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1 Introduction

It has recently been conjectured that the tree level S matrix of any ‘consistent’1 classical

theory never grows faster with s than s2 in the Regge limit. Arguments supporting this

so-called Classical Regge Growth (CRG) conjecture were advanced in the CEMZ paper [5],

the chaos bound paper [1] and also in discussions of the inversion formula [6] in large N

theories. (see e.g. [7]).

1That is a causal classical theory whose energy is bounded from below (and perhaps is also required to

obey other constraints of a similar general nature). See [2, 3] for a discussion and [4] for a generalization

to gluons.
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The authors of [2] demonstrated that the classical Einstein S matrix is the only CRG

consistent local tree-level2 gravitational S matrix in D ≤ 6. This striking result suggests

that if the CRG conjecture indeed holds then the set of consistent classical gravitational

S matrices is highly constrained by simple general considerations,3 and motivates a more

detailed investigation of the CRG conjecture.

We are aware of three arguments in support of the CRG conjecture. The first (and

weakest) of these arguments is the simple observation that the CRG conjecture is indeed

obeyed in every classical theory that is known for certain to be consistent. For instance, all

two derivative classical theories always obey the CRG conjecture [2]. Moreover, the classical

Einstein S matrix saturates CRG growth4 and the Type II and Heterotic analogues of the

Virasoro Shapiro amplitude of string theory temper this growth to a power that is strictly

less than two at every physical finite value of α′t (see [2] for some more details).

A second reason to believe the CRG conjecture is contained in the analysis of [5].

The authors of [5] used a ‘signal model’ (see appendix D of that paper) to argue that

the function

T (δ, s) = 1 + i
S(δ, s)

s
(1.1)

should obey the inequality

|T (δ, s)| ≤ 1 (1.2)

everywhere in the upper half complex s plane for every nonzero physical value of δ. Here

S(δ, s) is the transition amplitude — at least roughly speaking — for a particle passing

through a shock at impact parameter δ. Roughly, S(δ, s) can be thought of as the invariant

amplitude for the scattering in impact parameter space (see [8] for related discussions).

In the classical limit the tree amplitude is parametrically small5 and (1.2) reduces to

the condition

Im

(

S(δ, s)

s

)

≥ 0 (1.3)

If the large |s| fixed δ expression for the classical S matrix is

S(δ, s) = B(δ)sA(δ)

and s = |s|eiφ then (1.3) implies

T (δ) sin ((A(δ) − 1)φ) ≥ 0, 0 ≤ φ ≤ π (1.4)

When A(δ) > 2 the l.h.s. of (1.4) switches sign as φ varies over the range [0, π] so (1.4)

cannot be obeyed for all values of φ in this range.6 It follows that the condition (1.2) can

2That is an S matrix that is the sum of a polynomial in momenta plus a finite number of physical particle

exchange poles.
3See in particular the introduction of [2], and in particular Conjectures 1-3 presented in that introduction,

for a detailed discussion.
4Demonstrating the impossibility of a tighter than s2 bound on Regge growth.
5This is why loops are sub dominant compared to trees.
6When |A(δ)| ≤ 2, the sin function that appears in (1.4) is always positive, and (1.4) is obeyed when

B(δ) > 0.
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only be satisfied if A(δ) ≤ 2, i.e if the CRG conjecture is obeyed. As the passage from the

impact space S matrix S(δ, s) to the usual momentum space S matrix S(t, s) is, roughly

speaking a Fourier Transform in t at fixed s, this argument suggests that S(t, s) obeys

the CRG conjecture. The weakness of this beautiful argument lies in the fact it contains

elements that are intuitive rather than completely precise. For instance the transition from

‘impact parameter space’ to ‘momentum space’ may have subtleties related to δ function

terms in impact parameter space.7

The third (and possibly the strongest) reason to believe in the correctness of the CRG

conjecture is its connection to the chaos bound in holographic theories. A relationship

between the chaos bound and the CRG conjecture was already suggested in the original

paper [1] (see appendix A for a discussion and of the relevant comments in that paper) and

has been somewhat elaborated upon since (see e.g. [7]). The key strength of the chaos-

bound based argument for the CRG conjecture is that the starting point for this argument

is a theorem, at least by physicists’ standards. One weakness of this argument lies in the

fact that the connection between the chaos bound and the CRG conjecture has never (to

our knowledge) been carefully argued through8 (see appendix A for some discussion).9 The

goal of this paper is to fill in this gap for the case that bulk particles are either scalars,

gauge fields, or the metric (i.e. all particles relevant to the analysis of [2]).

In particular, in this paper we demonstrate that the four-point function generated

holographically by a local bulk contact term for scalars, gauge fields, or the metric neces-

sarily violates the chaos bound whenever the flat space S matrix generated by the same

contact term violates the CRG conjecture. In other words, the classical holographic dual

of a consistent unitary boundary field theory necessarily obeys the CRG conjecture.

Our argument for a sharp connection between the chaos bound and the CRG conjecture

consists largely of stitching together well known results from the now classic papers [32]

and [33–36] (see also [37]10). In section 2 we study time-ordered four-point functions in

a holographic conformal field theory of four operators of arbitrary spin inserted on the

two-parameter family of points (2.1).11 Our four-point function is normalized by dividing

with a product of two two-point functions (see (2.21)). As the insertion parameters θ and

τ run over the range of study (2.2), the conformal cross ratios σ and ρ (or equivalently

z and z̄ -see around (2.6) for definitions) range over three different sheets in the complex

cross ratio space corresponding to three distinct causal configurations (2.3) of the boundary

points. The first of these is the principal sheet which we refer to as the Causally Euclidean

7We thank S. Caron Huot for very useful discussions on this point.
8See however the papers [8–16] which put use the chaos bound (both the sign constraint and the growth

constraint part of this bound) or closely related causality constraints [17–25, 25–29] to obtain many interest-

ing results that are in the same broad universality class as this paper. In particular the analysis of [12, 30]

use such arguments to demonstrate the unphysicality of dual bulk theories with a finite number of higher

spin fields. Analogous causality bounds for CFTs (not necessarily large N) have been studied in [13, 22, 31].
9Another weakness is the fact that it uses an elaborate theoretical framework — namely that of holog-

raphy and consistency of the quantum structure of the boundary field theory — to establish a fact about

scattering in the simpler theoretical structure of classical field theories.
10See [38, 39] for recent progress regarding external massive scalar states.
11The same kinematic configurations were studied in section 6.1 of [36].
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sheet through this paper. The second sheet -which we refer to as the Causally Regge sheet

through this paper — is reached starting from the Causally Euclidean sheet by circling the

branch point at z̄ = 1 in a counter-clockwise manner. The third sheet — which we refer to

as the Causally Scattering sheet through this paper- is obtained starting from the Causally

Regge sheet by circling counter-clockwise around the branch point at z = 0.

Our argument proceeds by focusing attention on two special one parameter limits of

our two-parameter set of insertion points (2.1). The first of these is the much-studied

‘Regge limit’ (2.9) in which σ is taken to be small but ρ is allowed to be arbitrary. Here

and throughout this paper, ρ and σ are conformal cross ratios, related by the more familiar

cross ratios z and z̄ by the relations z = σeρ and z̄ = σe−ρ. In several studies of conformal

field theory, the Regge limit is studied on the Causally Regge sheet (2.3) of cross ratio

space. The Regge limit studied in section 3 of this paper, however, straddles across both

the Causally Regge and the Causally scattering configuration12 In section 3 below we use

a small variant of the analysis of section 5.2 of [32] to demonstrate that to leading order in

this limit (i.e. to leading order in small σ ) the σ and ρ dependence of our correlator takes

the form
gCS(e2ρ)

σA′−1
and

gCR(e2ρ)

σA′−1
(1.5)

respectively in the Causally Scattering and Causally Regge regimes, where A′ is a fixed

but as yet unknown number. gCS(e2ρ) and gCR(e2ρ) are as yet unknown functions of the

cross ratio ρ. The crucial point here, however, is that they are not completely independent

of each other. There exists a function H̃(z) which is analytic apart away from the branch

cut at z = 0. gCR(e2ρ) equals H̃(z) evaluated on z = e2ρ on one sheet of this function,

while gCR(e2ρ) equals H̃(z) evaluated on z = e2ρ on a second sheet.13 This fact makes it

impossible for g(e2ρ) to vanish identically in the Causally Regge branch if it is nontrivial

on the Causally Scattering branch.14 It follows, in other words, that in the small σ limit,

correlators scale with the same power of σ in the Causally Scattering and Causally Regge

sheets of cross ratio space.

In section 4 we turn to the study the limit ρ → 0 on the Causally Scattering sheet;

this is the bulk point limit of [33–36]. In section 4 we generalize the discussion of section

6 of [36] and [34, 35] to demonstrate that the four point function is given, to leading order

in this limit, by the expression

Gsing ∝ − 1

4
√

σ(1 − σ)

∫

HD−2

dD−2X

∫

dωω∆−4eiωP.XS (1.6)

(see (4.64) for the proportionality factor that makes this equation precise) where S is

the classical flat space S matrix of four specified waves with momenta (4.21), polariza-

12One reason for this is that our ‘coordinate patch’ (2.1) is more flexible than the ρ coordinate patch (E.2)

often employed in CFT studies. As we explain in appendix E, that part of the two-parameter insertion

space (2.1) which lies on the Causally Scattering sheet has no image into time-ordered correlators on the ρ

plane (E.2).
13On the configurations studied in this paper e2ρ is real and lies in the interval (0, 1).
14The point τ = θ in the configuration (2.1) maps to e2ρ = z = 0, the branch point of the correlator. As a

consequence the functions gCS(ρ) and gCR(e2ρ) are not directly smoothly connected but are more indirectly

related, as explained in this paragraph.
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tions (4.67), ω is the energy of each of these waves, ∆ is the sum of the scaling dimensions

of the four operators and the HD−2 is the part of AdSD+1 space that is orthogonal to the

four boundary points Pi at τ = 0 (see subsection 2.6).15

Whenever the bulk S matrix is generated by a local contact term, S grows like a non-

negative power of ω. In this situation the integral over ω in (1.6) receives its dominant

contributions from large values of ω. The phase factor eiωP.X cuts off a would-be large

ω divergence in this integral and turns it into a power-law singularity, of the form 1
ρa , in

ρ;16 this is the famous bulk point singularity of [36](see section 4 for details). Eq. (1.6)

allows one to compute the coefficient of this singularity; we find that it is proportional to

a simple known function of σ times an integral of flat space S matrix over HD−2, with the

scattering angle θ and scattering polarizations determined in terms of boundary cross ratios

and polarization in a simple way.17 Our final result for the coefficient of the singularity

1/ρa in terms of the flat space S matrix, presented in (4.68), is a generalization of the

results of [33] to the study of holographic correlators of arbitrary spin, and reduces to the

results of [33] in the special case that all particles have spin-zero.

Recall that (1.5) applies when σ is small while (1.6) applies when ρ is small. We will

now extract information from the fact that these two expressions must hold simultaneously

when ρ and σ are both small. When we specialize the small ρ discussion ((1.6) and

surrounding) to small values of σ it turns out that we find the following simple universal

result. If the flat space S matrix S scales at large s but fixed t like

S ∝ sA (1.7)

then the small σ limit of the ρ → 0 limit of the Greens function — normalized as in (2.21)

— is proportional to

G ∝ 1

ρaσA−1
(1.8)

Eq. (1.8) tells us how fast our correlator grows with σ in the ρ → 0 limit. On the other

hand (1.5) captures the fastest growth of the correlator at any value of ρ. In subsection 5 we

present a detailed study of the inter relation between the small σ and small ρ expansions,

and establish in particular that

A′ ≥ A (1.9)

Recall that the chaos bound theorem of [1] implies (see the appendix of that paper and

section 6 for a brief review) that the correlator for a well behaved (unitary etc) boundary

theory cannot grow faster than 1
σ in the small σ limit on the causally Regge sheet. As A′

15In other words it consists of the points X in the embedding space RD,2 which obey the equations

Pi.X = 0 for all i together with X2 = −1. See appendix B.3 for details.
16When S grows like ωr,

a = ∆ + r − 3.

17Specifically, θ is identified with the conformal cross ratio σ according sin2 θ
2

= σ, while the transverse

polarizations are identified with the parallel transport or boundary polarizations to the bulk point X on

HD−2 along the unique null geodesic that connects the boundary points Pa to X.

– 5 –
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P1 t = τP3

t = π

t

P4

P2

θ

Figure 1. Insertion points in global AdS.

in (1.5) equals A even on the causally Regge sheet, it follows as a consequence of the chaos

bound as

A ≤ 2. (1.10)

In words, the flat space S matrix cannot grow faster than s2 in the Regge limit. Restated,

the chaos bound applied to boundary correlators of a unitary theory implies that the bulk

dual of that theory obeys the CRG conjecture.

2 Kinematics

2.1 Insertion locations

In this paper we study the four point function of boundary operators in a holographic

field theory. Following section 6 of [36], we study correlators of operators inserted at the

following two parameter set of boundary points of AdSD+1:

P1 = (cos τ, sin τ, 1, 0,~0)

P3 = (cos τ, sin τ,−1, 0,~0)

P2 = (−1, 0,− cos θ,− sin θ,~0)

P4 = (−1, 0, cos θ, sin θ,~0)

(2.1)

where we parameterize boundary points in AdSD+1 by null rays in embedding space with

the first two coordinates timelike and the remaining D coordinates space-like (see ap-

pendix B for notations and conventions and a brief review of the embedding space formal-

ism), ~0 is the zero vector in D − 2 dimensional Euclidean space. Points P1 and P3 are

inserted at global time τ , and points P2 and P4 are inserted at global time π. We will focus

our attention on the range of parameters18

0 ≤ τ ≤ π, 0 ≤ θ ≤ π

2
(2.2)

18The restriction to θ in the range 0 ≤ θ ≤ π
2

rather than 0 ≤ θ ≤ π is a matter of convenience; the flip

2 ↔ 4 maps the smaller to the bigger range.

– 6 –



J
H
E
P
0
5
(
2
0
2
1
)
1
4
3

2.2 Causal relations and cross ratio sheets

The causal relations between the points Pa are given by19

τ > π − θ Causally Euclidean,

π − θ > τ > θ Causally Regge (P4 > P1, and P2 > P3)

τ < θ Causally Scattering (P4, P2) > (P1, P3)

(2.3)

where we have used the notation A > B to denote that A is in the causal future of B

and it is understood that two points are space-like separated with respect to each other if

their causal ordering is not specified.20,21 Note that the three distinct causal relations (2.3)

correspond to three distinct sheets in complex cross ratio space.

We end this subsection with an aside. We see from (2.3) that when τ > θ, τ = θ or

τ < θ, the pairs of points (P2, P1) and (P4, P3) are, respectively both space-like, null or

time-like separated. The fact that the switch of causal relations for the pairs (P2, P1) and

(P4, P3) happens simultaneously indicates that the two parameter set of coordinates (2.1)

are rather special especially in the neighbourhood of τ = θ. If we allowed for general

variations of all four boundary points, in the neighbourhood of the configuration (2.1) with

τ = θ we would find points with P2 > P1 but (P4, P3) space-like and vice versa. The

configurations (2.1) do not include any such causal configurations, and so are non generic

in the neighbourhood of τ = θ. See appendix C for a detailed analysis in the case that τ

and θ are both small.

2.3 Conformal cross ratios

The conformal cross ratios (see appendix B.5) associated with these four points are given by

zz̄ ≡ (P2.P1)(P3.P4)

(P2.P4)(P3.P1)
=

(cos τ − cos θ)2

4
≡ A

(1 − z)(1 − z̄) ≡ (P4.P1)(P2.P3)

(P2.P4)(P3.P1)
=

(cos τ + cos θ)2

4

=⇒ z + z̄ = 1 − cos τ cos θ ≡ 2B

19See around figure 8 of [36]. The argument is as follows. The pairs (P1, P3) and (P2, P4) are each inserted

at equal global times; it follows that elements of the same pair are always space-like separated from each

other. The time difference between the insertion points of the second and first pair is π − τ . The angular

separation between 1 and 3 (or 2 and 4) is π −θ, and the angular separation between 1 and 4 (or 2 and 3) is

θ. Using the fact that two points are time-like separated only if the time difference between them exceeds

their angular separation gives (2.3).
20For complete clarity, all four points are space-like separated from each other in the Euclidean configu-

ration, P4 is in the future light-cone of P1, P2 is the future light-cone of P3 while each of the pair P1, P4 is

space-like separated with each of the pair P3, P2 in the Regge configuration. On the other hand P1 and P3

are space-like separated with respect to each other, P2, and P4 are also space-like separated with respect

to each other, but each of P4, P2 lie in the future light-cones of each of P1, P3 in the causally scattering

regions.
21We use the name Causally Regge because this is the causal relationship between points in the well

studied Regge limit of CFT on the cross ratio sheet on which the chaos bound constrains the small σ

behavior of correlators.

– 7 –
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z2 − 2Bz +A = 0

z = B ±
√

B2 −A

z =
1 − cos (τ − θ)

2

z̄ =
1 − cos (τ + θ)

2
(2.4)

Note that both z and z̄ lie in the interval

z ∈ [0.1], z̄ ∈ [0, 1] (2.5)

As usual we define the cross ratios σ and ρ by the relations22

z = σeρ, z̄ = σe−ρ (2.6)

With these definitions

σ2 =
(cos θ − cos τ)2

4

sinh2 ρ =
sin2 θ sin2 τ

(cos θ − cos τ)2

(2.7)

To end this subsection we specialize (2.4) in the two parametric limits that are of

particular interest in this paper.

2.3.1 The small τ limit

In the small τ limit at fixed θ, (2.4) simplifies to

z = sin
θ

2

(

sin
θ

2
− τ cos

θ

2

)

+ O(τ2)

z̄ = sin
θ

2

(

sin
θ

2
+ τ cos

θ

2

)

+ O(τ2)

σ = sin2 θ

2
+ O(τ2)

ρ = −τ cot
θ

2
+ O(τ3)

(2.8)

Note, in particular, that ρ approaches zero (from the negative side) as τ → 0.

2.3.2 The Regge limit

On the other hand in the Regge limit

τ → 0, θ → 0,
τ

θ
= a = fixed (2.9)

22See appendix B.5 for more about various cross ratios.

– 8 –
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Eq. (2.15) simplifies to

z =
(θ − τ − iǫ)2

4
=
θ2

4
(1 − a− iǫ)2 + O(θ4)

z̄ =
(θ + τ + iǫ)2

4
=
θ2

4
(1 + a+ iǫ)2 + O(θ4)

σ2 =
θ4(1 − a2)

16
+ O(θ6)

e2ρ =

(

1 − a− iǫ

1 + a+ iǫ

)2

+ O(θ2)

(2.10)

(in (2.9) we have presented iǫ corrected formulae using the method of subsection 2.5 below).

Note that the Regge limit explores the neighbourhood of the boundary point (2.1)

obtained by setting τ = θ = 0, i.e. the point

P1 = (1, 0, 1, 0,~0)

P3 = (1, 0,−1, 0,~0)

P2 = (−1, 0,−1, 0,~0)

P4 = (−1, 0, 1, 0,~0)

(2.11)

In this paper we study only that part of the neighbourhood of this point that we can be

reached by turning on small values of θ and τ in (2.1). As an aside we note that this two

parameter set of points do not give a complete cover of the neighbourhood of (2.11) modulo

conformal transformations. In addition to the points obtained from (2.1) at small values

of θ and τ , there are additional infinitesimal deformations of (2.11) in which the insertion

points enjoy different causal relations from any of those listed in (2.3). This fact (which

we will never use anywhere else in this paper) is explained in some detail in appendix C.

2.3.3 Overlap between small τ and Regge

Note that the small θ limit of the small τ limit (2.8) overlaps with the small a limit of

the Regge limit (2.10). In particular if we expand the r.h.s. of (2.8) at leading order in θ

we obtain

σ =
θ2

4

ρ = −2τ

θ

(2.12)

On the other hand if we expand (2.10) to leading order in a we obtain

σ =
θ2

4

ρ = −2a

(2.13)

It follows from (2.9) that (2.10) and (2.8) are equivalent.

Notice that the τ → 0 limit places us in the Causally Scattering regime of (2.3). On

the other hand, the Regge limit lies in the causally scattering regime when a < 1 but in

the Causally Regge regime for a > 1. The fact that the Regge limit straddles two distinct

causal regimes will be of central importance to this paper.
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Figure 2. The evolution of z and z̄ as τ is decreased from π down to 0 at fixed θ. Note z̄ touches

its maximum value unity at τ = π − θ and z touches its minimum value, z = 0 at τ = θ.

Figure 3. The evolution of the cross ratio σ as τ is decreased from π down to 0 at fixed θ. Note

that σ touches its minimum value, σ = 0 at τ = θ, when z vanishes.

2.4 A path in cross ratio space

It is useful to track the evolution of z, z̄, σ and ρ as we keep θ fixed and adiabatically

decrease τ from τ = π to τ = 0. When τ = π, z = z̄ = 1+cos θ
2 and our configuration is

Euclidean. As we decrease τ , z decreases while z̄ increases. z̄ reaches its maximum value,

namely unity when τ = π − θ (i.e. at the boundary between the Causally Euclidean and

Causally Regge regimes). As τ is further decreased, z continues to decrease, but now z̄

also begins to decrease. Once τ reaches θ (the boundary between the causally Regge and

causally scattering regime) z reaches its minimum value namely zero. As τ is decreased

even further z̄ continues to decrease but z now starts to increase. Finally, at τ = 0 we have

z = z̄ = 1−cos θ
2 .23

In the previous paragraph, we have described a one parameter path in configuration

space. The evolutions of various conformal cross ratios along this path is depicted in the

graphs figures 2, 3 and 4 below in which we have displayed graphs of the cross ratios z, z̄,

σ ρ versus τ (note the arrows in those graphs track the journey from Causally Euclidean

configurations, starting at τ = π, to Causally Scattering configurations, ending at τ = 0.)

23It follows (see (B.25)) that the starting point τ = π and the end point τ = 0 of our paths each have

ρ = 0.
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Figure 4. The evolution of the cross ratio e2ρ = z
z̄

as τ is decreased from π down to 0 at fixed θ.

Note that e2ρ touches its minimum value, e2ρ = 0 at τ = θ, when z vanishes.

We end this subsection with a remark. Several investigations of CFT work in the

so-called ‘ρ plane’.24 In this plane the four CFT operators are inserted in R1,1 at the

locations (E.2). A question that might occur to the reader is the following: how does

the path described in this subsection (fixed θ, τ lowered from π to zero) map to the ρ

plane? This question is addressed in detail in appendix E. Here we only make a simple

qualitative point. In the ρ coordinate system (E.2) the insertion points P3 and P4 are fixed

and unmoving; in particular, these two points are spacelike separated from each other.

