···Pk
7→ |(i, j, l), z ⊕ (∧i′≤kxi

′

ijl)〉Co|(i, j, l)〉⊗kP1···Pk

First, each player Pi′ performs |(i, j, l)〉|0〉 7→ |(i, j, l)〉|xijl〉 using an auxiliary qubit |0〉. Then they send the
encoded qubits |x1

ijl〉 · · · |xkijl〉 to the coordinator who next performs

|(i, j, l), z〉|x1
ijl, . . . , x

k
ijl〉 7→ |(i, j, l), z ⊕ (∧i′≤kxi

′

ijl)〉|x1
ijl, . . . , x

k
ijl〉

and return |xi′ijl〉 to each player Pi′ . Finally, each player clears the register: |xi′ijl〉 7→ |0〉. The total communi-
cation cost for this operation is 2k qubits.
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• Z1
α,β : |(i, j, l), z〉Co|(i, j, l)〉⊗kP1···Pk

7→ α|(i, j, l), z〉Co|(i, j, l)〉⊗kP1···Pk
+ β|(i + 1, j, l), z〉Co|(i + 1, j, l)〉⊗kP1···Pk

iff
(i, j, k) ∈ V1.
First, the coordinator creates |0〉⊗kC 7→ α|0〉⊗kC +β|1〉⊗kC from auxiliary qubits |0〉⊗kC and performs |(i, j, l)〉Co(α|0〉⊗kC +

β|1〉⊗kC ) 7→ α|(i, j, l)〉Co|0〉⊗kC +β|(i+1, j, l)〉Co|1〉⊗kC . Next, the coordinator sends the auxiliary qubits to players,
each player is given the single qubit. On the received qubit Ci′ and the register Pi′ , each player performs, for
a ∈ {0, 1}, |a〉Ci′ |(i, j, l)〉Pi′ 7→ |a〉Ci′ |(i+ a, j, l)〉Pi′ . They then return the auxiliary qubits to the coordinator

who finally performs |(i+ 1, j, l)〉Co|1〉⊗kC 7→ |(i+ 1, j, l)〉Co|0〉⊗kC iff (i, j, k) ∈ V1. The total communication for
this operation is 2k qubits. Other operations Z2

α,β , Z
3
α,β are achieved similarly.

• The operations W,S,Zdplus are done without any communication.

Suppose in the two-party protocol, Alice and Bob finally create the state
∑

(i,j,l) αijl|(i, j, l), zijl〉A|(i, j, l)〉B
applying the above operations O(

√
n) times. Then, with the same amount of steps, the coordinator and players

can create the state
∑

(i,j,l) αijl|(i, j, l), zijl〉Co|(i, j, l)〉⊗kP1···Pk
whose amplitude {αijl} is the same as of the state in

two party protocol. Therefore, the coordinator can output the same answer as in the two-party protocol which
implies that the success probability in the coordinator protocol is the same as in the two-party protocol. After the
coordinator obtain the answer, he/she finally send it to all players.

Let us consider the communication cost needed to achieve this protocol. In the coordinator model, there are
O(
√
n) steps and each step needs at most 2k communication. This shows O(k

√
n) upper bound of DISJn,k in the

coordinator model.

Using the protocol described in Theorem 3, we can create O(M)-round protocol for DISJn,k with O(n · k/M)
communication cost when M ≤ O(

√
n). The important fact here is that in the protocol with O(k

√
n) cost, the

coordinator and players interact only for O(
√
n) rounds. To create the desired protocol, let us now divide the input

x ∈ {0, 1}n into n/M2 sub-inputs, each contains M2 elements. We next apply the above protocol in parallel with
the n/M2 sub-inputs where each of sub-inputs uses O(M) rounds and O(kM) communication. The new protocol
still uses O(M) rounds although the communication cost grows up to n

M2O(kM) = O(n · k/M). The success
probability is still the same since the original protocol is a one-sided error protocol.

Therefore, this protocol has O(M) rounds and the communication cost O(n · k/M) which nearly matches the
lower bound Ω

(
n · k/(M log8M)

)
described in Section 4. By converting this M -round coordinator protocol to the

ordinary protocol, we obtain the following corollary:

Corollary 2. QCCM (DISJn,k, 1/3) ∈ O(n · k/M) when M ≤ O(
√
n).

5.2 Symmetric functions

Theorem 4. For any k-party n-bit symmetric function fn,k,
QCC(fn,k, 1/3) ∈ O

(
k log n{

√
nl0(Dfn,k

) + l1(Dfn,k
)}
)
.

Proof. This proof is a generalization of [21, Section 4] which investigates only the two-player setting. Without loss
of generality, we assume our model of communication to be the coordinator model.