It follows immediately that the part of the trajectory of this subsection that lies in the

Causally scattering region (τ < θ) has no image in the ρ plane. On the other hand, the

part of the trajectory of this subsection that lies on the Causally Euclidean and Causally

Regge sheets has a faithful map onto the ρ plane, as we describe in appendix E.

2.5 The same path on the complex cross ratio sheets

As conformal correlators have branch points at z̄ = 1 and z = 0, and as the trajectories

described in the previous subsection all ‘touch’ these branch points, it follows that the

description of the paths presented in the previous subsection is ambiguous and needs to

be improved.25 The true paths traversed in cross ratio space are given by making the

replacements τ → τ − iǫτ (see appendix D.2). The iǫ corrected insertion points are

P1 = (cos(τ − iǫτ), sin(τ − iǫτ), 1, 0)

P3 = (cos(τ − iǫτ), sin(τ − iǫτ),−1, 0)

P2 = (cos(π − iπǫ), sin(π − iπǫ),− cos θ,− sin θ)

P4 = (cos(π − iπǫ), sin(π − iπǫ), cos θ, sin θ)

(2.14)

24To forestall confusion we emphasize that in this paragraph and in parts of appendix E — but nowhere

else in this paper — ρ refers to the insertion coordinate in (E.2) and not to the conformal cross ratio paired

with σ.
25Along the path of the previous subsection, for instance, z̄ increases to unity and then retreats back. We

need to know whether the retreat occurs on a different sheet from the onward trajectory, and if so which

one. A similar question arises for the part of the trajectory that touches z = 0.
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with ǫ > 0. The iǫ corrected cross ratios are given by

zz̄ ≡ (P2.P1)(P3.P4)

(P2.P4)(P3.P1)
=

(cos θ − cos [τ + iǫ(π − τ)])2

4
≡ A

(1 − z)(1 − z̄) ≡ (P4.P1)(P2.P3)

(P2.P4)(P3.P1)
=

(cos θ + cos [τ + iǫ(π − τ)])2

4

=⇒ z + z̄ = 1 − cos θ cos [τ + iǫ(π − τ)] ≡ 2B

z2 − 2Bz +A = 0

z = B ±
√

B2 −A

z =
1

2
(1 − cos(θ − τ − i(π − τ)ǫ)),

z̄ =
1

2
(1 − cos(θ + τ + i(π − τ)ǫ)),

σ2 =
(cos θ − cos[τ + iǫ(π − τ)])2

4

sinh2 ρ =
sin2 θ sin[τ + iǫ(π − τ)]2

(cos θ − cos[τ + iǫ(π − τ)])2

(2.15)

2.5.1 The neighbourhood of z̄ = 1

To examine the route traced by the path of subsection 2.4 in complex cross ratio space,

we first examine (2.15) in the neighbourhood of z̄ = 1 by setting τ = π− θ+ δτ , assuming

δτ = O(ǫ) and expanding to second order in ǫ. We find that the formula for z̄ reduces to

z̄ − 1 = −(δτ + iǫ̃)2

4

|z̄ − 1| =
δτ2 + ǫ̃2

4

Arg(z̄ − 1) = −π + 2 tan−1
(

ǫ̃

δτ

)

, tan−1(x) ∈ [0, π)

(2.16)

where ǫ̃ = (π − τ)ǫ

It follows immediately from (2.16) that as τ is lowered from just above π − θ to just

below π − θ, our path in cross ratio space circles around the branch point at z̄ = 1 in

a counter-clockwise manner. The much-studied passage from the Euclidean to standard

‘Regge’ behavior — involves traversing precisely the same path in cross ratio space (see

e.g. subsection 5.1 of [40] ). It follows that the Causally Regge sheet of (2.3) is the sheet

encountered in studies of the CFT in the Regge limit,26 i.e. the sheet on which CFT

correlators are constrained by the chaos bound of [1].

2.5.2 The neighbourhood of z = 0

In the similar fashion we examine the behaviour of our path in the neighbourhood of z = 0

by setting τ = θ+ δτ . Once again we take O(δτ) = O(ǫ) and work to second order in ǫ to

26As far as we are aware, this limit was first studied in the context of AdS/CF T in [41, 42] and later

extended to more general CFTs in [43, 44]. See [6, 10, 40, 45] for more recent use of this kinematic limit in

recent times.
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Figure 5. The path traversed in the complex plane by the variables z (purple) and z̄ (green) as

we lower τ from π to 0 at fixed θ. The vertical scale in these graphs is greatly exaggerated to

make them visible. The actual curves should be thought of as hugging the real axis except in the

neighbourhood of the branch points which they circle in the manner shown in this figure.

obtain

z =
(δτ + iǫ̃)2

4

|z| =
δτ2 + ǫ̃2

4

Arg(z) = 2 tan−1
(

ǫ̃

δτ

)

, tan−1(x) ∈ [0, π)

(2.17)

It follows that as τ is lowered from just above θ to just below θ, our path circles round the

branch point at z = 0 in a counter-clockwise manner (note ǫ̃ > 0) (see figure 6 of [32]).

2.5.3 Summary of the trajectory in the complex plane

In summary, as we lower τ from π to zero at constant θ we move along the trajectories

in (complex) cross ratio space depicted schematically in figure 5 (the vertical scale in

these graphs is highly exaggerated; all curves hug the real axis except when z̄ is in the

neighbourhood of unity or when z is in the neighbourhood of zero). In other words, our

path starts on the principal or Causally Euclidean sheet when τ = π. As τ is lowered below

π − θ our path circles around the branch cut at z̄ = 1 counter-clockwise, bringing us onto

the Causally Regge sheet. As τ is further lowered past θ, the path circles counter-clockwise

around the branch cut at z = 0, taking us to the Causally Scattering sheet (see figure 8

of [36] for a very closely related discussion).

2.6 Intersections of boundary lightcones

When do the lightcones emanating out of the four points P1, P2, P3 and P4 have a common

intersection point in the bulk? For τ 6= 0 the four vectors P1, P2, P3 and P4 span a four
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dimensional subspace of RD,2 and this subspace is metrically R2,2. It follows from the

analysis of appendix B.427 that the lightcones that emanate out of these four points have

no common intersection for τ 6= 0.28

When τ = 0, on the other hand (i.e. at the edge of the parameter range (2.2), i.e.the

limit (2.8) in which ρ → 0)29 the vectors P1, P2, P3 and P4 are linearly dependent. In

particular, at τ = 0

P1 + P2 + P3 + P4 = 0 (2.18)

In this case these vectors span a three dimensional subspace of RD,2. This subspace is

metrically R2,1. In the language Appendx B.4, (2.1) is a Case 2 configuration of boundary

points with Q̂ = 3. The lightcones that emanate out of these four points intersect on

an HD−2, and the subalgebra of the conformal algebra that stabilizes the four point is

SO(D − 2, 1).

In the special case that τ = 0 and θ = 0 (i.e. the Regge limit (2.9)), it is easy to check

that (2.18) breaks up into two equations (see (2.11))

P1 + P2 = 0

P3 + P4 = 0
(2.19)

It follows that the subspace of RD,2 spanned by the vectors P1, P2, P3, P4 in this limit is

two dimensional; infact it is the R1,1 spanned by

(a, 0, b, 0, . . . 0)

for arbitrary a and b. The space orthogonal to this R1,1 is RD−1,1 spanned by coordinates

of the form

(0, y0, 0, y1, yi) (2.20)

and the subgroup of the conformal group that stabilizes the collection of points

P1, P2, P3, P4 is SO(D − 1, 1).30

27In the language Appendx B.4(2.1) is a Case 1 configuration of boundary points with Q̂ = 4.
28In this generic situation the subalgebra of the conformal algebra that stabilizes the collection of points

P1, P2, P3 and P4 — and so the vector space R2,2 of embedding space vectors spanned by P1 . . . P4- is

SO(D − 2).
29There are actually two distinct limits of the insertions (2.1) in which ρ → 0. The first of these is the

limit τ → 0 of interest to this paper. The second is the simpler limit τ → π in which, once again, ρ → 0.

These two limits are physically distinct because they lie on different sheets on the z and z̄ complex plane. In

the second simpler limit the correlators lie on the principal or Euclidean sheet (i.e. the Causally Euclidean

region of (2.3)). Correlation functions at nonzero θ are manifestly non-singular in this second ρ → 0 limit

(see under equation 6.21 of [36]). This non-singular limit is of no interest to this paper and will never again

be considered here.
30Moving beyond the consideration of the specific boundary configurations studied in this paper, the

reader may wonder there exists a general interplay between the Rp,q classification of boundary points, their

possible causal structures and the nature of their cross ratios. The answer to this general question (that has

no application to the current paper) is clearly in the affirmative and we present a preliminary investigation

of this point in appendix B.7. For example we demonstrate that whenever the four boundary points are in

an R3,1 configuration (this can happen for a number of different causal relations between the points), the

ρ cross ratio corresponding to these points is always imaginary. On the other hand ρ could be either real

or imaginary when the four points span an R2,2.
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Although this fact will have no implications for the main flow of this paper, we note

as an aside that the neighbourhood of the Regge point (2.11) includes points whose span

in embedding space is an R3,1 (in addition to the points obtained from small values of θ

and τ in (2.1) whose span in embedding space make up an R2,2 or an R2,1); this point is

explained in some detail in appendix C.

2.7 Scaling limits of the two point function

In this paper, we will be interested in studying the normalized four-point function of

operators inserted at the positions P1 . . . P4 defined by

Gnorm =
G

G12G34
(2.21)

where G is the simple four-point function, and G12 and G34 are two-point functions. We

will be particularly interested in the scaling of the correlator (2.21) in the Regge and small

τ limits. In the subsequent two sections, we present a study of the four-point function —

the numerator of (2.21) — in these two scaling limits. In this brief subsection, we present

the much simpler analysis of the scaling of the denominator of (2.21) in these limits.

To end this section we study the scaling of the two-point function of spin J operators

inserted at the locations P1 and P2 in the Regge and τ → 0 limits.

As we have reviewed in appendix B.10, the boundary to boundary two point function

for a spin J field is given by

Gij = C∆,J
(Zi.Zj Pi.Pj − Zi.Pj Zj .Pi)

J

(Pi.Pj)∆+J
(2.22)

where Zi is the boundary polarization vector for the ith particle (see under (B.13) for a

discussion of boundary tangent vectors in the embedding space formalism) and

C∆,J =
(J + ∆ − 1)Γ(∆)

2πd/2(∆ − 1)Γ(∆ + 1 − h)
(2.23)

Note that on the configurations (2.1)

P1.P2 = P3.P4 = cos τ − cos θ (2.24)

2.7.1 Regge scaling

In this limit (2.24) simplifies to

P1.P2 = P3.P4 =
θ2 − τ2

2
=
θ2

2
(1 − a2) (2.25)

Also

Z1.P2 = Z1.(P2 + P1) = θ
(

Z1.(0, a, 0,−1,~0)
)

+ O(θ2) ≤ O(θ)

Z2.P1 = Z2.(P2 + P1) = θ
(

Z2.(0, a, 0,−1,~0)
)

+ O(θ2) ≤ O(θ)

Z1.Z2 ≤ O(1)

(2.26)
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where we have used Z1.P1 = Z2.P2 = 0 (see around (B.13)). It follows from (2.26) that

(Z1.Z2 P1.P2 − Z1.P2 Z2.P1)J ≤ O(θ2J) (2.27)

Generic polarizations saturate the inequality (2.27). Through this paper and we restrict

attention to such correlators; in other words in this paper we restrict attention to generic

polarizations — those that obey

(Z1.Z2 P1.P2 − Z1.P2 Z2.P1)J = O(θ2J) (2.28)

(similar comments apply to G34).31

It follows immediately that in the Regge limit, the two point function G12 scales like

G12 =
1

σ∆1

G34 =
1

σ∆3

(2.29)

2.7.2 Small τ limit

In the limit in which τ is taken to zero

P1.P2 = P3.P4 = 1 − cos θ (2.30)

If we now also take θ to be small

P1.P2 = P3.P4 =
θ2

2
(2.31)

in agreement with (2.25) at a = 0.

At generic θ we generically have

(Z1.Z2 P1.P2 − Z1.P2 Z2.P1)J = O(1) (2.32)

When we take θ small, however, we recover the a → 0 limit of (2.28). While at generic θ

the G12 and G34 are of order unity, at small θ (2.29) applies.

3 The σ → 0 Regge limit

Consider a correlation function with four operators O1, O2, O3, O4 inserted at the points

P1, P2, P3, P4 given in (2.1) In all the concrete formulae presented in this paper we will

assume that Oi are primary operators of the conformal group SO(D, 2) that have some

dimension ∆i = wi + Ji and transform in the traceless symmetric representation with Ji

indices of SO(D).32

31This restriction allows for greater simplicity of presentation and does not really result in loss of gener-

ality. Our assumption is maximally violated when the l.h.s. of (2.28) vanishes, in which situation (2.21).

See section 6 for a discussion of how the omission of such correlators does not result in a lack of generality.
32The extension of this discussion to general representations of SO(D) seems conceptually straightforward

but is not considered here as it is notationally cumbersome.
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In this section we study the correlator described above holographically, and in the

Regge limit (2.9), i.e. the limit in which the conformal cross ratios are given by (2.10). We

emphasize that, in the terminology of this paper, the Regge limit straddles the Causally

Regge and Causally Scattering sheets (see the discussion around (2.10)). The discussion

in this section is inspired by and has considerable overlap with the analysis of section 5.2

of [32]. The slight novelty of our presentation lies in two aspects. First our emphasis on

the fact that the analysis of this section applies both to the Causally Regge as well as the

Causally Scattering sheets, and in fact allows for smooth interpolation between the two.

Second in our study of the structure of the systematic expansion (beyond simply leading

order) of the correlator in the small θ limit, an expansion we will return to in section 5.

3.1 Scaling with θ

We wish to study a four point function generated by a bulk contact term in the Regge limit.

Any such four point function is given by the sum over expressions of the schematic form
∫

dD+1X
N

(−2P1.X + iǫ)ã1(−2P2.X + iǫ)ã2(−2P3.X + iǫ)ã3(−2P4.X + iǫ)ã4
(3.1)

where N is a numerator function; N = N(Zi, X), Zi are boundary polarization vectors and

ãi are positive numbers (not necessarily integers). Bellow we will have use for the symbol

2B̃ =
∑

i

ãi (3.2)

As we have explained around (2.19), in the strict Regge limit the four points P1 . . . P4

span an R1,1. The space orthogonal to this R1,1 is RD−1,1 spanned by vectors of the

form (2.20). It is thus useful to parameterize the general bulk point in this limit as

X =

(

u+ v

2
, y0,

v − u

2
, y1, yi

)

(3.3)

with

− (yµ)2 + uv = 1 (3.4)

When u = v = 0 and in the strict Regge limit the points (3.3) are orthogonal to all Pa,

and so all denominators in (3.1) vanish when u, v, θ, τ all equal zero. Recall that in the

Regge limit θ and τ are of the same order of smallness. It will turn out that the leading

contribution to the integral in (3.1) comes from values of u and v that are also of order θ

(see [32]). It is thus useful to expand the integrand in (3.1) in a power series expansion in

the four small variables (θ, τ, u, v) with all treated as being of the same order in smallness,

with all other quantities (yi and Zi) held fixed33 Let us suppose that the numerator N is

of order θM plus subleading in this expansion. We define

2B = 2B̃ −M (3.5)

It follows that the integrand of (3.1) scales like 1
θ2B in the limit under consideration.

33The D − 1 variables yi are the coordinates on the HD−1 below. It is convenient not to view y0 as an

independent variable, but instead to use (3.4) to solve for y0 in a power series expansion in uv. It follows

that the coefficients of the power series expansion in θ, τ, u, v are all functions of yi and Zi.
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At leading order

−2P1.X = u+ τ ỹ0 ≡ D0
1

−2P2.X = −u+ θ y1 ≡ D0
2

−2P3.X = v + τ ỹ0 ≡ D0
3

−2P4.X = −v − θ y1 ≡ D0
4

y0 =
√

1 + y2
i − uv

ỹ0 =
√

1 + y2
i

(3.6)

Note that ỹ0 is simply y0 at leading order in the small θ expansion — recall the monomial

uv is of order θ2.

As we have mentioned above, in order to generate the small θ expansion we proceed

to Taylor expand the integrand of (3.1) in a Taylor series in small quantities. Notice

that the quantities D0
i are a collection of four linearly independent combinations of these

small quantities. As D0
i will play a distinguished role in our perturbative expansion, we

find it useful to use them rather than (see (3.6)) ) as the basic monomials for our Taylor

series expansion. One can easily pass between D0
i and u, v, θ, τ using (3.6) and the inverse

relations (3.7)

u =
1

2

(

D1
0 −D2

0 −D3
0 −D4

0

)

v = −1

2

(

D1
0 +D2

0 −D3
0 +D4

0

)

θ =
1

2y1

(

D1
0 +D2

0 −D3
0 −D4

0

)

τ =
1

2
√

1 + y2
1 + y2

⊥

(

D1
0 +D2

0 +D3
0 +D4

0

)

(3.7)

In (3.7) we have split up the D−1 yi variables into y1 and the remaining D−2 variables y⊥.

To proceed we now expand both the numerator and each denominator in (3.1) in a

power series expansion in Di
0. Let us first consider the numerator N . This quantity is

a polynomial in Zi and X and so can be expanded in a power series in Di
0. The Taylor

expansion of the numerator takes the schematic form
∑

ni

an1,n2,n3,n4(Zi, yi)
(

D1
0

)n1
(

D2
0

)n2
(

D3
0

)n3
(

D4
0

)n4
(3.8)

where M is the smallest homogeneity (i.e. smallest value of n1 +n2 +n3 +n4) that appears

in this expression)

In a similar manner each term in the denominator of (3.1) can also be expanded. For

instance
1

(−P1.X + iǫ)ã1
=
∞
∑

n=0

En (3.9)

where En takes the form

En =
∑

Qn1,n2,n3,n4(yi)
(D2

0)n2(D3
0)n3(D4

0)n4

(D1
0)ã1+n1

(3.10)
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where all ni are integers, n2, n3, n4 are all positive, n1 is either positive or negative and

n2 + n3 + n4 − n1 = n (3.11)

Putting it all together, it follows that the integrand in (3.1) admits an expansion of

the form

∑

ai

1

(u+ τ y0 + iǫ)a1(−u+ θ y1 + iǫ)a2(v + τ y0 + iǫ)a3(−v − θ y1 + iǫ)a4
N{ai}(yi, Zi)

(3.12)

where
(

4
∑

i=1

ai

)

≤ 2B (3.13)

where, for each i, ai − ãi is a (positive or negative) integer

The summation in (3.12) includes terms at all orders in the θ expansion. Terms of

leading order in this expansion (those which scale like 1
θ2B )are those for which

∑

i

ai = 2B

On the other hand terms at nth subleading order in the small θ expansion (those which

scale like 1
θ2B−n ) are those for which

∑

i

ai = 2B − n

Eqs. (3.12), (3.13) in particular express the fact that the integrand in (3.1) is of order
1

θ2B̃−M
= 1

θ2B in the small θ limit (the M arises from the scaling of the numerators) and

that there are additional power series corrections to this leading small θ scaling behaviour.

We now turn to the bulk integral over u and v. It is convenient to break up this integral

into two regions; the first R1 being disk of radius (say) A in the u, v plane and the second,

R2, which is the complement of R1. A is a fixed number, independent of θ, and is chosen

to be smaller than the radius of convergence of the power series expansions for u and v.34

The point of this split is the following; in order to generate a σ expansion of our result, it

is useful to use the Taylor expansion (3.12). However this expansion is only valid at small

enough u, v.35 We are allowed to use this expansion only in the region R1 but not in R2.

Indeed, the appropriate Taylor expansion of the integrand in R2 is in a power series

in θ and τ , but with u, v being treated of order unity, i.e. u and v dependence being

dealt with exactly and not in expansion. Performing this expansion we immediately find

that the integral (3.1) in R2 is of order unity (in θ, τ smallness or smaller. This will be

parametrically smaller than the θ dependence we will obtain from region R1, and so the

integral over R2 will be irrelevant for the determination of the behavior of the integral at

34This expansion has a finite radius of convergence because it arises from the expansion of simple rational

functions of u and v.
35In particular if we illegally used the expansion at large u and v, terms that appear at high enough

orders in this integrand would have divergent integrals over u and v.
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leading order in θ. The region R2 is also everywhere finitely separated from the ‘bulk point

singularity’ HD−2 of section 4 (this is the surface u = v = y1 = 0, see around (4.37)) and so

the integral over this region is also non-singular in the bulk point ρ → 0 (a → 0) limit. For

this reason the integral over R2 will play absolutely no role in the analysis of this paper,

and will be ignored both in the rest of this section and also all through section 5.

For the integral over R1 we employ the expansion (3.12) and perform the integral term

by term. Upto corrections of order unity or smaller (that come from the fact that the

region of integration in R1 is bounded)36 we can perform the integral as follows. We make

the variable change u = θU and v = θV to obtain

∑

i

θ(2−
∑

m
am)N{ai}(yµ, Zi)f{am}(a, y0, y1) (3.14)

where

f{ai}(a, y0, yi) =

∫

dUdV

(U + ay0 + iǫ)a1(−U + y1 + iǫ)a2(V + ay0 + iǫ)a3(−V − y1 + iǫ)a4

(3.15)

Recall a = τ
θ . The integration (3.15) is performed over the full real line for U and V ;

the correction from the finite integration range is of order unity or smaller, as we have

explained above. In the integral above y0 =
√

1 + y2
i . The integrals over in (3.15) are

easily evaluated using Schwinger parameters; one obtains [32]

f{ai}(a, y0, yi) =
Ca1,a2,a3,a4

(a y0 + y1 + iǫ)a1+a2−1 (a y0 − y1 + iǫ)a3+a4−1

Ca1,a2,a3,a4 =
Γ (a1 + a2 − 1) Γ (a3 + a4 − 1)

Γ (a1) Γ (a2) Γ (a3) Γ (a4)

(3.16)

In the small θ limit the dominant term in (3.14) is of order 1
θ2B−2 ∼ 1

σB−1 . The

contribution of this term to the full integral (3.1) is

θ−2B+2H(a, Zi) (3.17)

where

H(a, Z) =

∫

HD−1

∑

i

Ni(yi, Zi)fi

(

a,
√

1 + y2
i , y1

)

(3.18)

where the summation in (3.18) runs only over those terms for which
∑

i a
i
m = 2B.

The integral in (3.18) is taken over the hyperboloid y2
0 − y2

i = 1, more precisely on its

branch in which37

y0 = +
√

1 + y2
i , 0 ≤ τ ≤ π (3.19)

36As mentioned above these corrections are non-singular at small ρ and so play no role — and will be

ignored — through the rest of this paper.
37In embedding space the curve y2

0 − y2
i = 1 has two branches

y0 = ±
√

1 + y2
i

Each of these branches maps into an infinite number of branches in covering space. The branch (3.19) is

the one of relevance to this paper. This is the branch on which the bulk point singularity lies, and is also

the branch on which the iǫ assignment in (3.15) is correct.
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3.2 Analyticity in a

H(a, Zi) is a function of a as well as the boundary polarizations Zi. In what follows we

allow these polarizations to be a function of a, but demand that this function is chosen to

be analytic. For any such choice H(a, Zi) = H̃(a) and our four-point function in the Regge

limit takes the form

θ−2B+2H̃(a) (3.20)

While the function H̃(a) is in general complicated, in this paper, we are concerned only

with its analytic properties, which are easy to understand.

H̃(a) has two singularities; the power-law ‘bulk point’ singularity at a = 0 and a

lightcone singularity at a = 1. In section 5 we study the bulk point a → 0 singularity in

great detail. In this section, we focus our attention on the lightcone singularity at a = 1.

The main concern we address in this section is the following. Given that H̃(a) has

a singularity at a = 1, one might worry that it is possible for H̃(a) ∝ θ(1 − a). If H̃(a)

behaved in this manner then the effective value of B in (3.17) could be smaller for a > 1

than it is for a < 1. In this subsection we explain that this cannot happen.

Our result follows almost immediately once we analytically continue the function H̃(a)

to complex values of a. The fact that such an analytic continuation is clear from the integral

representations (3.18) and (3.16) (see appendix F for a class of worked examples). It is also

expected on general grounds; the continuation to complex a is effectively a continuation

to complex cross ratios (see (2.10)), and conformal correlators are, of course, famously

analytic function of cross ratios with branch cuts at lightcone singularities (the branch cut

nature of the complex singularity is explicitly displayed in a class of simple examples in

appendix F). Elsewhere the correlators are analytic functions (see appendix G for a review).

Indeed the iǫ prescription effectively tells us that we need to perform an analytic con-

tinuation even to work at physical values of parameters. In particular, we see from (3.16),38

the H̃(a) is actually a function of the combination of variables

ã = a+ iǫ̃ (3.21)

for an appropriate definition of ǫ̃ > 0. It is useful to view H̃ as a function of ã. With

this convention, the function H̃ has its branch cut singularity exactly at ã = 1.39 Physics

instructs us to work at real values of a, and so at slightly complex values of ã, more

particularly to evaluate the function H̃(ã) on a contour that passes just above the real axis.

Restated, both for a > 1 and a < 1, H̃(a) is the restriction of the analytic function

H̃(ã) on the real axis, with the limit to the real axis being taken from above (i.e. from

positive values of Im(ã)). It follows that H̃(a) for a < 1 is related to H̃(a) for a > 1

via analytic continuation, the continuation being taken in the upper half complex ã plane.

Despite the singularity at a = 1,40 therefore, it follows that H̃(a) for a > 1 and a < 1 are

analytic continuations of each other. In particular if H̃(a) = 0 for all a > 1 then it follows

38And using the fact that y0 > 0 everywhere on the integration domain in (3.18).
39The analytic function H̃ ǫ̃(a) is most conveniently defined to have a branch cut running from a = 1

down to a = 0.
40When we take ǫ → 0.
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Figure 6. The analytic continuation that takes one from a > 1 to a < 1.

that H̃(a) also vanish for all a < 1, and so in the limit a → 0. Restated, if H(a) does not

vanish at small a, it cannot vanish identically all a > 1.

3.3 Analyticity in the cross ratio e2ρ

The discussion above about the analytic properties of the function H(a) can also be un-

derstood in what may be more familiar terms when worded in terms of cross ratio function

e2ρ = z
z̄ . Recall from (2.10) that

e2ρ =

(

1 − a− iǫ

1 + a+ iǫ

)2

(3.22)

Or in other words

e2ρ =

(

ã− 1

1 + ã

)2

(3.23)

with ã given in (3.21). If we ensure that ã has a small positive imaginary part and we take

the real part of ã from greater than one less than one then the variable ζ = e2ρ effectively

circles counter-clockwise round the branch cut at ζ = 0.41 In other words, the passage

from a > 1 to a < 1 (roughly speaking a π rotation in the complex a plane) corresponds

to winding counter-clockwise around the branch point at zero of the cross ratio variable

e2ρ (roughly speaking performing a 2π rotation in the counter clockwise direction in the

e2ρ plane). The analytic continuation that takes us from a > 1 to a < 1 is simply the

analytic continuation that takes us from just above to just below the branch cut of the

correlator when viewed as a function of the cross ratio variable e2ρ.42 The impossibility of

the function H̃(a) being nontrivial for a < 1 but vanishing for a > 1 now follows as in the

previous subsection.

41To see this note that as we pass from Re(ã) > 1 to Re(ã < 1) with Im(a) = ǫ > 0, the argument of

ã − 1 changes from 0 to π. It follows, therefore, that when this happens the argument of (ã − 1)2 increase

from 0 to 2π.
42Noting that z = z̄e2ρ and recalling that z̄ is fixed and finite at a = 1 we see that this is basically the

same as the fact, established in the previous section, that passing from τ > θ to τ < θ corresponds to

circling counter-clockwise round the branch cut singularity at z = 0.
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Figure 7. The path traversed in the complex plane by the cross ratio e2ρ as a moves from greater

to one to less than one. e2ρ (and so z) circles round the branch point at zero in a counter-clockwise

direction.

All the analytic properties described above are explicitly illustrated in appendix G

in the context of a simple example; the correlator generated by a φ4 interaction for four

identical bulk scalars dual to boundary operators of dimension ∆ in appendix F.

3.4 Regge scaling of normalized correlators

In this paper our interest lies mainly in the normalized correlator (2.21) (because this is

the correlator that is constrained by the chaos bound). Recall this normalized correlator

is only defined when ∆3 = ∆1 and ∆4 = ∆2. Defining

A′ = B − ∆1 − ∆2 (3.24)

it follows immediately from (3.20) and (2.29) that the leading behavior of normalized four

point function (2.21) in the Regge limit takes the form

H(a)

θ2A′−2
(3.25)

The fact that (3.25) holds uniformly — i.e. with the same value of A both for a > 1 and

a < 1, i.e. with the same value of A in both the Causally Scattering and the Causally

Regge sheets — is the a central result of this section.

4 The ρ → 0 (τ → 0) limit

As we have mentioned in the introduction, it is possible to show on very general grounds

that the correlation function studied in this paper is an analytic function of the insertion

points away from τ = 1 (see the previous section) and τ = 0 (see appendix G following [36]).

In this section, we will study the singularity at τ = 0 more closely, and in particular,

determine its precise structure including its coefficient. The analysis of this section follows

section 6 of [36], and also overlaps with [33–35].
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4.1 Modulated propagators

Recall that every boundary to bulk propagator is a polynomial times

1

(−2P.X + iǫ)A
(4.1)

for some value of A. In this section we adopt the following strategy. We choose an arbitrary

function f(a) with the following properties

fA(a) = 1 − aAP (a), a ≪ 1

P (a) =
∞
∑

m=0

cma
2m

lim
a→∞

fA(a) = 0

(4.2)

In words, the function f vanishes at large values of its argument. It tends to unity at a = 0,

and the deviations from unity take a very particular form. An example of an f function

with these properties is

fA(a) = 1 − aA

(1 + a2)
A
2

(4.3)

Given any such fA function we next use the trivial identity

1

(x+ iǫ)A
=

1 − fA( x
L)

(x+ iǫ)A
+

fA( x
L)

(x+ iǫ)A
(4.4)

to split every propagator into two pieces. At the moment L is an arbitrary constant. We

will, choose its value so that

τ ≪ L ≪ 1 (4.5)

(this is possible in the small τ limit, the regime of interest to this section).

A key point is that the first term on the r.h.s. of (4.4) is non-singular at x = 0; we

call this the smooth piece. On the other hand, the second term in (4.4) continues to be

singular at x = 0; indeed this term (which we call the modulated term) is essentially

indistinguishable from (4.1) for x ≪ L.

Now bulk contact interaction contribution to any correlator is given by the product

of four boundaries to bulk propagators (to the bulk point X) sewn together by the bulk

interaction and integrated over the bulk. Our strategy is to replace each of the four bulk

to boundary propagators by the sum of two terms (the regular part of the propagator and

the singular part of the propagator) in the integrand above using the identity (4.4). The

integrand now breaks up into 24 = 16 terms, depending on whether we retain the regular

or modulated part of each propagator. Upon performing the integral over X, it follows

immediately from the analysis of appendix G that the integral of any term in which even

one of the propagators is replaced by its regular part evaluates to an expression that is

non-singular at τ = 0. The singularity in our correlator — the object of study of the

current section — comes entirely from the integrand with every propagator replaced by

the corresponding modulated propagator.
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Let us summarize. We have demonstrated that the singular term in the correlation is

unaffected if we make the replacement

1

(−2P.X + iǫ)A
→ fA(−2P.X

L )

(−2P.X + iǫ)A
(4.6)

in every propagator that appears in the integrand of our correlation functions, i.e. if we

replace every propagator by a modulated propagator.

All through this section, we will make the replacement (4.6) on every propagator in

our integrand. The utility of this manoeuvre is the following. As the envelope function,

fA(P.X) decays away from the lightcone of the boundary point P , once we make the

replacement (4.6), it follows immediately that the singularity of our correlator receives

contributions only from an envelope of width L around the common intersections of the

lightcones of the boundary points Pi, a fact that simplifies our analysis below.

4.2 Wave representation for propagators

The next step in our procedure is to express the modulated propagators as a sum over

propagating waves (a sort of Fourier transform). This may be accomplished ([35, 36])

using the identity

1

(−2P.X + iǫ)A
=

e−
iπA

2

2AΓ(A)

∫ ∞

0
dω ωA−1eiω(−P.X+iǫ) (4.7)

It follows that the modulated spin J propagator can be written as

GJ(P,Z,X,W ) =
CD

∆,Je
−

iπ(∆+J)
2

2∆Γ(∆ + J)
f

(

P.X

L

)

(−Z.W P.X + Z.X W.P )J

×
∫

dω ω∆+J−1eiω(−P.X+iǫ)

(4.8)

where

CD
∆,J =

(J + ∆ − 1)Γ(∆)

2π
D
2 (∆ − 1)Γ(∆ − D

2 + 1)
(4.9)

Eq. (4.8) represents the propagator as a sum over waves of momenta ωPM . These plane

waves are multiplied by the envelope function f polynomial dressings. However these

factors (as well as the curvature of the underlying AdS background) all vary on scales

ranging from L to unity. On the other hand the singularity of our correlator will turn out

to have its origin in ω of order 1
τ ≫ 1

L ≫ 1. At distance scales τ the multiplying factors are

effectively constant, and AdSD+1 space is effectively flat, so at these scales (4.8) is literally

a Fourier Transform representation of the propagator.

Following [36] we will now explain how the wave representation of propagators, (4.8),

can be used to find an expression for the singularity in τ of the correlators. We begin by

considering very simple situations but building up to more complicated ones.
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4.3 Scalar φ4 correlator in AdS3

Let us first study the correlation function induced by a φ1φ2φ3φ4 bulk interaction between

4 scalars of dimension ∆1, ∆2, ∆3 and ∆4 in D = 2 (i.e. 2 boundary or 3 bulk dimensions).

We need to evaluate the integral (4.8) is

Gsing =





∏

a

C∆a
e−

iπ∆a
2

2∆aΓ(∆a)





∫

dX

(

∏

a

dωaω
∆a−1
a f∆a

(Pa.X/L)

)

e−iX.(
∑

a
ωaPa) (4.10)

where C∆a
is short notation for C∆a,J=0.

Recall that there are no bulk points X that solve the equation Pi.X = 0 for all i except

when τ = 0. When τ = 0, the unique bulk point that obeys this equation in D = 2 (and

also has global time between 0 and π) is

X = X0 = (0, 1, 0, 0). (4.11)

It follows that when τ ≫ L the envelopes around the four lightcones (the lightcones of

P1, P2, P3, P4) never intersect and the integral in (4.10) is very small. On the other hand

when τ ≪ L the four envelope functions overlap in a spacetime region in AdS3 of ‘size’ L

(volume L3) centred around X0. We refer to this region as ‘the elevator’.

It is useful to set

X = X0 + x (4.12)

As only values of x with x less than or of order L lie in the ‘elevator’ (and so contribute

significantly to the integral) and as L ≪ 1, x effectively a tangent space coordinate about

the point X0 in AdS3. It follows that the space parameterized by the coordinate x is

effectively flat. Now

PMN
X0

= ηMN +XM
0 XN

0 (4.13)

is the projector in RD,2 that projects vectors in this space orthogonal to X0. Expanding

the equation (X0 + x)2 = −1 to first order in x, we conclude that

PMN
X0

xM = xN (4.14)

Now the integral (4.10) evaluates to

Gsing =





∏

a

C∆a
e−

iπ∆a
2

2∆aΓ(∆a)





∫

(

∏

a

dωaω
∆a−1
a

)

e−i
∑

a
ωaPa.X0(2π)3δ̃3

(

∑

a

ka

)

(4.15)

where

kM
a = ωa(PX0)M

N PN
a

δ̃ is a δ function broadened in a Gaussian manner over scale of order δω ∼ 1
L .43

43The precise form of this function can be systematically evaluated in a saddle point approximation. For

our purposes (i.e. leading order computations in the small τ limit), the only thing about this function that

is relevant is that it integrates to unity, and is nonzero only over a range of order 1
δL

of its arguments.
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In terms of the vector

P =
∑

a

ωaPa , (4.16)

eq. (4.15) can be recast as

Gsing = (2π)3





∏

a

C∆a
e−

iπ∆a
2

2∆aΓ(∆a)





∫

(

∏

a

dωaω
∆a−1
a

)

e−iP.X0 δ̃3
(

(PX0)M
N PN

)

(4.17)

The δ̃ function in (4.17) clicks when (PX0)M
N PN vanishes. This happens on a one-

parameter set of ωa.44 The values of ωa at which this happens is easy to deduce. Expanding

to first order in τ we find

P1 + P2 + P3 + P4 = 2τX0 (4.18)

so that
∑

a

ka = 0 (4.19)

It follows that the δ̃ function is nonzero if and only if for every value of a,45

ωa = ω (4.20)

With these values of ωa we find

k1 = ω(1, 0, 1, 0)

k3 = ω(1, 0,−1, 0)

k2 = −ω(1, 0, cos θ, sin θ)

k4 = −ω(1, 0,− cos θ,− sin θ)

(4.21)

Now it is easy to check that

∫

dω1dω2dω3dω4 δ̃
3
(

(PX0)M
N PN

)

= − 1

2 sin θ

∫

dω (4.22)

(where ω is defined in (4.20)) and so (4.17) reduces to

Gsing = −4π3e−
iπ∆

2

sin θ

(

∏

a

C∆a

2∆aΓ(∆a)

)

∫ ∞

0
dωω∆−4e−2iωτ (4.23)

where

∆ =
∑

a

∆a

44The counting is the following. The space in which the vectors kM
a varies is the tangent space of the

point X0 and so is 3 dimensional. Any four vectors in 3-dimensional space are linearly dependent and so

obey an equation of the form ζaka = 0. It follows that the δ function in (4.17) clicks for ωa = ωζa. Note

all this is true at generic τ , despite the fact that the four 4 dimensional vectors Pa are linearly independent

unless τ = 0.
45As the delta function has a spread of order 1/L, the solution (4.20) also has the same fuzz. This fuzz

will not be important in what follows and we ignore it.
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Note that (4.23) would have diverged at large ω in the absence of the phase factor

e−iωτ . The phase factor regulates this divergence at ω ∼ 1
τ , converting it into a singularity

at τ = 0. As promised the singularity has its origin in waves with

ω ∼ 1/τ

and so is a UV effect at small τ . The precise form of the singularity is46

Gsing = −4π3e−
iπ∆

2

sin θ

(

∏

a

C∆a

2∆aΓ(∆a)

)

(

−ie− iπ∆
2 Γ(∆ − 3)

1

(2τ)∆−3

)

=
4iπ3e−iπ∆

sin θ

(

Γ(∆ − 3)
∏

a

C∆a

2∆aΓ(∆a)

)

1

(2τ)∆−3

(4.24)

4.4 General scalar contact correlator in AdS3

The generalization of the discussion of the previous subsubsection to the study of the

singularity of a scalar correlator resulting from a more general bulk contact interaction than

φ4 (i.e. some number of derivatives acting on the φ fields) is completely straightforward.

The analogue of (4.15) in this case is

Gsing =

(

∏

a

C̃∆a

∫

dωaω
∆a−1
a

)

S(ka)e−i
∑

a
ωaPa.X0(2π)3δ̃3

(

∑

a

ka

)

(4.25)

where

C̃∆,J =
C∆,Je

−
iπ(∆+J)

2

2∆Γ(∆ + J)

and, C̃∆ = C̃∆,0

(4.26)

and S(ka) is the contact interaction evaluated on the waves ka = ωPa. Evaluating the

integral over ωa, as in the previous subsection, gives the analogue of (4.23)

Gsing = − 4π3

sin θ

(

∏

a

C̃∆a

)

∫

dωω∆−4S(ω)e−2iωτ (4.27)

where S(ω) is now the interaction contact term evaluated on the waves (4.28), i.e. the

invariant transition amplitude of the S matrix generated in flat space by the contact term

in question for the scattering momenta (4.28).

The vectors on which S(ω) is evaluated are (4.21) where they are displayed as momenta

in the embedding space R2,2. All the vectors in (4.21), however, are orthogonal to X0 and

46The final result (4.24) is correct only at leading order in the limit τ → 0. The corrections to this

answer come from the fact that the δ̃ function is not a completely sharp but has a width δw. It follows, for

instance, that the integrand in (4.23) is actually a power series in ω of the schematic form

ωa → ωa + ωa−1δω + ωa−2δω2 + . . .

As every factor of ω is effectively of order 1
τ

while δω is independent of τ , these correction give corrections

to the singularity in (4.24) of order O(1/τ∆1+∆2+∆3+∆4−m) where m is an integer.
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so lie in its tangent space. This tangent space consists of the collection of R2,2 vectors with

second component set to zero. Effectively these vectors lie in the R2,1 obtained by deleting

the second component of all vectors in (4.21). With this convention47

k1 = ω(1, 1, 0)

k3 = ω(1,−1, 0)

k2 = −ω(1, cos θ, sin θ)

k4 = −ω(1,− cos θ,− sin θ)

(4.28)

Note that k1 and k3 are 3 momenta with positive energy, and so particles 1 and 3 are

initial states. On the other hand the momenta k2 and k4 have negative energy, so that

particles 2 and 4 are the final states. The 3 momenta (4.28) are conserved (this is, of

course, a consequence of the delta function in (4.25)). And S(ω) in (4.27) is simply the S

matrix48 for the scattering process with the momenta (4.21). The Mandlestam variables

for this scattering process are given by

s ≡ −(k1 + k3)2 = 4ω2,

t ≡ −(k1 + k2)2 = −2ω2(1 − cos θ)

u ≡ (k1 + k4)2 = −2ω2(1 + cos θ)

(4.29)

From (2.8) we see that sin θ = 2
√

σ(1 − σ) so that (4.27) can be rewritten more

invariantly as

Gsing = − 2π3

√

σ(1 − σ)

(

∏

a

C̃∆a

)

∫

dωω∆−4S(ω)e−2iωτ (4.30)

In the case of the scattering of four scalars, the S matrix is a function only of s and t.

Let the invariant amplitude as a function of s and t be denoted by T (s, t). It follows that

S(ω) = iT
(

4ω2,−2ω2(1 − cos θ)
)

(4.31)

It follows that (4.27) can be rewritten in terms of the invariant transition amplitude T (s, t)

generated by the contact interaction as

Gsing = − i2π3

√

σ(1 − σ)

(

∏

a

C̃∆a

)

∫

dωω∆−4e−2iωτT
(

4ω2,−2ω2(1 − cos θ)
)

(4.32)

Let us suppose that the contact term in question is of rth order in spacetime deriva-

tives. Then

T
(

4ω2,−2ω2(1 − cos θ)
)

= ωrT (4,−2(1 − cos θ)) (4.33)

47For complete clarity we reiterate that the first coordinate of each of the vectors here is timelike, the

second and third coordinates are spacelike. The vectors in (4.28) are obtained from those in (4.21) by

deleting the zero in the second component of all vectors in (4.21).
48Or more precisely the invariant transition amplitude, the S matrix with the momentum conserving

delta function deleted.
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so that

Gsing = − 2π3

√

σ(1 − σ)

(

∏

a

C̃∆a

)

∫

dω ω∆+r−4e−2iωτ (iT (4,−2(1 − cos θ)))

= −2π3(iT (4,−2(1 − cos θ)))
√

σ(1 − σ)

(

∏

a

C̃∆a

)

∫

dω ω∆+r−4e−2iωτ

= −2π3(iT (4,−2(1 − cos θ)))
√

σ(1 − σ)

(

∏

a

C̃∆a

)

(

−ie−
iπ(∆+r)

2 Γ(∆ + r − 3)
1

(2τ)∆+r−3

)

(4.34)

which simplifies to

Gsing =
2iπ3e−

iπ(∆+r)
2

√

σ(1 − σ)

(

∏

a

C̃∆a

)

Γ(∆ + r − 3)
(iT (4,−2(1 − cos θ)))

(2τ)∆+r−3
(4.35)

Using the relationship (2.8), (4.35) can be rewritten as

Gsing = 2iπ3 e
−

iπ(∆+r)
2

2∆+r−3

(

∏

a

C̃∆a

)

Γ(∆ + r − 3)

√
1 − σ

(∆+r−4)
(iT (4,−4σ))

σ
∆+r−2

2 (−ρ)∆+r−3
(4.36)

Eq. (4.36) is a completely explicit expression for the leading singularity at small ρ of the

four point function generated by a particular contact term in AdS3 in terms of the flat

space S matrix generated by the same contact term. Eq. (4.45) agrees perfectly with the

expression for the S-matrix in terms of the coefficient of singularity of the CFT four point

function as derived using a slightly different method (consisting of producing localized bulk

waves by smearing boundary insertion points) in [33] (see eq (3.37)).

As an aside let us highlight an initially puzzling aspect of (4.36). As ∆ is not necessarily

an integer, the correlator (4.36) at fixed σ has a branch cut around ρ = 0 in the complex ρ

plane. This is puzzling, and branch cuts in correlation functions in conformal field theories

are usually associated with operator ordering ambiguities across lightcones; however, there

is no causal significance to the point ρ = 0 (the boundary separation between no two

points changes from spacelike to timelike across ρ = 0). We present a brief discussion of

this question in appendix H.

4.5 General contact scalar interaction in AdSD+1

The new element in this story when D > 2 is that the boundary lightcones intersect over

a manifold (HD−2) rather than at a point.