Let us first describe some important facts based on the arguments in [21, 29]. For any symmetric function fn,k,
the corresponding function Dfn,k

is constant on the interval [l0(Dfn,k
), n − l1(Dfn,k

)]. Without loss of generality,
assume Dfn,k

takes 0 on the interval. (If Dfn,k
takes 1 on the interval, we take the negation of Dfn,k

.) Defining D0

and D1 : [n] ∪ {0} → {0, 1} as

D0(m) =

{
Dfn,k

(m) if m ≤ l0
0 else

, D1(m) =

{
Dfn,k

(m) if m > n− l1
0 else

(abbreviating l0 := l0(Dfn,k
) and l1 := l1(Dfn,k

)), Dfn,k
= D0∨D1 holds. Therefore, by defining f0

n,k(x1, . . . , xk) :=

D0(|x1 ∩ · · · ∩ xk|) and f1
n,k(x1, . . . , xk) := D1(|x1 ∩ · · · ∩ xk|), we get fn,k = f0

n,k ∨ f1
n,k. This means, computing

f0
n,k and f1

n,k separately is sufficient to compute the entire function fn,k. As another important fact needed for our

explanation, we note that the query complexity of f0
n,k equals to O(

√
nl0(Dfn,k

)) which is proven in [28].
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Let us now explain a nearly optimal protocol for symmetric functions. In this protocol, a coordinator computes
fn,k by computing f0

n,kand f1
n,k separately. By the query complexity O(

√
nl0(Dfn,k

)) of the function f0
n,k, the

coordinator can compute f0
n,k by performing the query |i〉|y〉 7→ |i〉|(xi1∧· · ·∧xik)⊕y〉 (1 ≤ i ≤ n) for O(

√
nl0(Dfn,k

))
times. We describe then how this query is implemented with O(k log n) communication. For an |i〉|y〉, the procedure
goes as follows.

(Step 1) Coordinator creates k copies of |i〉: |i〉|y〉 7→ |i〉⊗k+1|y〉 (using additional ancillary qubits to create |i〉⊗k)
and sends each of them to k players.

(Step 2) Each player j (1 ≤ j ≤ k) of the k players performs |i〉|0〉 7→ |i〉|xij〉 and sends the coordinator these qubits.

Now the coordinator obtains |i〉⊗k+1|y〉|(xi1, . . . , xik)〉

(Step 3) Coordinator performs |y〉|(xi1, . . . , xik)〉 7→ |(∧j≤kxij)⊕ y〉|(xi1, . . . , xik)〉 and return each |i〉|xij〉 to player j.

(Step 4) Each player j clears the register |i〉|xij〉 7→ |i〉|0〉 and returns |i〉. Now the coordinator’s register is

|i〉⊗k+1|(xi1 ∧ · · · ∧ xik)⊕ y〉.

This is how the query is implemented.
Let us analyze how many qubits of communication is needed for this query. Step 1 requires k·log n communication

since i ∈ [n] is represented by log n qubits. Step 2 requires k(log n + 1) qubits by log n qubits for i and one qubit
for xij ∈ {0, 1}. Step 3 requires the same k(log n+ 1) qubits and Step 4 requires k log n qubits. Therefore, in total,

this query is implemented by O(k log n) qubits of communication and this protocol requires O(k log n
√
nl0(Dfn,k

))
communication to compute f0

n,k.

We next explain a protocol to compute f1
n,k which is simpler comparing to the protocol for f0

n,k. For the

coordinator to compute f1
n,k, each player j tells the coordinator (1) if there are more than

(
n− l1(Dfn,k

)
)

zeros

and (2) where are zeros in the input (xij)i≤n when the first answer is YES (if the answer is NO, the player send an

arbitrary bit string). This takes one qubit for the first question and log
(

Σnm=n−l0(Dfn,k
)+1

(
n
m

))
= O(l1(Dfn,k

) log n)

qubits9 for the second question. This needs O(kl1(Dfn,k
) log n) communication in total. With the information from

players, the coordinator compute f1
n,k as follows. First, if there is NO answered in the first question, the coordinator

determines f1
n,k = 0. If every answer of the first question from players is YES, the coordinator calculates how many

zeros are in x1 ∩ · · · ∩ xk ∈ {0, 1}n which in turn gives the value of |x1 ∩ · · · ∩ xk|. Therefore, the coordinator can
compute the value of the function f1

n,k(x1, . . . , xk) = D1(|x1 ∩ · · · ∩ xk|) even when there is no NO answer from
players.

Combining these two protocols (one is for f0
n,k and the other is for f1

n,k), the coordinator computes fn,k with

O(k log n
√
nl0(Dfn,k

)) + O(kl1(Dfn,k
) log n) = O(k log n{

√
nl0(Dfn,k

) + l1(Dfn,k
)}) communication. Finally, the

coordinator sends the output to all players with the negligible k bits of communication.

5.3 Optimal protocol for Equalityn,k

Applying a public coin protocol with O(1) communication cost for Equalityn,2 (see, e.g., [2]) to the k-party case,
we obtain the following proposition.

Proposition 6. QCC(Equalityn,k, 1/3) ∈ O(k).
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