The integrand in the analogue of the expression (4.10) is now nonzero everywhere in an

envelope around an HD−2. To describe this hyperboloid it is useful to choose coordinates

so that49

XM = (V 0, Y 0, V 1, V 2, Y i), i = 1 . . . D − 2 (4.37)

49Let us recall that the space spanned by the Pa is R2,2 (preserving the symmetry group SO(D − 2))

when τ 6= 0, but is R2,1 (preserving the symmetry group SO(D −2, 1)) when τ = 0. The SO(D −2, 1) is the

subgroup that rotates the Yµ coordinates into each other in the usual Minkowskian fashion. The SO(D −2)

rotates the Y i into each other.
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The hyperboloid over which boundary lightcones intersect is located at V µ = 0. Points on

the hyperboloid are parameterized by the coordinates Y µ, subject to the relation

Y 2 = −1.

It is useful to proceed as follows. We break up the HD−2 into little cells of volume

VD−2. Like the variable L earlier in this section, these cells are chosen to be large compared

to τ but small compared to unity. Restricting ourselves to a particular cell and performing

the integral over x we find

Gsing =

(

∏

a

C̃∆a

)

∫

(

∏

a

dωaω
∆a−1
a

)

S(ka)ei
∑

a
ωaPa.X0(2π)(D+1)δ̃D+1(

∑

a

ka) (4.38)

Note that (4.38) is the same as (4.25) except for the replacement

δ̃3
(

(PX0)M
N PN )

)

→ δ̃D+1
(

(PX0)M
N PN )

)

(4.39)

The manipulations leading up (4.32) continue to work, except that the integral over 3 of

the four ωa variables (see (4.15)) are sufficient to use up only 3 of the D− 1 δ̃ functions on

the r.h.s. of (4.39). The analogue of (4.22) is

(2π)(D+1)
∫

dω1dω2dω3dω4 δ̃
D+1

(

(PX0)M
N PN

)

= −(2π)(D+1)δD−2(0)

2 sin θ

∫

dω

= −(2π)3 VD−2

2 sin θ

∫

dω (4.40)

We now need to sum the results (4.40) over all the cells in HD−2. Note that this

summation is weighted by the volume of those cells. As the size of each cell is small

compared to the AdS radius (unity in our units) the summation is well approximated by

an integral and (4.32) turns into

Gsing = −
2π3

(

∏

a C̃∆a

)

√

σ(1 − σ)

∫

HD−2

√
gD−2 d

D−2X

∫

dωω∆−4eiωP.XS (ω) (4.41)

where
√
gD−2d

D−2X is the volume element on HD−2 where S(k) is the S matrix (more

precisely invariant transition amplitude) for four scalars with momenta

k1 = ω(1, 0, 1, 0,~0)

k3 = ω(1, 0,−1, 0,~0)

k2 = −ω(1, 0, cos θ, sin θ,~0)

k4 = −ω(1, 0,− cos θ,− sin θ,~0)

(4.42)

Note that all the vectors kM
a have vanishing components in all YM directions. It follows

that the vectors ka lie in the tangent space of the HD−2 at every value of Y µ. It follows

that (4.29) and (4.31) apply without modification to this D + 1 dimensional scattering

process. Note, in particular, that in this case S(k) is independent of the point Yµ on the

hyperboloid. For this reason the integral over the hyperboloid in (4.41) is easily performed
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(the same will not be true for scattering of spinning particles, as we will see in the next

section). To do this is useful to parameterize points on HD−2 by

Yi = sinh ζn̂i, Y0 = cosh ζ (4.43)

where n̂i is a unit vector in RD−2. It is easily verified that

dD−2X = dζ sinhD−3 ζ dωD−3

It follows from (4.18) that

X.P = −2τ cosh ζ

The integral over angles produce the volume of the unit D− 3 sphere, ΩD−3. It remains to

perform the integrals over ζ and ω. While we can perform these integrals in any order, it

is easier to perform the (elementary) integral over ω first. Assuming that it is of rth order

in derivatives, we find

Gsing = i(2π3)

(

∏

a

C̃∆a

)

ΩD−3e
−

i(∆+r)
2

Γ(∆ + r − 3)

2∆+r−3

√
1 − σ

(∆+r−4)
(iT (4,−4σ))

σ
∆+r−2

2 (−ρ)∆+r−3

×
∫

dζ
sinhD−3 ζ

cosh ζ∆+r−3
(4.44)

The integral over ζ is now simply a finite number. Our final answer is

Gsing =

[

i(2π3)ND,∆

(

∏

a

C̃∆a

)

ΩD−3e
−

i(∆+r)
2

Γ(∆ + r − 3)

2∆+r−3

]

×
√

1 − σ
(∆+r−4)

(iT (4,−4σ))

σ
∆+r−2

2 (−ρ)∆+r−3

ND,∆ =

∫ ∞

0
dζ

sinhD−3 ζ

cosh ζ∆+r−3
=

Γ
(

D−2
2

)

Γ
(

1
2(∆ + r −D)

)

2 Γ
(

1
2(∆ + r − 2)

) , Ωn =
2π

n+1
2

Γ
(

n+1
2

)

(4.45)

As in the case D = 2 (4.45) agrees exactly with the expression for the S-matrix in terms of

the coefficient of singularity of the CFT four point function derived in [33] (see eq (3.37))

using slightly different methods. The method of derivation employed in this paper will

allow for easy generalization to the scattering of massless spinning particles in the rest of

this section.

As in the previous subsection, it might seem odd to the reader that (4.45) displays a

branch cut type singularity at ρ = 0, a point at which no causal relations get changed. We

investigate this question in appendix H.2.

4.6 Contact interactions involving gauge bosons and gravitons

The analysis of the previous subsection goes through when studying photons (or non-

abelian gauge bosons) and gravitons with a few extra twists. From the point of view of the

analysis of this section, the main difference between gauge bosons, gravitons, and scalars

lies in their boundary to bulk propagators.
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4.6.1 The spin one propagator

Let us denote the propagator of a spin J particle of dimension ∆ by (G∆)M1...MJ

A1...AJ
where Ai

are the boundary indices and MJ are the bulk indices. Then (see appendix B.9 and [46])

ZA1 . . . ZAJ (G∆)M1...MJ

A1...AJ
WM1 . . .WMJ

=
C∆,J

e−iπJ2∆

(Z.W P.X − Z.X W.P )J

(−P.X)∆+J
(4.46)

where ZA and WM , respectively, are arbitrary boundary and bulk tangent vectors that

obey ZAZ
A = WM and the explicit form of C∆,J is given by (4.9). When J = 1, the bulk

gauge field at position X, sourced by ‘current’ with polarization ZM , is given by

ZA(G∆)AM =
−C∆,1(D − 1)

(−2)∆+1

(

ZM

(P.X)∆
− (Z.X)PM

(P.X)∆+1

)

(4.47)

where ZA is an

Here A is a bulk index which is understood to be projected orthogonal to XA. It is

useful to make the projection more explicit. Let

(PX)M
N ≡ δM

N +XMXN (4.48)

denote the projector orthogonal to X0. Given any vector ‘field AM let us also define

A⊥M ≡ (PX)M
N AN (4.49)

It follows that the gauge field at the point X is given by

ZA(G∆)AM =
−C∆,1(D − 1)

(−2)∆+1

(

Z⊥M
(P.X)∆

− (Z.X)P⊥M
(P.X)∆+1

)

(4.50)

This expression can further be manipulated to50

ZA(G∆)AM =
−C∆,1(D − 1)

(−2)∆+1

(

(

1 − 1

∆

)

Z⊥M
(P.X)∆

+ ∇M

(

Z.X

∆(P.X)∆

)

)

(4.51)

where the AdSD+1 covariant derivative is defined by

∇M = (PX)N
M∂N

It follows that

(G∆)AM = (G1
∆)AM + (G2

∆)AM (4.52)

with

(G1
∆)AM =

−C∆,1(D − 1)

(−2)∆+1

(

1 − 1

∆

)

ηAM +XAXM

(P.X)∆

(G2
∆)AM = ∇M (ζ∆)A, ζA

∆ =
−C∆,1(D − 1)

(−2)∆+1

XA

∆(P.X)∆

(4.53)

50The boundary tangent vector ZA has D independent components, which is the same as the number of

degrees of freedom in a massive vector field propagating in D + 1 bulk dimensions. Eq. (4.51) makes clear

that — roughly speaking — the D − 1 components in Z⊥ parameterize the transverse degrees of freedom

while Z.X labels the longitudinal degree of freedom.
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It is easily verified (see appendix B.11) that51

∇A(G1
∆)AM = 0 (4.54)

It follows that (4.52) decomposes the boundary propagator into two pieces, the first of which

is conserved (divergenceless) on the boundary while the second of which is a gradient in

the bulk.52

So far we have worked at arbitrary values of the dimension, ∆ of our spin one operator.

In this paper, we will focus our attention on the special case ∆ = D − 1. In this case,

the bulk gauge field enjoys invariance under bulk gauge transformations. In this case, the

second terms in (4.51) and (4.52) are pure gauge and can be dropped (as their contribution

to any correlator vanishes). It follows in this case that, effectively,

ZA(GD−1)AM =
CD−1,1(D − 1)

2D

(

D − 2

D − 1

)

Z⊥M
(−P.X)D−1

(GD−1)AM =
CD−1,1(D − 1)

2D

(

D − 2

D − 1

)

ηAM +XAXM

(−P.X)D−1

(4.55)

The ‘plane wave’ representation of this propagator is

ZA(GD−1)AM =
CD−1,1 (D − 2)

2DiD−1Γ(D − 1)

∫ ∞

0
dω ωD−2Z⊥M e−iωP.X−ǫω (4.56)

4.6.2 The spin two propagator

In the case of the spin two propagator, similar manipulations to those performed in the

previous subsubsection yield the analogue of (4.50)

ZA1ZA2(G∆)A1A2M1M2 =
C∆,2(D2 − 1)

2(−2)∆

(

Z⊥M1
Z⊥M2

(P.X)∆
−

(Z.X)(P⊥M1
Z⊥M2

+ Z⊥M1
P⊥M2

)

(P.X)∆+1

+
(Z.X)2

(P.X)∆+2
P⊥M1

P⊥M2

) (4.57)

and of (4.51)

ZA1ZA2(G∆)A1A2M1M2

=
C∆,2

(−2)∆

(

−
(

D2 − 1
)

(X.P )−∆
(

(X.Z)2 (ηM1M2 +XM1XM2) − (∆ − 1)Z⊥M1
Z⊥M2

)

2(∆ + 1)

+
(

D2 − 1
) (

∇M1ξ
⊥
M2

+ ∇M1ξ
⊥
M2

)

)

(4.58)

51On the other hand

∇A
(

G2
AM

)

= ∇M ∇AζA = ∇M

(

1

(P.X)∆+1

)

52It follows that the contribution of G1
AM to Witten diagrams yields a term in the boundary correlator

that is identically conserved. On the other hand the contribution of G2
AM to Witten diagrams yields a

term in the bulk correlator that is generically non conserved. However this second contribution sometimes

vanishes. This happens, for instance, when all bulk interactions happen to be ‘gauge invariant’ — i.e. built

only out of field strengths of the bulk vector field and their derivatives. For general ∆ there is no reason for

bulk interactions to be gauge invariant. The case of ∆ = D − 1 is special and will be dealt with in detail

below.
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where,

ξ⊥A =
1

2(∆ + 1)

Z.X

(P.X)∆

(

−Z⊥A +
1

2

Z.X

P.X
P⊥A

)

(4.59)

Note that when ∆ = D, the second term in (4.58) is pure gauge. As in the previous

subsection it follows that the propagator can be decomposed into two pieces

ZA1ZA2(G1
∆)A1A2M1M2

=
C∆,2

(−2)∆



−
(

D2 − 1
)

(X.P )−∆
(

(X.Z)2 (ηM1M2 +XM1XM2) − (∆ − 1)Z⊥M1
Z⊥M2

)

2(∆ + 1)





ZA1ZA2(G2
∆)A1A2M1M2

=
C∆,2

(−2)∆

((

D2 − 1
) (

∇M1ξ
⊥
M2

+ ∇M1ξ
⊥
M2

))

(4.60)

It is then easily verified (see appendix B.11) that for ∆ = D

∇A1ZA2
2 (G1

D)A1A2M1M2 = 0 (4.61)

We will focus on the special case ∆ = D. In this case G2
D is pure gauge and can be ignored.

Effectively

ZA1ZA2(GD)A1A2M1M2

= − C∆,2 (D − 1)

2(−2)D(X.P )D

(

(X.Z)2 (ηM1M2 +XM1XM2) − (D − 1)Z⊥M1
Z⊥M2

) (4.62)

The ‘plane wave’ representation of this propagator is

ZA1ZA2(GD)A1A2M1M2

=
CD,2

iDΓ(D)

(

(D − 1)2

2D+1

)

×
∫ ∞

0
dω ωD−1

(

Z⊥M1
Z⊥M2

− (X.Z)2 (ηM1M2 +XM1XM2)

D − 1

)

e−iωP.X−ǫω

(4.63)

4.7 Singularity in terms of scattering

It follows immediately from (4.56) and (4.63) that the singular part of correlator involving

boundary scalars, conserved current and conserved stress tensor operators is given by the

following generalization of (4.41)

Gsing = −
2π3

(

∏

a C̃∆a,J

)

√

σ(1 − σ)

∫

HD−2

√
gD−2 d

D−2X

∫

dωω∆−4eiωP.XSX (ω) (4.64)

with

C̃∆,0 =
C∆,0e

−
iπ(∆)

2

2∆Γ(∆)
, C̃D−1,1 =

CD−1,1 (D − 2)

2DiD−1Γ(D − 1)
, C̃D,2 =

CD,2

iDΓ(D)

(

(D − 1)2

2D+1

)

(4.65)
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for scalars, photons and gravitons respectively and SX is the S matrix for the scattering of

the waves

φ = eik.x Scalar

AM = Z⊥M eik.x Vector

hMN =

(

Z⊥M1
Z⊥M2

− (X.Z)2 (ηM1M2 +XM1XM2)

D − 1

)

Graviton

(4.66)

Here ZM is the boundary polarization of the current or stress tensor operator, and k is the

momentum for the appropriate particle listed in (4.42)).

Notice that while all four scattering momenta, given by (4.42), are independent of the

point X, the polarizations listed in (4.66) depend on the point X on the hyperboloid (over

which the integral in (4.64) is performed) because

Z⊥M = (PX)N
MZN (4.67)

(see (4.48) for the definition of the projector (PX)). It follows that the S matrix SX(ω)

that appears in (4.64) depends on X, and so we cannot trivially perform the integral over

the SD−3 in (4.64) (as we were able to do in subsection 4.5).

Performing the integral over ω in (4.64) we find the analogue of (4.44):

Gsing = i

(

2π3
(

C̃∆,J

)4
)

Γ(∆ + r − 3)e−
i(∆+r)

2

×
√

1 − σ
(∆+r−4)

σ
∆+r−2

2 ρ∆+r−3

∫

dΩD−3dζ
sinhD−3 ζ

cosh ζ∆+r−3

(SX(ω)

ωr

)

(4.68)

where we have assumed, as in the subsection 4.5, that the interaction term is of order r in

derivatives so that the S matrix scales with overall energy scale like S(ω) ∼ ωr so that the

quantity

S̃(ω) =

(SX(ω)

ωr

)

(4.69)

that appears in (4.68) is actually independent of ω.53

4.8 Transforming to standard graviton polarizations

While the formulae presented in the previous subsection are all accurate, the flat space

graviton polarization that appears in (4.66) is presented in an unusual gauge. In this

subsection, we will explain this fact and also gauge transform to a more standard gauge.

A linearized onshell graviton in flat space always obeys the massless onshell condition

k2 = 0. In addition, the linearized Einstein equations also impose the following condition

on hMN

kMhMN − kN

2
h = 0 (4.70)

where h = hM
M is the trace of hMN .

53Note that the r.h.s. of (4.68) involves an integral over the hyperboloid HD−2. ζ and the angles on the

D − 3 sphere ΩD−3 are coordinates on this hyperboloid. dΩD−3dζsinhD−3 ζ is the usual volume element on

the hyperboloid. The factor of cosh ζ∆+r−3 in the denominator is a result of doing the ω integral, and is a

consequence of the fact that the phase factor eiP.X breaks the SO(D − 2, 1) isometry of the hyperboloid.
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When studying gravitational scattering, it is conventional to work in a Lorentz type

gauge in which

kMhMN = 0 (4.71)

If we impose this condition, it follows immediately from (4.70) that

h = 0 (4.72)

Let us now turn to the graviton wave presented in (4.66). It is easy to verify that hMN

that appears in (4.66) obeys

kMhMN = −kN (X.Z) 2

D − 1
, h = −2 (X.Z) 2

D − 1
(4.73)

It follows that hMN listed in (4.66) obeys (4.70), even though it does not obey the equa-

tions (4.71) or (4.72) individually.

It is, of course, possible to gauge transform hMN listed in (4.66) to ensure that it

obeys (4.71) (and so, automatically, (4.72)). Under an infinitesimal gauge transformation

h̃MN = hMN + ζMkN + ζNkM (4.74)

It follows from (4.73) that the transfrormed h̃MN obeys both (4.71) and (4.72) provided

k.ζ =
(X.Z) 2

D − 1
(4.75)

Of course (4.75) is one condition on D+ 1 variables, and so does not completely determine

ζ. If we want a concrete particular formula for the transformed hMN we need to impose

D additional conditions; these conditions are arbitrary and can be chosen as per conve-

nience.54 A physically natural additional gauge condition — the one we will choose to

adopt — is to demand that all gravitons polarizations are transverse to the centre of mass

momentum k1 +k3 = −(k2 +k4). Since we have already demanded that ha
MN is transverse

to ka, this additional requirement requires us only to impose the conditions

(k3)Mh1
MN = (k1)Mh3

MN = (k4)Mh2
MN = (k2)Mh4

MN = 0 (4.76)

Despite first appearances, (4.76) imposes D (rather than D+1) conditions on each graviton

as one of each of the four groups of D + 1 equations in (4.76) is automatic from (4.71).55

54The reason for this ambiguity is the following. In D + 1 spacetime dimensions the number of metric

components is (D+2)(D+1)
2

while the number of independent graviton polarizations is D(D−1)
2

− 1. The

difference between these two numbers is 2(D + 1). If we impose the D + 1 conditions (4.71), we get the one

additional condition (4.72) free. This still leaves us with D more parameters in hMN than the number of

physical gravitons. We need to fix these additional parameters by imposing an additional (arbitrary) gauge

condition; these are the D undetermined parameters in ζ. The Maxwell analogue of the discussion of this

footnote is simply the fact that Lorentz gauge does not completely fix photon polarizations; the remaining

ambiguity is ǫM → ǫM + kM .
55For the graviton inserted at the point P1, for instance, the condition kM

3 h1
MN kN

1 is already ensured

by (4.71).
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If we choose to impose both (4.71) as well as (4.76) on our scattering gravitons, the

scattering graviton waves reported in (4.66) are modified to

h1
MN =

(

Z1⊥
M Z1⊥

N − (X.Z1)2 (ηMN +XMXN )

D − 1

)

+
(X.Z1)2

(

k3
Mk1

N + k1
Mk3

N

)

(D − 1)k1.k3

−
k3.Z1

(

k1
NZ

1⊥
M + k1

MZ1⊥
N

)

k1.k3
+
k1

Mk1
N

(

k3.Z1
)2

(k1.k3)2

h2
MN =

(

Z2⊥
M Z2⊥

N − (X.Z2)2 (ηMN +XMXN )

D − 1

)

+
(X.Z2)2

(

k4
Mk2

N + k2
Mk4

N

)

(D − 1)k2.k4

−
k4.Z2

(

k2
NZ

2⊥
M + k2

MZ2⊥
N

)

k2.k4
+
k2

Mk2
N

(

k4.Z2
)2

(k2.k4)2

h3
MN =

(

Z3⊥
M Z3⊥

N − (X.Z3)2 (ηMN +XMXN )

D − 1

)

+
(X.Z3)2

(

k1
Mk3

N + k3
Mk1

N

)

(D − 1)k1.k3

−
k1.Z3

(

k3
NZ

3⊥
M + k3

MZ3⊥
N

)

k1.k3
+
k3

Mk3
N

(

k1.Z3
)2

(k1.k3)2

h4
MN =

(

Z4⊥
M Z4⊥

N − (X.Z4)2 (ηMN +XMXN )

D − 1

)

+
(X.Z4)2

(

k4
Mk2

N + k2
Mk4

N

)

(D − 1)k2.k4

−
k2.Z4

(

k4
NZ

4⊥
M + k4

MZ4⊥
N

)

k2.k4
+
k4

Mk4
N

(

k2.Z4
)2

(k2.k4)2

(4.77)

In final summary, the S matrix that appears in (4.68) is the S matrix for the scalars

and vectors reported in (4.66) and either the gravitons reported in (4.66) or the gravitons

reported in (4.77). The two sets of gravitons are gauge related and have equal S matrices.

The advantage of expressions presented in (4.66) is that the polarization for the ith particle

does not refer to any other particle. Its disadvantage is that it appears in an unfamiliar

gauge. These advantages and disadvantages are reversed in the polarizations (4.77). The

reader is free to choose either of these gauges (or any other) according to her convenience.

4.9 Regge scaling

In (4.68), the small ρ behavior of the four-point function is expressed in terms of the

integral over flat space S matrices over an HD−2. As we have emphasized above, all the S

matrices that appear in this formula have the same effective scattering momenta, but the

effective scattering polarizations depend on the scattering point X.

The Regge scaling of the S matrices SX that appear in (4.68) is not necessarily the

same for all values of X. Recall, however, that the dependence of the S matrix on X

is very simple; it arises entirely through the dependence on the scattering polarizations

on X. The dependence of the S matrix is very simple. In the case of photons, it is a

linear function of polarizations (separately in the polarization of every particle) while in

the case of gravitons, it is a bilinear function of polarizations. It follows from this fact that

if the S matrix displays a certain Regge growth at some point X on the hyperboloid, it

must grow at least as fast at all but possibly (measure zero sets of) isolated points on the
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hyperboloid. Ignoring these isolated points that make no significant contribution to the

integral, it follows that all the S matrices that appear in (4.68) scale in the same manner

in the Regge limit.

Let us suppose that in the small angle limit, this generic S matrix behaves like

Ŝ ∝ θr−2A (4.78)

Using the fact that our S matrix scales with energy like ωr, and that in the small angle

limit t ∼ θ2ω2, it follows from (4.78) that the Regge (i.e. fixed t) scaling of S is

S ∼ ω2A ∼ sA (4.79)

Plugging this estimate into (4.68) we find that in the small σ limit

Gsing ∝ 1

σ
∆
2

× 1

σA−1
(4.80)

Note in particular that the scaling (4.80) is independent of r.

4.10 Regge scaling of normalized correlators

In applications related to the chaos bound it is useful to study the normalized four point

correlator (2.21). Recall that in order for the denominator of (2.21) to be nonvanishing,

∆1 = ∆2 and ∆3 = ∆4. It follows that

∆ = 2∆1 + 2∆2

Combining (2.29) and (4.80), it follows that

Gnorm
sing ∝ 1

σA−1
(4.81)

4.11 Massive higher spin scattering

In this subsection, we have restricted our attention to the study of the massless spin one

and spin two fields (dual to the correlators of conserved currents and the stress tensor

on the boundary). While the generalization to the study of massive higher spin particles

should certainly be possible, such a generalization involves new complications, which will

be briefly outlined in this subsection (and discuss in much greater detail in appendix I).

Consider the case of a massive vector field. Because the bulk interactions of such a field

are not necessarily ‘gauge invariant’, in this case we are forced to deal with the full propa-

gator (4.51) rather than a simplified propagator analogous to (4.55). As a consequence, the

scattering modes include an additional polarization; a longitudinal polarization (which is

pure gauge in the massless theory). In equations, at leading order, the wave representation

of his propagator, tells us that the effective scattering wave of the massive spin one particle

is given by

Ai
M = ǫiMeiki.x

ǫiM =

(

1 − 1

∆i

)

(Z⊥i )M +
iki

M

∆i
(Zi.X0)

(4.82)
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(ki
M are as listed in (4.28)). The second term in (4.82) is the new longitudinal polarization.

Notice that the coefficient of the longitudinal mode in (4.82) is of order ω, while that of

the transverse mode is of order unity. Recall also that increasing the number of powers of

ω in the S matrix increases the degree of singularity in ρ (in formulae like (4.68)). It follows

that the analog of the formula (4.68) involves multiple terms on the r.h.s. with different

inverse powers of ρ. The coefficient of the maximally singular term in ρ is the S matrix

involving the maximal number of longitudinal polarizations. The coefficients of subleading

singularities in ρ include the S matrices of modes with less than the maximal number of

longitudinal polarizations — but also receive contributions from subleading effects from,

e.g., the scattering of the maximal number of longitudinal modes. These subleading effects

— which presumably involve corrections to the simple flat space S matrix (resulting from

the fact that the relevant propagators are not precisely plane waves and from the curvature

of AdSD+1) — complicate the analysis. While we believe that these complications are

tractable, and the main result of this paper — namely that scattering amplitudes that

violate the CRG conjecture lead to correlators that violate the chaos bound — likely also

holds for these massive modes, the proof of this claim needs more care in these cases, and

we leave this to future work. See appendix I for more discussion of this case.

5 Inter relationship between the small θ and small a expansion

In section 3 we studied Regge expansion (the small θ fixed a) expansion of our correlator. In

section 4, on the other hand, we have studied the small a fixed θ expansion of our correlator

on the Causally scattering sheet. In this section, we will explore the interrelationship

between these two expansions. We will do this by returning to the expansion of section 3,

first performing the small θ fixed a expansion, and then examining how each coefficient in

this expansion scales with a in the a → 0 limit.56

As we explained in subsection 3.1, the correlator under study in this paper can be

expanded in a systematic power series expansion in θ in the Regge limit. In particular we

demonstrated that the (unnormalized) correlator takes the form

G =
1

θ2B−2

(

∞
∑

n=0

θnHn(a)

)

(5.1)

where B was defined in equations (3.2) and (3.5). (H(a) of subsection 3.2 is the same as

H0(a) in (5.1)). In this section, we return to the expansion of subsection 3.1 to investigate

the small a scaling of the functions Hn(a).

Recall that the expansion of subsection 3.1 was obtained starting with integral (3.1) and

Taylor expanding the integrand in the variables u v, θ and τ with yi and y1 unexpanded (i.e.

treated as order unity). As we explained in subsection 3.1 it is actually most convenient

56We developed the material recorded in this section in part to address questions posed to us by A. Gadde

and A. Zhiboedov. We would like to thank them for their probing questions which helped us understand

that one of the arguments we presented in an earlier version of this paper was incorrect, and spurred us

to better understand the structure of the small θ perturbation theory (see the material in this section) to

correctly argue for the same conclusion.
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to use the variables Di
0 as the expansion variables for the power series expansion; the

expression for u v, τ and θ in terms of Di
0 is given in (3.7). In subsection 3.1 Hn(a) was

obtained by expanding the integrand of (3.1) in a power series expansion in the variables

Di
0 with y1 and yi regarded as order unity, and then performing the integrals, first over u

and v and then over y1 and yi.

5.1 Statement of the a counting rule

We are interested in the scaling of the functions Hn(a) in the small a limit. The functions

Hn(a) are obtained after performing the integration in (3.1) over u, v, y1 and yi.

As in the case of the small θ expansion, it is possible to find an effective small a scaling

assignment for the integrand in (3.1). This rule is devised to obey the following property.

If any particular term in the integrand is assigned scaling an, then the integral of this term

will scale like an.

In this subsection, we simply state this ‘small a integrand scaling rule’. The justification

for this rule is provided later in this section.

The ‘small a integrand scaling rule’ goes as follows.

• τ , u v and y1 are each of order a, while θ and yi are of order unity.

• Working with the variables D0
i , y1 and yi we conclude from (3.7) that all four Di

0

and y1 are of order a while yi are of order unity.

5.2 Consequence of the a scaling rule

Assuming the small a integrand scaling rule of the previous subsection, it is easy to bound

the small a behaviour of each Hn(a). All we need to do is count the a power of every term

in the expansion of the integrand of (3.1) that contributes to Hn(a). It is easy to convince

oneself that every such terms scales in the small a limit like

P (a)

aã1+ã2+ã3+ã4
(5.2)

(see (3.1) for the definition of ãi) where P (a) is an expression that has a power series

expansion in terms of order a. It follows that the integral of this quantity over u, v and y1

scales like
P ′(a)

aB̃−3
=

P ′(a)

a2B+M−3
(5.3)

(see (3.2) for the definition of B̃) where P ′(a) is a function that admits a power series

expansion in a. Eq. (5.3) follows from (5.2) upon integrating. Eq. (5.2) follows from the

following facts

1. Each Di
0 is of order a.

2. If we write true denominators in (3.1) as Di = Di
0 + δDi (where δDi is the collection

of all terms that are subleading to D0
i in the θ expansion, i.e. δDi consists of terms

that are of θ2 or smaller) then each δDi is of order aP (a) where P (a) is a function

that starts out at order unity (for i = 2, 4) or order a2 (for i = 1, 3) and has a power

series expansion in a. (see around (5.6).)
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3. While the numerator in (3.1) starts at order θM in the small θ expansion, it starts

either at order unity (this is the generic expectation) or higher (possible but non

generic) in the small a expansion. In other words the function in (3.1) has a power

series expansion in terms of order a.

Note in particular that the leading possible singularity in a in (5.2) is independent of n.

In other words, the leading small a scaling of distinct coefficients of the small θ expansion

does not increase with the order to the expansion; it generically also does not decrease

with the order of the expansion.

The reason that coefficients of higher-order in the θ expansion do not start out at

higher orders in the a expansion is the following. While each of u, v, τ , and θ are all of

the same order of smallness in the Regge expansion, only the first three of these terms are

treated as small for the small a expansion. Consequently a term which is57 θn times the

leading order contribution to the expansion would be counted as a contribution to Hn(a)

(as it is nth order suppressed in the small θ expansion) but would be of leading order in

the small a expansion (as θ is of order unity in the small a expansion).

It is also nontrivial that terms at successively higher-order in the θ are not increasingly

singular in the a expansion. Such a situation could have arisen as follows. As we have

reviewed above, the leading small θ approximation to the denominators, D0
i , are all of order

a in the small a expansion. Now as in item 2 above, let us consider the true denominator

Di, and let Di = D0
i +δDi where δDi is of order θ2 or higher in the small θ expansion. If had

turned out that δDi had included a piece that was of order unity in the small a expansion

— e.g. a term proportional to θr with no additional small a suppression factors — then

higher orders in the small θ expansion of the denominator (which would have included a

power series in δDi

D0
i

) would have included terms with increasingly high singularities at small

a. As we have mentioned in item 2, the explicit expressions for Pi.X make it clear that this

never happens. Every term in δDi is always of order a or smaller in the small a expansion.

As the point made in the previous paragraph is a crucial link in our derivation of the

CRG conjecture from the chaos bound, we pause to explain this point in more detail with

the aid of equations. Let us use the notation

Di = −2Pi.X (5.4)

It is easy to explicitly evaluate Di in terms of θ, τ, u, v and then reexpress the result in

terms of D0
i . We find

D1 =
1

2

(

−
(

D0
2 +D0

4

)

cos τ +
(

D0
1 −D0

3

)

+ 2y0 sin τ
)

D2 =
1

2

(

(

D0
3 −D0

1

)

cos

(

D0
1 +D0

2 −D0
3 −D0

4

2y1

)

+D0
2 +D0

4

)

+ y1 sin

(

D0
1 +D0

2 −D0
3 −D0

4

2y1

)

D3 =
1

2

(

−
(

D0
2 +D0

4

)

cos τ −D0
1 +D0

3 + 2y0 sin τ
)

57In this sentence θn means the nth power of the variable θ rather than just a term that is of nth order

in the small θ expansion.
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D4 =
1

2

(

(

D0
1 −D0

3

)

cos

(

D0
1 +D0

2 −D0
3 −D0

4

2y1

)

+D0
2 +D0

4

)

− y1 sin

(

D0
1 +D0

2 −D0
3 −D0

4

2y1

)

(5.5)

where

τ(D0
1, D

0
2, D

0
3, D

0
4) =

D0
1 +D0

2 +D0
3 +D0

4
√

(

D0
1 −D0

2 −D0
3 −D0

4

) (

D0
1 +D0

2 −D0
3 +D0

4

)

+ 4
(

1 + y2
1 + y2

⊥

)

and

y0(D0
1, D

0
2, D

0
3, D

0
4) =

√

1 + y2
1 + y2

⊥ +
1

4

(

D0
1 −D0

2 −D0
3 −D0

4

) (

D0
1 +D0

2 −D0
3 +D0

4

)

Using the explicit relations (5.5) it is easy to verify that the small θ expansion of each of

the denominator factors Di takes the form

Di =
∞
∑

r=0

Dr
i (5.6)

where Dr
i is of order 2r+1 in the small θ expansion. Again using these explicit expressions

it is easy to convince oneself that the small a expansion of Dr
1 and Dr

3 starts at order

a2r+1.58 On the other hand Dr
2 and Dr

4 respectively each start at order a in the small a

expansion.59 These facts are illustrated by the explicit expressions for the first subleading

corrections

D1
1 = −(D0

1 − 2D0
2 +D0

3 − 2D0
4)(D0

1 +D0
2 +D0

3 +D0
4)2

48
(

1 + y2
⊥ + y2

1

)

D1
2 =

(2D0
1 −D0

2 − 2D0
3 +D0

4)(D0
1 +D0

2 −D0
3 −D0

4)2

48 y2
1

D1
3 = −(D0

1 − 2D0
2 +D0

3 − 2D0
4)(D0

1 +D0
2 +D0

3 +D0
4)2

48
(

1 + y2
⊥ + y2

1

)

D1
4 = −(2D0

1 −D0
2 − 2D0

3 +D0
4)(D0

1 +D0
2 −D0

3 −D0
4)2

48 y2
1

(5.7)

Note that D1
1 and D1

3 each start at order a3 while D1
2 and D1

4 each start at order a, in

agreement with the general rule spelt out above.

5.3 Derivation of the a counting rule

In this subsection, we explain why the counting rule of subsubsection 5.1 is correct.

58This is a consequence of the fact that τ and uv are simultaneously of order θ2 and a2, while y2
1 is of

order a2 but order unity in the θ expansion.
59This is a consequence of the fact that the argument of the cosine and sine in these expressions is of

order θ in the Regge expansion but of order unity in the small a expansion. Note its crucial that the pre

factor of both the cosine and sine in these expressions is of order a in the small a expansion.
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Recall from subsection 3.1 that the final expression for Hn(a) is given by60

Hn(a) =
∑

{ai}

∫

dyidy1

N{ai}(y1, yi, a)

(a y0 + y1 + iǫ)a1+a2−1 (a y0 − y1 + iǫ)a3+a4−1 (5.8)

where the sum is taken over terms with

a1 + a2 + a3 + a4 = 2B − n (5.9)

(B̃ was defined in (3.2)) and all factors of Ca1,a2,a3,a4 (see (3.16)) have been absorbed into

the function N{ai}(y1, yi, a)).

Now the small a singularity in (5.8) is a consequence of the pinch in the integral over y1

in the denominators in the integrand of that expression. It is easy to convince oneself (see

appendix F, especially F.3 for some more detail) that if the numerator function scales like

N{ai}(λy1, yi, λa) ∼ λYN (5.10)

at small λ then

Hn(a) ∼ aYN +3−a1−a2−a3−a4 = aYN +3−2B+n (5.11)

where in the last equality we have used (5.9). Eq. (5.11) follows from the observation that

y1 is of order a in the two poles that participate in the pinch in (5.8); as a consequence the

singularity of the integral is determined by small y1 expansion of the numerator in (5.8).

The result (5.11) then follows from the change of variables y1 = ay′1.

The counting rule described in the previous paragraph follows immediately from the

observation that each additional factor of Di
0 and y1 in the integrand of (5.8) gives an

additional factor of a in (5.11). The fact that θ is of order unity then follows from (3.7).61

To end this subsection we briefly outline how the r.h.s. of (5.11) explicitly repro-

duces (5.3). Infact (5.3) follows from (5.11) from the observation that YN is bounded from

below according to

YN ≥ −n−M (5.12)

Inserting (5.12) in (5.11) gives (5.3).

Eq. (5.12) follows because terms in the integrand of (3.1) which contribute to Hn(a)

are of order θM+n compared to the leading contribution to the denominator in (3.1). It

is possible for some — or all — of these additional small factors to consist of powers of θ

(rather than τ or u or v). As θ is of order unity rather than a in the small a limit, every

insertion of θ leads to a factor of D0
i or τ (already accounted for above) divided by a factor

of a or y1 (see (3.7)) which have to be accounted for additionally, leading to (5.12).

60If we had expanded the integrand in (3.1) in a power series expansion in τ , θ, u and v then the

coefficients of this expansion would have been independent of a. However we instead chose to expand the

integrand in a power series in Di
0. The linear transformation to the new variables (3.7) involves a. This is

why the function N{αi} depends on a.
61In particular, the fact that y1 is of order a follows simply from the fact that the pole values of y1 are

each of order a in the integrand in (5.8).
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5.4 Strength of the a singularity

In order to make quantitative contact with the small ρ analysis presented in section 4, we

now specialize to the case of a correlators generated by the interaction of four bulk fields

dual to operators of dimension ∆i (i = 1 . . . 4) interacting via a bulk interaction vertex that

is of rth order in derivatives. As in the earlier parts of this section we restrict attention to

the case that the bulk particles are either gravitons dual to the stress tensor of dimension

D, photons dual to a conserved current of dimension D−1 or massive scalars dual to scalar

operators of arbitrary mass. In this context the largest possible value of the ã1+ã2+ã3+ã4

in (5.2) is

ã1 + ã2 + ã3 + ã4 = ∆1 + ∆2 + ∆3 + ∆4 + r (5.13)

(this maximum is obtained when all bulk derivatives are allowed to hit the denominators

of propagators in the bulk). It follows from (5.3) that the most singular possible small a

behaviour from such a bulk interaction is

1

a∆1+∆2+∆3+∆4+r−3
(5.14)

in perfect agreement with the power of the ρ singularity in (4.68).

5.5 Order of limits

In this section, we have established that the correlator under study has the following simple

analytic structure in the limit that θ and a are both small.

G =
1

θ2B−2a∆1+∆2+∆3+∆4+r−3
H(θ, a) (5.15)

where the function H(θ, a) admits a double power series expansion in a and θ. We also

know from (4.68) that the function H(θ, a) is nonvanishing in the limit a → 0 at generic

θ. It follows that in the expansion of H(a, θ), the coefficients of the monomials θna0 must

be nonzero for atleast one value of n. Let the smallest value of n for which this is the

case be denoted by nBP. On the other hand let the smallest power of θ that appears in

the expansion of H(a, θ) (accompanied by any value of aq, i.e. q not necessarily zero) be

nRegge. Clearly

nRegge ≤ nBP. (5.16)

As A′ measures the θ scaling of the correlator in the small θ limit while A controls the

small θ scaling of the coefficient of a → 0 limit, it follows immediately that

A′ = A+ nBP − nRegge ≥ A (5.17)

The last inequality in (5.17) follows from (5.16).

Generically we expect that nBP = nR = 0 and A′ = A. However, even if this generic

expectation is not met, the inequality (5.17) is always true. As we will see in more detail in

the next section, (5.17) is sufficient to establish the main result of this paper, namely that

the CRG conjecture follows from the chaos bound, in the context studied in this paper.
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6 CRG conjecture from the chaos bound

6.1 A′ ≥ A

So far in this paper we have established three key facts about the small σ scaling of the

normalized correlation function Gnorm (see (2.21)).

• In the σ fixed ρ limit our

gCS(e2ρ)

σA′−1
and

gCR(e2ρ)

σA′−1
(6.1)

on the Causally Scattering and the Causally Regge sheets respectively. gCS(e2ρ) and

gCR(e2ρ) are both nontrivial (neither of them vanishes identically). Crucially, the

scaling exponent A′ is independent of ρ and is the same on both sheets.

• Upon first taking the small ρ limit (on the Causally Scattering sheet) and then taking

the small σ limit, on the other hand, we demonstrated that the normalized correlator

scales like
1

σA−1
(6.2)

(see (4.80)) where A characterizes the leading order large s fixed t scaling of the flat

space S matrix of the corresponding contact term (see (4.79)).

• By examining the small a behaviour of coefficients at all orders in the small σ limit,

we demonstrated that normalized correlator has a simple analytic structure in the

double σ small ρ limit (see around (5.15)) and used this result to deduce A′ ≥ A.

Putting these three items of information together, it follows that A′, the coefficient

that characterises the small σ scaling of the normalised correlator, is greater than or equal

to A, the coefficient that characterises the Regge growth of flat space scattering governed

by the corresponding bulk contact term.

It is of crucial importance to this paper that while the results obtained so far in this

paper allow for A′ > A, they rule out the possibility that A′ < A. Although we have

already established this fact in the previous section, we will pause to explain it again from

a slightly different point of view.

The following function
1

σAρa
+

1

σA′ρa′ (6.3)

with A′ > A but a > a′ gives a very simple example of a function with A′ > A. At leading

order in the small ρ limit this function reduces to 1
σAρa and so scales like 1

σA as required,

whereas at leading order in the small σ limit this function reduces to 1
σA′ ρa′ and so scales

like 1
σA′ as also required. Thus the example listed in (6.3) obeys all the properties of the

normalized correlator established in this paper.

The fact that A′ can be larger than A in very simple examples can be understood

intuitively in the following terms. A′ captures the leading σ singularity at general values

of ρ. It is, of course, possible that the coefficient of this leading singularity vanishes at
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any particular value of ρ; if this happens the function at that value of ρ will have a milder

small σ scaling than at generic ρ. Eq. (6.3) may be viewed as an implementation of this

scenario for the particular value ρ = 0.

Now let us consider a second (and analytically more complicated) toy model62

√

1

σ2
+

1

ρ2
− 1

ρ
(6.4)

In the small σ limit this function tends to 1
σ and so has A′ = 1, but in the small ρ limit it

tends to ρ
2σ2 and so A = 2. Note A′ < A.

While the toy model (6.4) is a perfectly well behaved analytic function with A′ < A, it

(and other such functions) cannot capture the behaviour of the correlators studied in this

paper because the coefficients of successive orders in the small σ expansion of this function

are increasingly singular in the small ρ limit (the small σ expansion is really an expansion

in σ/ρ), a behaviour that we have ruled out in section 5.

The reader may at first find it intuitively puzzling that it is possible at all for A′ to

be less than A, even putting aside the considerations of section 5. If A′ captures the most

singular σ scaling of our function at any value of ρ, how can the function possibly scale

more singularly than 1
σA′ ‘at small ρ’. The answer to this false puzzle is, of course, the

following. Viewed as a function of σ (6.4) has two distinct domains. The first of these

is σ ≪ ρ which is accessed by the small σ limit. The second of these is σ ≫ ρ which is

accessed by the small ρ limit. The function changes its character dramatically at σ of order

ρ. This is what allows the σ scaling in the small σ limit to be slower than the σ scaling in

the small ρ limit.

In the example (6.4) (and indeed in any example of this nature) the small σ expansion

becomes singular in the limit ρ → 0. Logically this follows because the scale in σ at which

the function dramatically changes the character and goes to 0 in this limit. The results of

section 5 can be thought of as forbidding this possibility; those results disallow the sigma

scaling of the normalized correlator to dramatically change character at a value of σ that

goes to zero as ρ → 0.

In summary, while the results of the Regge expansion and the bulk point expansion

by themselves would have allowed for A′ < A, our detailed understanding of the interplay

between these two expansions, presented in section 5 rules out the possibility. We thus

reiterate that the correlators studied in this paper obey

A′ ≥ A (6.5)

As we have mentioned in subsection 5.5 we suspect it may be possible to prove that

the inequality in (6.5) is saturated, so the true scenario is possibility 1. However, we do not

need this to establish the central result of our paper and do not pursue this question further.

6.2 A′ ≤ 2

In their celebrated chaos bound paper, the authors of [1] demonstrated that out of time

order thermal four-point function in a large N theory cannot grow faster with time than

62The material in the rest of this subsection was developed in discussion with A. Gadde and A. Zhibeodov.
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Figure 8. As explained in [1] the Regge correlator can also be viewed as an OTOC in angular

quantization.

e2πT t where T is the temperature of the ensemble. In appendix A of the same paper, the

authors explained that, in the special case of conformal large N field theories, their bound

also constrains the growth of ordinary time-ordered correlators in the Regge limit on the

Causally Regge sheet. We present a brief summary of this connection.

Consider the large N CFT first in Euclidean space, and consider the insertion of four

operators in a particular plane. Now consider this theory in ‘angular quantization’, i.e.

with the angular coordinate θ of the plane being regarded as Euclidean time and the radial

coordinate r thought of as space. As the angular coordinate θ is periodic with periodicity

2π, the theory in this quantization is effectively thermal with T = 1
2π .

With this choice of quantization we study the out of time ordered correlator depicted

in figure 8. In this correlator Operator III is inserted at θ = 0 and r = 1. Operator II is

inserted at r = x (x < 1) and θ = ǫ+ iτ . Operator IV is inserted at θ = π and r = 1 and

operator I at r = 1 and θ = π + ǫ + iτ . After dividing by the appropriate normalization

factor, the path integral depicted in figure 8 computes the following operator expectation

value (in the Hilbert space obtained from angular quantization)63

〈O1O4O2O3〉
〈O2O1〉〈O4O3〉 (6.6)

The chaos bound theorem of [1] asserts that the correlator (6.6) grows no faster with

τ than eτ .

As explained in appendix A of [1], the correlators in (6.6) have a simple representation

in the quantization of the same theory in usual Minkowski time (in the plane R1,1 obtained

by starting with the plane R2 and performing the usual analytic continuation to go to R1,1 ).

In the Hilbert space obtained by the usual quantization of Minkowski space, the normalized

version of the path integral of figure 8 (or equivalently the operator expression (6.6)) has

the following representation.
〈

B(τ)O2(x, x)B−1(τ) O4(−1,−1) O3(1, 1) B(τ)O1(−x,−x)B−1(τ)
〉

〈B(τ)O2(x, x)B−1(τ) B(τ)O1(−x,−x)B−1(τ)〉 〈O4(−1,−1)O3(1, 1)〉 (6.7)

63The ordering of operators in (6.7) is simply the order in which the operators are inserted along the

contour in figure 8. Note also that this ordering of operators also follows directly from the time assignments

of operators in this paragraph, as operators inserted at different Euclidean times have only one consistent

ordering — that in which Euclidean time increases moving from right to left. In other words, the contour

depicted in 8 is the only one consistent with the time assignments of this paragraph, as path integral

contours are only allowed to move forward in Euclidean time.
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The locations of operator insertions in (6.7) is given by O(w, w̄) where w and w̄ are the

lightcone coordinates defined in (E.1).B(τ) is the boost operator by rapidity τ . Note that

the operators in (6.7) are time ordered in Minkowski time (i.e. the earliest insertions are

furthest to the right).

The equality of (6.7) and (6.6) is a consequence of the fact that time evolution in

analytically continued angular time (i.e. Rindler time) is simply a boost in Minkowski

space. The change in ordering of operators between (6.6) and (6.7) is a consequence of the

fact that angular time and regular time run in opposite directions in the left half of the

Minkowskian plane. This has the following implication. Operators O2 and O1 which are

both inserted at Rindler time τ − iǫ are respectively inserted at Minkowski time

t = ±x sinh(τ − iǫ) ≈ ±x (sinh τ − iǫ cosh τ) (6.8)

In other words, while O2 is inserted at Minkowski time x sinh τ−iǫ̃ and so at a positive value

of Euclidean time, O1 is inserted at Minkowski time −x sinh τ + iǫ̃ and so at a negative

value of Euclidean time. The fact that operator insertions must always be ordered so

that Euclidean time increases from right to left then determines the ordering of operator

insertions in (6.7).

We can simplify (6.7) as follows. Let us assume that the operator Om has weight λm

under boosts. It follows that

B(τ)O2(x, x)B−1(τ) = eλ2τO2(xe−τ , xeτ )

B(τ)O1(−x,−x)B−1(τ) = eλ1τO1(−xe−τ ,−xeτ )
(6.9)

Inserting (6.9) into (6.7) and asserting the chaos bound, we find that the expression in that

equation simplifies to

〈O2(e−τx, eτx) O4(−1,−1) O3(1, 1)O1(−e−τx,−eτx)〉
〈O2(e−τx, eτx)O1(−e−τx,−eτx)〉 〈O4(−1,−1)O3(1, 1)〉 (6.10)

Note that the factors of eλ1τ and eλ2τ have cancelled between the numerator and

denominator.

When τ is large enough operator insertions (6.10) lie on the Causally Regge sheet. The

conformal cross ratios associated with the insertions (6.10) may be computed using (E.2);

in the large τ limit we find

z = 4xe−τ , z̄ =
4

x
e−τ , σ = 4e−τ , e2ρ = x2 (6.11)

The chaos bound theorem, which asserts that (6.10) grows no faster with τ than eτ , tells

us that the correlator (6.10) can grow no faster in the small σ limit than 1
σ at any fixed ρ.

In other words the Chaos bound asserts that A′ ≤ 2.

Although the chaos bound holds only on the Causally Regge sheet, the fact that A′ is

the same on the Causally Regge and Causally Scattering sheets tells us that A′ ≤ 2 even on

the Causally Scattering sheet in the situation studied in this paper (i.e. correlators induced

by a local bulk contact term).
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6.3 The CRG bound from the chaos bound

Putting together the results of the previous two subsections it follows that

A ≤ A′ ≤ 2 (6.12)

Now using (4.68) it is easy to convince oneself that there is always a choice of boundary

polarizations for which any given bulk polarization appears on the scattering HD−2. It

follows that (1.10) must hold for every choice of bulk polarizations. In other words, the

chaos bound implies the CRG conjecture.

6.4 Cross correlators

The argument presented earlier in this section made important use of the normalized four-

point function. As this object is undefined if either G12 or G34 vanish, it may at first seem

that the argument of this paper is restricted to the scattering of particles that are ‘equal

in pairs’. This is not the case. Suppose we are given four particles that are created by the

Hermitian boundary operators O1, O2, O3 and O4 such that 〈O1O2〉 = 〈O3O4〉 = 0. The

argument presented in this paper applies unmodified to the scattering created by the four

correlators 〈O1O1O3O3〉, 〈O1O1O4O4〉, 〈O1O1O3O3〉, 〈O2O2O3O3〉 and 〈O2O2O4O4〉. This

tells us that the scattering processes

13 → 13, 14 → 14, 23 → 23, 24 → 24

all obey the CRG conjecture. We can now consider the argument of this paper to the

correlator 〈(O1 +αO2)(O1 +αO2)O3O3〉. The argument of this paper tells us that a linear

combination of the scattering processes

13 → 13, 23 → 23, 13 → 23

obey the CRG conjecture. But as we already know the first two processes obey this

conjecture, this tells us that the same is also true for

13 → 23

Similar arguments establish that all scattering processes in which only one of the product

particles is different from one of the reactant particles obey the CRG conjecture. Finally,

we study the correlator 〈(O1 + αO2)(O1 + αO2)(O3 + βO4)(O3 + βO4)〉. The argument

of this paper tells us that a linear combination of several scattering amplitudes obeys the

CRG conjecture. But we have already established that all of these amplitudes except

13 → 24

obey CRG scaling. It thus follows that this last scattering amplitude also obeys the CRG

conjecture.64

64Similar arguments have been used in [47] to constrain the growth of OTOC of mixed correlators using

chaos bound.
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7 Discussion and conclusions

In this paper, we have demonstrated the following. Consider a conformal field theory that

has a local bulk AdS/CFT dual. If the contact interaction terms in this bulk dual lead to

a flat space S matrix that grows faster than s2 in the Regge limit, then the corresponding

four-point functions of the boundary conformal field theory violate the chaos bound.

We have established the result of the previous paragraph by studying a two-parameter

family of CFT correlators with insertions at the points (2.1) that interpolate between the

Causally Regge sheet and the Causally Scattering sheet (see (2.3)). Our argument proceeds

by first demonstrating that on each of these sheets and in the limit that the conformal cross

ratio σ → 0, our correlators respectively take the form

gCS(e2ρ)

σA′−1
and

gCR(e2ρ)

σA′−1
(7.1)

(here ρ is the second cross ratio). The key point here is that the exponent A′ is the same

on the Causally Regge and Causally Scattering sheets. We then used the fact that the

correlator has a singularity — the so-called bulk point singularity — at ρ = 0 on the

Causally scattering sheet. The coefficient of this singularity is the flat space S matrix of

the corresponding bulk modes which we assume to scale like sA at fixed t. This connection

allows us to demonstrate that A′ ≥ A. However, the chaos bound applied to the Causally

Regge sheet tells us that A′ ≤ 2. Putting these results demonstrates that A ≤ 2, i.e. implies

the CRG conjecture.

The fact the bulk duals to ‘good’ conformal field theories — i.e. CFTs that obey the

chaos bound — always obey the CRG conjecture (see the introduction for terminology)

seems to us to be very strong evidence for the correctness of the CRG conjecture, and

therefore of the recent results of [2].

We emphasize that the correlators studied in this paper (i.e. those generated by local

bulk contact terms using holography) are analytically very simple. In particular, a key

feature of the small σ scaling of these correlators is that the scaling exponent A′ is a

constant independent of ρ. This is the key feature that allows for a simple interpolation

between the causally Regge and Causally scattering sheets.

While a link between the chaos bound and the allowed Regge scaling of S matrices

has been suspected for some time (see e.g. [1, 2, 6, 7], and also appendix A), to the best

of our knowledge this connection has never previously been made precise, especially in the

context of the scattering of particles with spin (like the photons and gravitons studied in

this paper).

At the technical level, one of the accomplishments of this paper is the generalization

of the results of [33] — which determined the coefficient of the bulk point singularity of

a four-point function of scalar operators in terms of the coefficient of the S matrix of

the corresponding bulk scalar waves — to a similar result for conserved vectors and the

conserved stress tensor (the corresponding S matrices are those of scalars, photons, and

gravitons). While the techniques employed in this paper can also be used to study four-

point functions of non-conserved spinning operators corresponding to massive spinning bulk
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particles, the argument linking the singularity in these correlators to the Regge scaling of

flat space S matrices is complicated by the enhanced high energy behavior of the scattering

of longitudinal polarizations in the bulk (see subsection 4.11 and appendix I). It would

be interesting (and should not prove too difficult) to work through these complications

and generalize the tight connection between the CRG conjecture and the chaos bound to

particles of arbitrary mass and spin.

As a slight aside from the main flow of this paper, we highlight an issue that we do

not understand. To set the context for this question, let us first recall that the weakened

version of the bulk point singularity (H.19) was conjectured by the authors of [36] to

occur in suitable correlators of scalar operators in all non-interacting theories, even at

finite N . One explanation for this conjecture, presented in [36], is the observation that

the boundary configurations that have a bulk point singularity are stabilized by a non-

compact SO(D − 2, 1) subgroup of the conformal group (see appendix B.4).65 Now while

boundary configurations that have a bulk point singularity are co-dimension 1 in cross ratio

space and so are special, there exist a less special collection of boundary insertion points

for scalar operators that span an R3,1 subspace of embedding space (see appendix B.4).

These points are co-dimension zero or generic in cross ratio space.66 The subgroup of

the conformal symmetry that is preserved by these R3,1 configurations, SO(D − 3, 1),

is also non-compact when D ≥ 4, suggesting that these correlators are also ill defined

(infinite) unless the coefficient of this divergence vanishes for some unknown reason.67 This

conclusion seems to us to be unphysical. It is presumably possible to define the correlator

in such ‘R3,1 configurations’ by analytically continuing the answer from the better behaved

‘R2,2 configurations’68 but we do not understand how such correlators can be computed

directly, without resorting to an analytic continuation, even in the simple context of a

holographic computation at leading order in large N in a theory with a local bulk dual. As

we have mentioned above, in this context the integral of the integration point over foliation

hyperboloids HD−3 appears to give an infinite result. While this issue has no bearing on

the current paper, it would be nice to clear it up.

In this paper, we have focussed our attention on correlators generated by contact

diagrams in the AdS bulk. While we have not thought the issue through very carefully,

65If we imagine computing a boundary correlator in conformal perturbation theory, the integration of the

‘interaction points’ over the orbit of this symmetry would thus appear to give an infinite answer, leading

to the bulk point singularity.
66While the two parameter set of insertions (2.1) that we have focussed on in this paper are never of this

form — indeed this is part of the reason we chose to study the special set of insertions (2.1) — points with

this property occur in the ‘neighbourhood’ of the Regge point τ = θ = 0 of (2.1) (see appendix C). Indeed

in appendix C it is the set of ‘bulk point singular’ R2,1 configurations that separate those configurations

that are R3,1 from the ‘good’ R2,2 configurations like all of (2.1) at τ 6= 0.
67In the context of a holographic computation for a classical bulk dual, such configurations do not give

rise to a pinch singularity of the form that we get for R2,1 configurations, see around (G.8). The origin

of this apparent divergence is more elementary; it is simply the infinite volume of the orbits of the HD−3

foliations of AdSD+1 that is generated by the preserved symmetry subgroup SO(D − 3, 1). We thank J.

Penedones for discussions on this point.
68The fact that conformal blocks are well defined in ‘R3,1 configurations’ (though they diverge in ‘R2,1

configurations’ as pointed out in [36]) suggests this should be possible.
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we believe that the generalization of our paper to the study of bulk exchange diagrams is

likely to be straightforward, and the final result of this paper is likely to apply without

modification to this case. More ambitiously, in this paper, we have focussed our attention

on correlation functions generated by classical dynamics in the bulk. However, the logical

flow of the argument presented in this paper would appear, at least at first sight, to go

through even accounting for quantum effects in the bulk. As the boundary dual to a

quantum bulk theory is a CFT at finite N , it may be possible to use the ‘finite N chaos

bound’ i.e. the finite N Cauchy Schwarz inequality (which forms the starting point of the

large N analysis in [1]) to obtain a stronger bound for the Regge growth of bulk quantum

S matrices than the s2 bound we have derived for classical S matrices in our paper. We

think this is a very interesting direction for future work.69

While the results of this paper may be taken to be strong evidence for the correctness

of the CRG conjecture at least in the context studied in this paper, the argument presented

here is very indirect. It relies on the AdS CFT, the flat space limit of AdS, and a theorem

(the chaos bound) on quantum field theories to constrain the growth of classical bulk

scattering amplitudes. It should be possible to give a simple general — possibly classical

— argument for the CRG conjecture that does not rely on all these bells and whistles.

Given the results of this paper, such an argument could also allow one to ‘derive’ the chaos

bound directly from the bulk. We think this is a very interesting problem for the future.70

Finally, just as the chaos bound only constrains four-point functions in a conformal

field theory, the CRG conjecture only constrains the growth of 2 → 2 scattering amplitudes.

It would be very interesting to find nontrivial generalizations of both the chaos bound and

the CRG conjecture to high point correlators and multi-particle S matrices. We leave this

to the future.
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A Discussion of remarks in [1] relevant to the CRG conjecture

The main theorem of the remarkable paper [1] is the starting point of the analysis of the

current paper.

69We thank A. Gadde and S. Caron Huot for related discussion.
70A. Zhiboedov already has some very interesting results on this question. We thank him for discussions

on this point.

– 53 –



J
H
E
P
0
5
(
2
0
2
1
)
1
4
3

In a discussion of their results, the authors of [1] also anticipated the connection

between the chaos bound and the CRG conjecture (see the last paragraph of section 3

of [1]). Somewhat confusingly, however, in a separate discussion, (the second paragraph

of section 3), the authors of [1] assert that no finite set of higher derivative corrections to

Einstein’s equations affect the fact that Einstein gravity saturates the chaos bound. As

individual higher derivative corrections to Einstein’s equations certainly violate the CRG

conjecture (see [2]) this assertion apparently contradicts the connection between the chaos

bound and the CRG conjecture.

We believe that the resolution to this apparent contradiction is that the claim that

higher derivative corrections do not modify the chaos scaling of Einstein gravity is incorrect.

The authors of [1] appears to have based their claim on the expectation that scattering

amplitudes that involve only spin two particles always scale like s2 in the Regge limit.

As explained around 1.5.2 in [2], while this is correct for pole exchange diagrams in the t

channel, it is not correct either for pole exchange diagrams in the s and u channels or for

contact diagrams.

All diagrams that violate the ‘spin two implies s2’ intuition (diagrams whose contri-

butions to S matrices potentially grow faster than s2 in the Regge limit) are polynomials

in t. It follows that these diagrams contribute to bulk scattering only at zero impact pa-

rameter.71 Despite this fact, these diagrams contribute to correlators in the Regge limit

at generic values of the cross ratio ρ and not only at very special values of ρ. This follows

formally from the fact that correlators are analytic functions of ρ, and more physically

from the spreading of waves between boundary and bulk.

In summary, we agree with the expectation (expressed in the last paragraph of section 3

of [1]) for a tight connection between the chaos bound and CRG scaling. Indeed this paper

may be thought of as an attempt to establish this connection more clearly. We believe,

however, that the atleast naively contradictory claim of universality of the saturation of

the chaos bound in a class of higher derivative gravitational theories is incorrect.

Happily, the remarks about universality were made only in a motivational context

in [1]; their validity or otherwise does not affect any of the actual conclusions of that

remarkable paper.

We thank M. Mezei and D. Stanford for discussion related to this appendix.

B Review of the embedding space formalism

B.1 Definition of AdSD+1

Through this paper we work with AdSD+1 using the so called embedding space formalism,

within which AdSD+1 is thought of as the ‘unfolding’ or universal cover of the sub-manifold

Y.Y ≡ ηMNY
MY N = −1 (B.1)

in the space RD,2 with line element

ds2 = ηMNdY
MdY N (B.2)

(ηMN has eigenvalues (−1,−1, 1 . . . 1)).

71Recall that the transformation from t to impact parameters is, roughly, a Fourier transformation.
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B.1.1 Global coordinates

For some purposes it is convenient to choose an arbitrary decomposition of RD,2 as RD,2 =

R0,2 ⊗ RD,0.72 Let Y−1 and Y0 be Cartesian coordinates on R0,2 and Ya (a = 1, . . . ,D) be

Cartesian coordinates on RD,0 so the line element on RD,2 is

ds2 = −(dY−1)2 − (dY0)2 + dY 2
a (B.3)

and the AdS manifold is given by the equation

− Y 2
−1 − Y 2

0 + Y 2
M = −1 (B.4)

The very natural ‘global AdS’ coordinate system associated with any such split

parametrizes points on AdSD+1 according to the formulae

Y−1 = cosh ζ cos τ

Y0 = cosh ζ sin τ

Ya = sinh ζ ~na

(B.5)

where ~na is a unit vector on a unit D−1 sphere The metric in these coordinates is given by

ds2 = dζ2 − cosh2 ζdτ2 + sinh2 ζdΩ2
D−1 (B.6)

B.1.2 Poincaré coordinates

The construction of the Poincaré Patch begins with the choice of an R1,1 hyperplane (of

RD,2) that passes through the origin.73 We label the two lightlike directions of R1,1 as Y+

and Y−. These are chosen so that the metric on R1,1 is

ds2 = −dY+dY−.

These conditions fix Y+ and Y−: upto the Z2 ambiguity of interchanging Y+ and Y−.

One choice for the R1,1 is the space spanned by Y−1 and YD; once we have made this

choice one of the (two possible) choices for the coordinates Y+ and Y− are

Y+ = Y−1 + YD, Y+ = Y−1 + YD (B.7)

With these choices the equation (B.4) and the metric in the embedding space can be

rewritten as

− Y+Y− + YµY
µ = −1, ds2 = −dY+dY− + dXµdX

µ (B.8)

where µ is an index in D dimensional Minkowski space with a mostly positive metric.
72The inequivalent ways of making this decomposition are labelled by elements of the 2D parameter coset

SO(D, 2)

SO(D) × SO(2)

73Clearly the set of such hyperplanes are parameterized by the 2D dimensional coset

SO(D, 2)/ (SO(D−, 1) × SO(1, 1))

It follows that we have 2D inequivalent Poincaré patches.
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We can obtain an explicit parameterization of the half of space with Y− > 0 by using

the first of (B.8) to solve for Y+ and plugging the solution back into (B.8). In this process

it is useful to perform the redefinition

Y µ = Y− xµ.

Renaming Y− as u we now have

(Y+, Y−, Y
µ) =

(

ux2 +
1

u
, u, uxµ

)

(B.9)

We find74

ds2 =
du

u2
+ u2dxµdx

µ (B.10)

u is the usual Maldacena (energy scale) coordinate for the Poincaré patch metric. Note

that this metric in this coordinate becomes singular when u = Y− = 0.

The region of negative Y− is a second Poincaré Patch. This two Poincaré patches

together cover all of the manifold (B.4).

It is not difficult to visualize the half of AdSD+1 that has Y− > 0 and so is contained

in a single Poincaré patch. We work in global coordinates, (B.5) and choose coordinates on

the sphere so that YD = sinh ζ cosφ. φ is the ‘angle with the YD axis’. φ = 0 is the ‘north

pole’ of the sphere, while φ = π is the ‘south pole’ of the sphere. Note 0 ≤ φ ≤ π. Let us

first characterize the intersection of the Poincaré patch with the boundary of AdSD+1. To

do this we take limit ζ → ∞ where

Y+ ∝ (cos τ + cosφ), Y− ∝ (cos τ − cosφ)

The intersection of the Poincaré patch with the boundary consists of points with φ > |τ |.75

The region above may be characterized invariantly as follows. Consider the north pole

at τ = 0.76 The intersection of the Poincaré patch and the boundary is the complement of

the past and future boundary lightcones of this point.

The description of the previous paragraph applies with very little modification in the

bulk as well. The full Poincaré patch is the complement of the (past and future) bulk

lightcones of this distinguished boundary point.

74Using

dY+ = −
dY−

Y 2
−

+ 2(Y−)xµdxµ + dY−xµxµ

so that

−dY+dY− + dXµdXµ = +
dY 2

−

Y 2
−

+ −2(Y−)xµdxµdY− + (dY−)2xµxµ + d(Y−xµ)d(Y−xµ)

75And so includes all of the boundary sphere at τ = 0, progressively less of this sphere (a region around

the north pole is excluded) as |τ | increases, and only a neighbourhood around the south pole at |τ | → π.
76In the labelling of boundary points (B.12) and (B.13)), this is the point Y+ = 0.
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B.2 General analysis in embedding space

While the ‘global’ coordinate system (B.5) is familiar and useful for many purposes, and

the Poincaré coordinates above are convenient for other purposes, each of them suffers

from defects. For example, any choice of global coordinates involves an arbitrary splitting

of RD,2 into RD ⊗ R2 and so obscures the SO(D, 2) invariance of our space. Poincaré

coordinates share a similar (and more severe) defect of this sort. They also cover only

half of AdS space. It is often convenient not to tie ourselves to any particular coordinate

system, but to employ a more intrinsically geometrical view, regarding (B.4) and (B.3) as

the fundamental coordinate independent definitions of our space. In this subsection, we

describe some details of this approach.

The geodesic distance, d(U, V ) between two points U and V on (B.3) is given by

cos (d(U, V )) = U.V (B.11)

where U.V is the standard dot product in the embedding space RD,2.77 In particular, U

and V are null related (i.e. lie on the same null geodesic) if and only if U.V = 0.

Within the embedding space formalism the boundary of AdSD+1 is the collection of

null rays in RD,2, i.e. by points P in RD,2 such that

P 2 = 0 (B.12)

subject to the equivalence relationship

P ∼ λ(P )P, λ(P ) > 0 (B.13)

It follows that the tangent space to the boundary point P given by the set of vectors δP

orthogonal to P (i.e. P.δP = 0) subject to the equivalence relation δP ∼ δP + aP where a

is any real number.

If we wish to parameterize boundary points by particular null vectors P rather than

equivalence classes (B.13) of such vectors we need to choose a ‘gauge’ — say of the

schematic form

χ(P ) = 0, χ(P ) ∼ χ(P ) + P 2χ′(P ) (B.14)

to fix the ambiguity (B.13) (the equivalence relationship in (B.14) follows because χ should

be evaluated only at the boundary). The (gauge dependent) one-form field78

n = dχ, (n → n+ 2χ′P ) (B.15)

allows us to define the tangent space of the boundary in the gauge slicing (B.14); the

allowed class of δP are those vectors that are orthogonal to the plane generated by n and

77This formula is an analytic continuation of a familiar fact of Euclidean geometry. Recall that the

geodesic distance between two points on the Euclidean unit sphere is the angle between them. It follows

that the cosine of the geodesic distance is the dot product of the unit vectors from the center of the sphere

to the two points.
78The bracketed equation in (B.15) displays how n transforms under the ‘gauge’ transformations (sec-

ond of (B.14)).
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P . This two plane is typically an R1,1 — and so δP is constrained to lie in the orthogonal

RD−1,1. Note that unlike n itself this two-plane is gauge invariant under χ′ shifts (B.14).

Any such choice of gauge leads to a metric on the boundary given by

ds2 = (δP )2 (B.16)

Under the shift (B.13) induces the shift

ds2 → λ(P )2 (δP )2

(upto terms of third order in infinitesimals which we ignore). It follows that λ in (B.13) is

a Weyl factor for an effective Weyl transformation.

One example of a gauge choice which fixes the choice of λ and hence of Weyl frame is

χ(P ) = P 2
−1 + P 2

0 − 1 = 0. (B.17)

With this choice the boundary is parametrized, in (B.5), by the points

(cos τ, sin τ, n̂)

(where n̂ is a unit vector on RD). The boundary metric with this choice and with these

coordinates is

ds2 − dτ2 + dω2
D−1

i.e the metric on a unit sphere times time. Note that with this choice of coordinates

− 2P1.P2 = 2 cos(τ1 − τ2) − 2n̂1.n̂2 (B.18)

Another choice of Weyl frame is

χ(P ) = (Y− − 1) = 0 (B.19)

With this choice the boundary is parameterized, in the coordinates of (B.9) by

(x2, 1, xµ)

The boundary metric with this choice of Weyl frame and these coordinates is

dxµdx
µ

the usual metric on Minkowski space. With this choice of coordinates

− 2P1.P2 = (x1 − x2)2 (B.20)

B.3 Light-cones emanating out of a boundary point in embedding space

Consider the boundary point P . The light sheet that emanates out of the boundary point

P is given by the set of points X.P = 0 and X2 = −1. This is a D dimensional null

sub-manifold of AdSD+1; the normal one form to this manifold is P . The non-degenerate

sections of this manifold — parameterized by the equivalence classes X ∼ X + P — are

labeled by the distinct null geodesics that generate this manifold. The tangent along every
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point along each of these geodesics is given by the vector P ; note that this embedding

space vector also lies in the tangent space of AdSD+1 because P.X = 0.

The set of all equivalence classes of vectors in RD,2 that are orthogonal to a null vector

P and are subject to the identification V ∼ V + aP (for any a) is an RD−1,1. The space of

geodesics (the space of equivalence classes of the previous paragraph) is the set of points in

this RD−1,1 that obey the AdSD+1 equation X2 = −1. It follows that the set of geodesics

is the space HD−1.

The space of polarizations along a geodesic parameterized by the point X in HD−1 is

given by the set of vectors ǫ such that ǫ.P = ǫ.X = 0, modulo the shifts ǫ ∼ ǫ+ P .79 This

space of polarizations spans an RD−1. This RD−1 can be thought of as the tangent space

of HD−1. Equivalently it is the subspace of the tangent space of P (i.e. vectors that are

orthogonal to P modulo shifts of P ) that is orthogonal to the point X.

The full HD−1 family of distinct geodesics ‘meet’ at the boundary point P . It follows

that the set of allowed polarizations at the boundary point P — the vector space of asso-

ciated spanned by the full set of the polarizations above over all allowed values of X — is

simply the tangent space of P .

B.4 Overlap of boundary lightcones of Q′ points in embedding space

Consider a set of Q′ boundary points PM
a (a = 1 . . . Q′). The overlap of the lightcones of

these Q′ points is given by the set of simultaneous solutions to the equations

PM
a XM = 0 (B.21)

and the AdSD+1 condition

X2 = −1

Let us suppose Q̃ of these equations are linearly independent, i.e. the set of points PM
a span

a Q̃ dimensional subspace. Clearly Q̃ ≤ D + 2 (the dimensionality of embedding space).

If Q̃ = D + 2 these lightcones never intersect.80 For the rest of this subsection we assume

that Q̃ ≤ D + 1. The space spanned by the vectors PM
a is either

1. RQ̃−2,2

2. RQ̃−1,1

3. Null with non-degenerate sections RQ̃−2,1

4. Null with non-degenerate sections RQ̃−1,0

5. Doubly null with non-degenerate sections RQ̃−3,0.

79The first condition is the Lorentz gauge condition ∂.A = 0. The second condition asserts that our

polarization lies in the AdSD+1 manifold. The last condition is the residual gauge invariance on onshell

configurations after we have imposed the Lorentz gauge; ǫ ∼ ǫ + αk.
80We see this as follows. In this situation the only solution of (B.21) is XM = 0 for all M . But this

solution does not obey X2 = −1.

– 59 –



J
H
E
P
0
5
(
2
0
2
1
)
1
4
3

For future convenience we define

Q = D − Q̃+ 1

Note Q ≥ 0.

In case (1) above the isometry group that stabilizes all PM
a is SO(Q+ 1). The space of

solutions to (B.21) is an RQ+1,0. This solution set has no intersection with the AdS equation

X2 = −1. It follows that the lightcones of corresponding four points never intersect.

In case (2) above the isometry subgroup that stabilizes the points PM
a is SO(Q, 1).

The space of solutions of (B.21) is RQ,1. The intersection of this space with X2 = −1 is

HQ, a Q dimensional (Euclidean) hyperboloid.

In case (3) above the space of solutions of (B.21) is a null manifold with non-degenerate

sections RQ,0. None of the solutions obey X2 = −1 and so the light cones do not intersect.

In case (4) above the space of solutions of (B.21) is a null manifold with spatial

sections RQ−1,1. In this case, the intersection of lightcones is a null sub-manifold, whose

non-degenerate sections are an HQ−1 (the null combination of PM
a is the normal to this

sub-manifold).

In case (5) above the space of solutions of (B.21) is a doubly null sub-manifold with

non-degenerate sections are RQ−2,0. None of these solutions obey X2 = −1 so the light-

cones never intersect in this case.

Note that in cases (2) and (4), where the intersections of light-cones is nontrivial, the

intersection manifold is a homogeneous space; any point on the intersection manifold can

be mapped to any other by the action of the isometry subgroup that preserves all PM
a .

In this subsection, we have presented a complete classification of all possible subspaces

preserved spanned by a collection of Pa. In the special case of interest to this paper —

namely the insertions (2.1), we only encounter Case 1 with Q̃ = 4 (when τ 6= 0) or Case

1 with Q̃ = 4 (when τ 6= 0). In our exploration of the neighbourhood of the Regge point

we also encounter Case 2 with Q̃ = 4 (this happens inside the ellipse depicted in figure 9).

Nowhere in this paper do we ever encounter Cases 3, 4, or 5.

B.5 Conformal cross ratios and intersection lightcones for four boundary

points

In this subsection we study the insertion of four boundary points on AdSD+1.

Any SO(D, 2) invariant expression in the four points Pa that is separate of homogeneity

zero in each of the four points (so that the expression is ‘gauge’ invariant under the gauge

scalings Pa → λ(P )Pa) is a conformal cross ratio. In this section we briefly recall the

definitions of commonly used cross ratios.

B.5.1 u and v

The conformal cross ratios u and v are defined by

u =
(P2.P1)(P3.P4)

(P2.P4)(P3.P1)

v =
(P2.P3)(P4.P1)

(P4.P2)(P3.P1)

(B.22)
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B.5.2 σ and ρ

The conformal cross ratios σ and ρ are defined by

σ2 = u

1 − 2σ cosh ρ+ σ2 = v
(B.23)

B.5.3 z and z bar

The conformal cross ratios z and z̄ are defined by the relations

u = zz̄

v = (1 − z)(1 − z̄)
(B.24)

B.5.4 z and z bar in terms of σ and ρ

It follows that z and z̄ are the two solutions to the quadratic equation

x2 − 2xσ cosh ρ+ σ2 = 0 (B.25)

The two solutions to this equation are

x = σ (cosh ρ± sinh ρ) (B.26)

In particular our conventions are

z = σeρ, z̄ = σe−ρ (B.27)

Note that z and z̄ are real and independent when ρ is real (i.e. when cosh ρ > 1) but

are complex conjugates of each other when ρ is imaginary (i.e. when cosh ρ < 1).

In the second case it is convenient to set ρ = iφ in terms of which

z = σeiφ, z̄ = σe−iφ (B.28)

B.5.5 More symmetric expression for σ and ρ

Let us adopt the notation

Pi.Pj = pij (B.29)

Using

σ2 =
p12p34

p13p24

1 + σ2 − 2σ cosh ρ =
p23p14

p13p24

(B.30)

it follows that

σ2 =
p12p34

p13p24

cosh2 ρ =
(p23p14 − p13p24 − p12p34)2

4p12p34p13p24

(B.31)
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or with a slight rearrangement81

σ2 =
p12p34

p13p24

sinh2 ρ =
p2

12p
2
34 + p2

13p
2
24 + p2

14p
2
23 − 2 (p12p23p34p41 + p13p32p24p41 + p13p34p42p21)

4p12p34p13p24

(B.32)

For any 4 × 4 matrix pij

Det(pij) = p2
12p

2
34 +p2

13p
2
24 +p2

14p
2
23 −2 (p12p23p34p41 + p13p32p24p41 + p13p34p42p21) (B.33)

and so (B.31) can be rewritten as (see eq. (3.20) of [33])

σ2 =
p12p34

p13p24

sinh2 ρ =
Det(pij)

4p12p34p13p24

(B.34)

For the special case of the insertions (2.1) we have82

− P1.P3 = −P2.P4 = 2

− P1.P2 = −P3.P4 = cos θ − cos τ

− P1.P4 = −P2.P3 = − cos τ − cos θ

(B.35)

Inserting (B.35) into (B.34) reproduces (2.7).

B.6 Classes of cross ratios

As we have seen above, the conformal cross ratios fall into two broad classes. Cross ratios

of Type I are those for which z and z̄ are complex conjugates of each other. Cross ratios

of Type II are those for which z and z̄ are real and independent of each other.

Cross ratios of Type I take the form (B.28) with σ and φ both real. For such cross

ratios the conformal cross ratio σ is real while ρ = iφ is imaginary. In this case

sinh ρ = i sinφ, sinh2 ρ = − sin2 φ ≤ 1 (B.36)

cross ratios of Type II are of four sorts. Type IIa are those for which z and z̄ are both

positive. Type IIb are those for which z and z̄ are both negative. Type IIc are those for z

81The algebra in the last step is

cosh2 ρ − 1 =
(p23p14 − p13p24 − p12p34)2 − 4p12p34p13p24

4p12p34p13p24

=
p2

12p2
34 + p2

13p2
24 + p2

14p2
23 − 2 (p12p23p34p41 + p13p32p24p41 + p13p34p42p21)

4p12p34p13p24
.

The equality of the first and second lines can be seen by expanding the square in the first line.
82As a quick qualitative check of (B.35), note that they (together with the fact that Pa and Pb are

space/time like separated in embedding space if −Pa.Pb is positive/negative see around (B.11)) are consis-

tent with the causal relations (2.3).
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is positive and z̄ is negative. Type IId is the reverse; those for which z is negative and z̄

is positive.

In the case of Type IIa configurations, σ > 0 and ρ is real. In this case sinh2 ρ is

real and positive. The configurations (2.1) are all of Type IIa. In the case of Type IIb

configurations σ < 0 and ρ is real. Once again, in this case sinh2 ρ is real and positive.

configurations of Type IIc are those for σ = −iα with α > 0 and ρ = ζ+ iπ
2 with ζ real. In

this case σ2 = −α2 and sinh2 ρ = − cosh2 ζ. Finally configurations of Type IId are those

for which σ = iα with α > 0 and ρ = ζ + iπ
2 . Once again in this case σ2 = −α2 and

sinh2 ρ = − cosh2 ζ.83

Note that sinh2 ρ is positive (and varies in the range (0,∞) for configurations of type

IIa and IIb). On the other hand, sinh2 ρ and has a modulus less than or equal to unity in

the case of configurations of Type I. Finally, for configurations o Type IIc and IId, sinh2 ρ

is negative and of modulus greater than unity.

B.7 Lightcones and cross ratios

In this subsection, we will initiate an investigation into the relationship between the causal

properties of the four boundary points, the reality (or otherwise) of ρ and the Rp,q classi-

fication of these points (see section B.4).

All through this subsection, we work on the manifold (B.1), not on its universal cover.

By ‘causal relations’ we mean only the following: given a pair of points, is the separa-

tion between them spacelike or timelike on the manifold (B.1) (recall this manifold has a

compact time circle)?84

B.7.1 R3,1

Let us first assume that the vectors Pi span an R3,1. In this case Det(pij) — the determinant

of the metric in a coordinate system oriented towards Pa — is negative. Recall the vectors

Pa are all null; each of these vectors is either past or future directed. Let us define the

variable ǫa = 1 when Pa is future directed but ǫa = −1 when Pa is past directed. Then

pab has the sign of −ǫaǫb. As each Pa appears twice in the expression p12p34p13p24, it

follows that this expression is positive. We conclude from (B.34) that in this case sinh2 ρ

is negative and so ρ is imaginary.

What are the boundary ‘causal’ relations between points in this situation? With

this clarification, two points Pa and Pb are spacelike separated in embedding space if

−2Pa.Pb = ǫaǫb is positive, and are timelike separated if this quantity is negative.

With this terminology, an R3,1 situation is consistent with three distinct ‘causal’ con-

figurations (upto permutations of particle labels).

83In the case of configurations of type IIc we could also have set σ = iα with α > 0 and ρ = ζ + −i π
2

. In

the case of configurations of type IId we could also have set σ = −iα with α > 0 and ρ = ζ + i π
2

. Which

choice we make is unimportant; in particular σ2 and sinh2 ρ are left unaffected.
84The relationship between this spacelike/ timelike dichotomy and causality in the covering space is the

following. If two points are timelike separated in embedding space manifold (B.1) then their pre images are

necessarily timelike separated in the covering space. However, points that are spacelike separated in the

embedding space manifold (B.1) may be either spacelike or timelike separated in covering space.
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• When all ǫa have the same sign all points spacelike separated from each other.

• When — say — ǫ1 has a different sign from ǫi (i = 2, 3, 4) is a configuration in which

P2, P3 and P4 are mutually spacelike, but are timelike separated from P1.

• When — say — ǫ1 and ǫ2 have the same sign, but this sign is different from the sign

of ǫ3 and ǫ4, P1 and P2 are mutually spacelike, P3 and P4 are mutually spacelike, but

the pair (P1, P2) are timelike separated from (P3, P4).85

We reiterate that as long as the Pa span an R3,1, the cross ratio ρ is imaginary in each

of these causal configurations. As ρ is imaginary, the cross ratios must, in the classification

of the previous subsection, be either of Type 1 (z and z̄ complex conjugates of each other)

or of Type IIc or Type IId (z and z̄ both real, but one positive and the other negative).

B.7.2 R2,2

When the four points Pa span an R2,2 Det(pij) is positive, so it follows from (B.34) that

ρ is real if an even number of the pairs of the tuples (12), (13) (24) (34) are timelike

separated, but ρ is imaginary if an odd number of these pairs are timelike separated. In

other words the reality or otherwise of ρ is determined by the causal relations between

points. We now turn to examining the possibilities for these causal relations.

Note that, in this case, the vectors Pa can each (by scaling) be put in the form

Pa = (cos τa, sin τa, cos θa, sin θa) (B.37)

in a Cartesian coordinate system with signature R2,2 (τa and θa are both angle valued). It

follows that

−pab = cos(τa − τb) − cos(θa − θb)

Now suppose that all τa are concentrated around a given point while the four θa are

widely spread on the circle. Then all −pab are positive, so all four points are spacelike

separated from each other. In this case it follows from (B.34) that ρ is real. In the

opposite configuration — when all θa are near to each other and all τa widely separated —

then all points are mutually timelike separated, and ρ is still real.

There are many other possible configurations. For instance let the times of P1, P2, P3

be clumped around a given point, the time of P4 be near the opposite end of the time circle,

and all angle separated at distances large compared to the first time differences but small

compared to π. Then P4 is timelike separated from all other points — while the rest are

mutually spacelike separated. This configuration also has real ρ. (A similar configuration

with the role of τ and θ flipped — with P1, P2, P3 mutually timelike separated but all

spacelike separated from P4 — also have real ρ).

Similarly if the times of P1 and P2 are near to each other the times of P3 and P4 are

also near to each other but the times of each pair are separated by a larger amount, and the

angular separation between all particles is large compared to the separation between time

85This is a ‘causal’ relation similar to the scattering configuration we study in this paper, even though

the Pa in the scattering configuration span an R2,2 not an R3,1.
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separations within a pair, but small compared to the time separation between pairs then

(P1, P2) are mutually spacelike separated, and (P3, P4) are mutually spacelike separated,

but the two pairs are mutually timelike separated. Once again ρ is real in this configuration.

Now consider yet another configuration — one in which τ1 = τ2 = τ3 = 0, τ4 = 3a
2 ,

θ1 = 0, θ2 = a, θ3 = 2a and θ4 = 3a. In this configuration −p34 is negative (so P3 and P4

are spacelike separated) while all other points are timelike separated. In this configuration

ρ is imaginary.

Let us summarize. While we have not attempted a complete careful classification of

the allowed causal configurations for R2,2, it appears at first sight that these configurations

allow for virtually any causal combinations; some of these causal configurations have real

ρ while other have imaginary ρ, as spelled out by the rule enunciated at the beginning of

this subsubsection.

As explained in the previous subsection, configurations with real ρ are either of Type

IIa or IIb, (z and z̄ both real and either both positive or both negative). In the case

that ρ is imaginary cross ratios must be either of Type 1 (z and z̄ complex conjugates of

each other) or of Type IIc or Type IId (z and z̄ both real, but one positive and the other

negative).

B.7.3 Null subspaces

Finally if the Pi span a three or lower dimensional subspace of RD,2 or if the four dimen-

sional manifold spanned by these vectors is null, Det(pij), and so ρ vanishes. We have not

carefully investigated the question of which causal configurations are consistent with these

null configurations. We leave it to the interested reader to fill this gap.

B.8 Weyl weights and scaling dimensions

Recall that the combination of a conformal diffeomorphism and a compensating Weyl

transformation leaves the metric invariant. A CFT is a theory that is Weyl covariant. In

such a theory the correlators of a primary operator OA1...An on a space with metric gAB

are the same as the correlators of a primary operator ewφOA1...An on the space with metric

e2φgAB. In a schematic equation86

(OA1...An , gAB) = (ewφOA1...An , e
2φgAB) (B.38)

We call the real number w the Weyl weight of the primary operator O. Note that if the

operator OA has weight w by this definition then

(OA, gCD) = (ewφOA, e
2φgCD)

=⇒ (gBAOA, gCD) = (ewφgBAOA, e
2φgCD)

=⇒ (gBAOA, gCD) = (e(w+2)φ (e−2φgBA) OA, e
2φgCD)

=⇒ (OB, gCD) = (e(w+2)φOB, e2φgCD)

(B.39)

86This definition is chosen to ensure that a scalar operator of Weyl weight w has scaling dimension w.

We can see this as follows. Let eφ = λ be a constant. Consider the two point function of a scalar operator

O. If λ is small then the action of scaling on the metric reduces the proper distance between the insertions

by a factor of λ, and so increases the 2 point function by a factor of 1
λ2∆ where ∆ is the scaling dimension

of the operator. The equality (B.38) thus tells us that λw−∆ = 1 so that w = ∆. We will figure out the

connection between the Weyl weight and the scaling dimension for tensor operators below.
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and so it follows that the operator OA has weight w + 2. The general rule is that raising

the index of an operator increases its Weyl weight by two.

Let us now specialize this discussion to the space RD (or RD−1,1). Let XA represent

Cartesian coordinates in this space. and let the metric in XA coordinates be ηAB. We

first perform a Weyl transformation on this space with a constant φ (and use the variable

eφ = λ) and then perform the coordinate transformation

XA =
X̃A

λ
(B.40)

After the Weyl transformation, the metric on our space is λ2ηAB. It follows that after this

Weyl transformation87

ds2 = λ2ηABdX
AdXB = ηABdX̃

AdX̃B

It follows that

(OB1...Bm

A1...An
(X), ηAB) = (λwOB1...Bm

A1...An
(X), λ2ηAB) = (λw+n−mOB1...Bm

A1...An
(λX), ηAB) (B.41)

The = in this equation means ‘has the same correlation functions as’. In the first equality

in (B.41) we have performed a Weyl transformation with the constant Weyl factor λ. In

the second equality, we have made the variable change (B.40). Note that if an operator is

inserted at the point X in the X coordinate system, it is inserted at the point X̃ = λX

in the X̃ coordinate system. This is why the argument of insertions in the third bracket

in (B.41) is λX.88

Comparing the first and the third brackets, setting and suppressing the metric (as it

is ηAB on both sides) we conclude in summary that

OB1...BM

A1...An
(λX) =

OB1...Bm

A1...An
(X)

λw+n−m
(B.42)

(equality means has the same correlators as) so that the field OA1...An is of scaling weight

∆ = w + n−m (B.43)

Note, in particular, that raising and lowering indices leaves ∆ invariant (because w, n and

m all change in a coordinated manner to leave ∆ invariant).

In summary the scaling dimension of a primary operator with n lower indices and m

upper indices is its Weyl weight plus n-m.89,90 In particular, we know that the scaling

87This is just a complicated way of saying that gAB = e2φg̃AB .
88We emphasize that in any of the brackets above, the value of the argument is simply the location — in

the coordinate system relevant to that bracket — of the operator insertion.
89We can understand this intuitively as follows. Consider the two point function

< Oµ1...µm

ν1...νn
Oα1...αm

β1...βn
>

If the operator has Dimension ∆, one possible term in the two point function of this operator is

(ηµ1α1 . . . ηµnαn
)
(

ην1β1 . . . ηνmβm

)

(ηθφxθxφ)∆

Under a Weyl transformation O → λwO , ηab → λ2ηab and ηab → ηab

λ2 so it follows that the expression

above picks up a factor of λ2w−2∆−2m+2n. It follows ∆ = w + n − m as deduced above.
90One example of this rule is provided by the world sheet theory of the bosonic string. In this theory

b = bz and c = czz both have Weyl weight. This is why their scaling dimensions are −1 and 2 respectively.
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dimension of a conserved current is D − 1. It follows that the Weyl weight of the corre-

sponding operator with an upper index is D, while the Weyl weight of the corresponding

operator with a lower index is D−2. Similarly the Weyl weight of the stress tensor (scaling

dimension D) with both lower indices is D − 2, with one upper and one lower index D,

and with both upper indices D + 2.

Now let’s say we parameterize boundary points by the real projective coordinates PA,

and compute the correlators of insertions with polarizations ZA. The final expression for

the correlator will be a function of the PA and ZA coordinates of all of the operators. We

wish to find a rule that connects the scaling and Weyl dimensions of all operators with

the homogeneity of the final correlators in its arguments. The appropriate rules are the

following:

• If an expression scales like λ−∆ when we replace Pi by λPi, the expression has scaling

dimension ∆.

• If the r.h.s. scales like λ−w when we make the replacements P i
M → λP i

M , ZM
i → λZM

i ,

then the ith operator (viewed as an object with lower indices) has Weyl weight w.

To see how these rules work it is useful to consider an example. Consider, for instance,

a one-form vector field AM of definite scaling dimension and Weyl weight. The two point

function of such a field could, for instance, have terms of the form

Z1.AM (P1)Z2.AN (P2) = a
Z1.Z2

(−2P1.P2)w+1
+ b

Z2.P2Z1.P2

(−2P1.P2)w+2
(B.44)

which means

AM (P1)AN (P2) = a
ηMN

(−2P1.P2)w+1
+ b

(P1)M (P2)N

(−2P1.P2)w+2
(B.45)

where

−2P1.P2 = (P1 − P2)2 = (P1 − P2)P (P1 − P2)QηP Q

and ηP Q is the flat metric in embedding space.

With the choice of Weyl frame (and coordinate system) (B.9), this two point function

reduces to

Aµ(x1)Aν(x2) = a
ηµν

x
2(w+1)
12

+ b
xµxν

x
2(w+2)
12

(B.46)

We see immediately from (B.46) that the operators in question have scaling dimension

w + 1, in agreement with the first rule (see the expressions (B.45) and (B.44)). We now

turn to the Weyl weights. Taking into account the x2
12 = (x1 −x2)µ(x1 −x2)νηµν , and that

xµ = ηµνx
ν we see that the Weyl scaling of the r.h.s. of (B.46) is e−wφ(x1)−wφ(x2), so that

(in order that the r.h.s. be Weyl invariant), the two operators must each have Weyl weight

w, in agreement with the second rule (see the expression (B.44)).

B.9 Bulk to boundary propagators

Consider the bulk field

T (X,W ) = TM1...MJ
WM1 . . .WMJ (B.47)
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where WM is a constant vector field. This field corresponds to a boundary operator

OM1...MJ
of scaling dimension ∆. The Weyl weight of OM1...MJ

(note we have taken it to

have all lower indices) is, then

w = ∆ − J (B.48)

In brief subsection we determine the bulk to boundary propagator of this field — up

to an overall constant — from general considerations.

The bulk to boundary propagator is a function of a boundary vector ZM (ZA has

upper indices), a boundary point PM , a bulk point XM and a bulk polarization vector

WM . The propagator is a homogeneous polynomial of degree J separately in Z and W .

Moreover we have seen in the previous subsection that it is of homogeneity ∆ in P . It must

also be invariant under the shift Z → Z+αP for any α (see the discussion around (B.15)).

Finally, it must be invariant under SO(D, 2) transformations, and so must be made up of

dot products of the four vectors that form the data of this correlator.

It follows from the discussion of the last paragraph that the propagator takes the

general form
F

(−2P.X)∆

where F is a polynomial in Z.X, Z.W and W.P
(P.X) . The fact that F is of degree J separately

in Z and W tells us that it is a polynomial of degree J in the two variables (Z.W ) and
(

Z.X W.P
P.X

)J−m
. However this expression must also be invariant under the shift δZ = P .

It is easy to check that the unique combination of these two monomials that is invariant

under this shift is
(

Z.W − Z.X W.P

P.X

)

It follows that the spin J bulk to boundary propagator is proportional to [46]
(

Z.W − Z.X W.P
P.X

)J

(−2P.X)∆
=

(Z.W P.X − Z.X W.P )J

e−iπJ2∆(−P.X)∆+J
(B.49)

Even though we did not explicitly put in this requirement, note that our propagator is

invariant under the shift δW = X. It is satisfying, as the bulk gauge field is AMWM . The

invariance tells us that the gauge field read off in this fashion is automatically orthogonal

to the AdSD+1 sub-manifold.

Note that the propagator is singular precisely on the light front of the point P , i.e.

on the sub-manifold spanned by light rays emanating out of P . As explained above, the

geodesics that make up this light front each have tangent vectors proportional to PM ; i.e.

the various light rays each move in the direction PM .

B.10 Boundary to boundary correlators

The boundary to boundary correlator is given by the expression (B.49) upon replacing

X by P ′ and W by Z ′. So, in particular, the field theory two point function for spin J

operators located at Pi, Zi and Pj , Zj is equal to [48]

Gij = C∆,J
(−2Zi.Zj Pi.Pj + 2Zi.Pj Zj .Pi)

J

(−2Pi.Pj)∆+J
(B.50)
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where

C∆,J =
(J + ∆ − 1)Γ(∆)

2πd/2(∆ − 1)Γ(∆ + 1 − h)
(B.51)

B.11 Boundary calculus in embedding space

In the D dimensional boundary CFT, a generic traceless symmetric polynomial tensor is

encoded in the embedding space by a (D+2) dimensional polynomial. It is a (polynomial)

function of the position P and polarisation vector Z subject to the condition P 2 = Z2 =

P · Z = 0. More specifically, we can encode a traceless symmetric tensor of spin-l, in the

following way [48],

T (P,Z) = TA1A2A3···Al
ZA1ZA2 · · ·ZAl (B.52)

Conservation condition of this spin-l tensor implies [48, 49],

(∂ ·DZ)T (P,Z) = 0,

∂ ·DZ =
∂

∂PM

(

(

D

2
− 1 + Z · ∂

∂Z

)

∂

∂ZM
− 1

2
ZM

∂2

∂Z · ∂Z

)

(B.53)

C Exploration of the neighbourhood of the Regge point

Consider the neighbourhood of the Regge configuration (2.11)

P1 =

((

1 +
a2

1

4

)

, a0
1,

(

1 − a2
1

4

)

, ai
1

)

P3 =

((

1 +
a2

3

4

)

, a0
3,−

(

1 − a2
3

4

)

, ai
3

)

P2 =

(

−
(

1 +
a2

2

4

)

, a0
2,−

(

1 − a2
2

4

)

, ai
2

)

P4 =

(

−
(

1 +
a2

4

4

)

, a0
4,

(

1 − a2
4

4

)

, ai
4

)

(C.1)

where ai
µ = (a0

i , a
j
i ) are vectors in RD−1,1 (j = 1 . . . D − 1). In the parameterization (C.1)

we have fixed the scale symmetry of each Pi in a convenient manner (for instance we have

fixed the scale symmetry of P1 by the requirement that the sum of the first and third

components of P1 equals 2).

It follows from (C.1) that

− 2P1.P2 = −(a1 + a2)2, − 2P3.P4 = −(a3 + a4)2 (C.2)

It follows that if (a1+a2)2

2 > 0 then P2 and P1 are timelike related on the manifold (B.4)

and so also that P2 > P1 in the full covering space AdS. If (a1+a2)2

2 < 0, on the other hand,

the two points are spacelike separated on the manifold (B.4). They may be either spacelike

or timelike separated on the covering space AdS — we will discover the correct rule below.

Similar comments hold for P3 and P4.
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C.1 Relationship to global coordinates

Let δτi represent the deviation in global coordinates (B.5) from the τ value of the point

Pi from the Regge point. Similarly let δθi represent the deviation in global coordinates

from the θ value of the point Pi. It follows that the embedding space coordinates of the

boundary points in the gauge (B.17) — working to second order in smallness — are

P1 =

(

1 − δτ2
1

2
, δτ1, 1 − (bi

1)2 + δθ2
1

2
, δθ1, b

i
1

)

P3 =

(

1 − δτ2
3

2
, δτ3,−

(

1 − (bi
3)2 + δθ2

3

2

)

,−δθ3, b
i
3

)

P2 =

(

−
(

1 − δτ2
2

2

)

,−δτ2,−
(

1 − (bi
2)2 + δθ2

2

2

)

,−δθ2, b
i
2

)

P4 =

(

−
(

1 − δτ2
4

2

)

,−δτ4,

(

1 − (bi
4)2 + δθ2

4

2

)

, δθ4, b
i
2

)

(C.3)

It follows that
(

a0
1, a

1
1, a

j
1

)

=
(

δτ1, δθ1, b
j
1

)

(

a0
3, a

1
3, a

j
3

)

=
(

δτ3,−δθ3, b
j
3

)

(

a0
2, a

1
2, a

j
2

)

=
(

−δτ2,−δθ2, b
j
2

)

(

a0
4, a

1
4, a

j
4

)

=
(

−δτ4, δθ4, b
j
4

)

(C.4)

(The points (C.1) with (C.4) agree with (C.3) upto a scaling for each PM )

Below we will find it useful to define

α1 = P1 + P2 = a1 + a2, α2 = P3 + P4 = a3 + a4 (C.5)

Finally note that in the special kinematical configuration (2.1)

(α0
1, α

1
1, α

j
1) = (δτ,−δθ, 0)

(α0
2, α

1
2, α

j
2) = (δτ, δθ, 0)

(C.6)

C.2 Causal relations

The global time difference (see (B.5)) between points 2 and 1 is π+ δτ2 − δτ1. The spatial

angular difference is computed from P1.P2 in (C.3) and is given by

π −
√

(δθ1 − δθ2)2 + (b1 + b2)2

As two points are timelike/ spacelike separated depending on whether their separation in

global time is larger or smaller than their angular difference, it follows that

P2 > P1 iff δτ1 − δτ2 <
√

(δθ1 − δθ2)2 + (b1 + b2)2 i.e.

P4 > P3 iff δτ3 − δτ4 <
√

(δθ3 − δθ4)2 + (b3 + b4)2 i.e.
(C.7)
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In other words

P2 > P1 iff α0
1 <

√

(αi
1)2

P4 > P3 iff α0
2 <

√

(αi
2)2

(C.8)

As a consistency check on this answer we see from (C.7) that wheneever P1 and P2 are

timelike separated on the manifold (B.1) (i.e. when −2P1.P2 < 0 i.e. when (αi
1)2 > (α0

1)2))

then P2 > P1 in the covering AdS space as expected on general grounds. On the other

hand when P1 and P2 are spacelike separated on the manifold (B.1) then they are either

spacelike or timelike separated in global AdS, depending on whether α0
1 is positive or

negative. Identical remarks hold for the points 3 and 4.

On the special configuration (2.1), both conditions (C.8) hold whenever

δτ < |δθ|

and neither apply if this relation does not hold. This is as we have seen before in the

main text.

C.3 Rp,q

If all the ai are small (as we assume) it follows that the subspace generated by the four

points Pi is the R1,1 plus the subspace generated by α1 and α2. The signature of this space

is determined by the sign of the determinant

D = α2
1α

2
2 − (α1.α2)2 (C.9)

The space is R1,1 if this determinant is negative and R2,0 if the determinant is positive.

Note, in particular, that if one or both of αi are timelike then the combination in (C.9)

is necessarily negative91

On the special configuration (C.6), the quantity (C.9) evaluates to

−4δτ2δθ2

and so is always negative, consistent with the fact that the configuration (2.1) is always R2,2.

C.4 Cross ratios

The conformal cross ratios for these points, at leading order in smallness of the ai is given by

z =
1

4

(

−α1.α2 −
√

(α1.α2) 2 − α2
1α

2
2

)

z̄ =
1

4

(

−α1.α2 +
√

(α1.α2) 2 − α2
1α

2
2

)

sinh2 ρ =
(α1.α2) 2 − α2

1α
2
2

α2
1α

2
2

σ2 =
1

16
α2

1α
2
2

(C.10)

91When both vectors are timelike, this follows because the dot product of two timelike vectors — in a

space with only one timelike direction — is necessarily larger in magnitude than the product of norms of

vectors.
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For the special configuration (C.6), using (C.6), the above cross ratios evaluates to,

z =
1

4
(δτ − δθ)2

z̄ =
1

4
(δτ + δθ)2

e2ρ =

(

δθ − δτ

δθ + δτ

)2

σ2 =
1

16

(

δτ2 − δθ2
)2

(C.11)

in perfect agreement with (2.10).

C.5 A diagram of the neighbourhood of the Regge point

In order to understand the neighbourhood of the Regge point it is useful to vary α0
1 and

α0
2 keeping αi

1 and αi
2 fixed. Let us define

x =
α0

1

|~α1| , y =
α0

2

|~α2| , θ =
~α1.~α2

|~α1||~α2| , w =
y

x
(C.12)

Note that

|θ| ≤ 1 (C.13)

and also that θ = −1 (and so (C.13) is saturated) on the special configuration (C.6).

Using (C.10) we find

z =
|~α1||~α2|

4

(

(xy − θ) −
√

(θ − xy)2 − (x2 − 1)(y2 − 1)

)

z̄ =
|~α1||~α2|

4

(

(xy − θ) +
√

(θ − xy)2 − (x2 − 1)(y2 − 1)

)

z

z̄
=

(xy − θ) −
√

(θ − xy)2 − (x2 − 1)(y2 − 1)

(xy − θ) +
√

(θ − xy)2 − (x2 − 1)(y2 − 1)

(C.14)

D in (C.9) is given by |~α1|2|~α2|2 times

−x2 + 2xyθ − y2 + 1 − θ2 = −x2
(

w2 − 2θw + 1
)

+
(

1 − θ2
)

(C.15)

(this is the negative of the quantity in the square root in (C.14)). It follows that D vanishes

whenever

x2 =
1 − θ2

(w2 − 2θw + 1)
(C.16)

Note that
(

w2 − 2θw + 1
)

= (w − θ)2 +
(

1 − θ2
)

(C.17)

It follows from (C.13) that the r.h.s. of (C.16) is positive for every value of w. This tells

us that (C.16) has a real solution for x solution for every value of w. It follow the curve

ρ = 0 is a closed curve that surrounds the origin (infact it is an ellipse in the x, y plane).
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Figure 9. A plot of the causal and Rp,q structure of the neighbourhood of the Regge point. The

red line in this plot represents the boundary between R3,1 and R2,2 for a typical value of θ. R3,1

region is represented by the deep blue shaded region. Pi > Pj , Pi ≯ Pj means that Pi is in the

causal future of Pj or not respectively. The two dashed lines divide the plane into four distinct

causal configurations.

Note that the precise shape of the ellipse depicted in figure 9 depends on the value of

θ. The slope of the major axis of the ellipse has the same sign as θ (figure 9 is plotted with

θ = −.7). At θ = 0 the ellipse becomes a circle, and at positive θ it begins to ‘tilt to the

right’ (see the yellow-green ellipse at θ = 0.2 plotted in figure 10). Focussing on negative

values of θ for a moment, the thickness of ellipse decreases as θ reduces to its minimum

value, θ = −1. In particular when θ is precisely −1 the ellipse degenerates to a line with

slope −1 (see figure 10).

Recall that θ = −1 on the special configuration (C.6) that we have focussed attention

on in the main text of this paper. In fact the special configuration (C.6) lies on the blue

line (with slope unity) of figure 10. The fact that the ellipse degenerates to a line at θ = −1

explain why the configurations (2.1) are always either R2,2 or R2,1 but never R3,1.

C.6 The sign and ratio of z and z̄ in this neighbourhood

In the previous subsection we have presented a detailed two parameter blow up of the

neighbourhood of the Regge point. The small θ and τ limit of (2.1) can also be thought of

as a restricted blow up of the Regge point. In this subsection we will analyze how generic
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Figure 10. Various colored ellipses (Brown for θ = −1, Red for θ = −0.9, Yellow for θ = −0.5 and

Green for θ = 0.2) represents the contour for ρ2 = 0 for various θ including a special case θ = 0.

Blue line represents parameter space for configuration (2.1).

(a) Positivity of z. (b) Positivity of z̄.

Figure 11. In this plot we have shown the positivity of z and z̄ in the (x, y) plane by the dark

shaded region. In the light shaded region they are negative. White part is excluded since z and z̄

are imaginary in that region.
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the configurations (2.1) (more accurately (C.6)) are — upto conformal transformations —

in the neighbourhood of the Regge point.

Let us first recall that, as depicted in figure 9, the neighbourhood of the Regge point

includes points with four different causal configurations. The top right quadrant of figure 9

(x > 1, y > 1) has the same causal structure as the Causally Regge sheet of (2.3). The

bottom left quadrant of the same figure, (x < 1, y < 1), has the same causal structure

as the Causally Scattering sheet of (2.3). On the other hand the top left (x < 1, y > 1)

and bottom right (x > 1, y < 1) quadrants of figure 9 display causal relations that never

occur in our special configurations (2.1). It follows that the special configuration (2.1) lie

entirely in the top right and bottom left quadrants of figure 9; the remaining quadrants of

that figure are not covered by (2.1).

What parts of the top right and bottom left quadrants of figure 9 are covered by the

small θ, τ limits of (2.1) (i.e. by (C.6))? To answer this question we first recall that in the

special configuration (2.1)

• The spanning space of the Pa is either R2,2 or R2,1

• z > 0 and z̄ > 0 (i.e. are of Type IIa, see appendix B.6).

• 0 ≤ z
z̄ ≤ 1

The first point above immediately tells us that points in the interior of the ellipse in

figure 9 are not symmetry related (conformally related) to any of the points (C.6). The

second itemized point above tells us that no point in figure 9 for which either z or z̄ is

negative is conformally related to any of the points (C.6).92

Using (C.14) it is easy to convince oneself that the regions in which z and z̄ are positive

are the dark shaded regions in figures 11. In particular z and z̄ are both positive if and

only if xy − θ is positive, and x2 and y2 are both either greater than unity or both less

than unity. In this case (xy − θ) >
√

(θ − xy)2 − (x2 − 1)(y2 − 1) > 0. and so it follows

immediately from (C.14) that in this region z
z̄ < 1 so that the third item above is also met.

It follows all points that are dark shaded in the first of figure 11 are symmetry related

to one of the points (C.6). None of the light-shaded points — or the points in the interior

of the ellipse- are symmetry related to the points (C.6).

As an aside note that ρ is imaginary at every point in figure 9 which either lies inside the

R3,1 ellipse (these are points of Type I in the language of appendix B.6) or when z̄ is negative

and z is positive (these are configurations of Type IId in the language of appendix B.6,

and are the shaded regions in figure 12.) We have carefully checked that in each of the

shaded regions in figure 12, one of the pairs of points P1 and P2 are spacelike related on

the (compact time) manifold (B.1) while the other pair of points is timelike related on the

same manifold, so that the fact that these points have imaginary ρ is consistent with the

analysis of appendix B.7.2.93

92In the language of appendix B.6, this means that no point of Type IIb, IIc or IId is conformally

equivalent to any of the points (C.6).
93We re emphasize that points that this is a distinct question from the causal relation of points in the

full covering space AdSD+1. Points that are timelike related on the manifold (B.1) are necessarily timelike
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Figure 12. The dark shaded represents the region inside the R3,1 elipse and the light shaded

represents the type IId region, where, z̄ is negative and z is positive.

In summary we conclude that the special configuration (2.1) completely covers the

Causally Regge sheet of correlators, gives a partial cover of the Causally Scattering sheet

(it covers the part of the neighbourhood of the Regge point contained in the dark shaded

points in (2.1)).

D iǫ in position space

D.1 The iǫ prescription

Consider a quantum theory with a Hamiltonian H whose spectrum is bounded from below.

A wave function may be evolved either forward or backward in time by the time evolution

operation

|ψ(t− t0)〉 = e−iH(t−t0)|ψ(t0)〉 (D.1)

The expression on the r.h.s. of (D.1) consists of a sum of terms with many different fre-

quencies. As the energy of a quantum system is typically unbounded from above, the

frequencies that appear in (D.1) have no bound, and the expression (D.1) is potentially

ill defined. If we are interested in evolving only forward in time then we can improve the

situation. Eq. (D.1) continues to be well defined under the replacement

t → te−iǫ ≈ t− iǫt (D.2)

related in the full embedding space, but points that are spacelike related in (B.1) could be either spacelike

or timelike separated in the full embedding space. This dichotomy explains the apparent inconsistency

between the statements of this paragraph (which refer to the timelike and spacelike separation between

points on the space (B.1)) and causal relations asserted in figure 9, which refer to causal relations in the

full covering AdSD+1 space.
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with ǫ > 0. Once we make this replacement, extremely high energy components of (D.1)

are damped out, and (D.1) is well defined. This is the iǫ prescription that is used to give

definite meaning to expressions that are otherwise ill defined in Lorentzian space.

D.2 Relation to Euclidean space

More generally, (D.1) continues to be well defined under the replacement

t = e−iαt′

with t′ real and 0 < α < π. The variable t′ at α = π
2 is the so called Euclidean time τ . In

other words

t = −iτ (D.3)

The evolution of the wave function in Euclidean time is given by

|ψ(τ − τ0)〉 = e−(τ−τ0)H |ψ(τ0)〉 (D.4)

As usual, (D.4) is well defined only for τ > τ0. Eq. (D.4) is, of course, extremely well

behaved as it is a sum of exponentially decaying rather than oscillating terms.

One point of view that is sometimes useful to take is the following. The wave func-

tion (D.1) is defined starting with the manifestly well defined object (D.4) and then making

the replacement

τE = ite−iǫ (D.5)

Eqs. (D.3) and (D.5) together, of course, reduce to the replacement rule (D.2).

E Mapping into the ρ plane

In this appendix we attempt to map the configurations studied in this paper into a possibly

more familiar conformal coordinate system — the so called ρ coordinate frame.

E.1 The ρ frame

Consider the coordinates z and z̄ in R1,1 defined by

w = x− t, w̄ = x+ t (E.1)

t is Lorentzian time.94,95

94w and w̄ are the standard σ+ and σ− configurations of a 2 D CFT.
95After continuation to Euclidean time, t = −iτ find

w = x + iτ, z̄ = w − iτ

note that w and w̄ are now complex conjugates of each other.
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Figure 13. A schematic of the four insertion points on the ρ plane. We have drawn both the x

and t as well as the w and w̄ axes on this graph. The values of coordinates are given in w and w̄.

Now consider the following standard insertions (insertions are specified by (w, w̄),

shown in figure 13) and their corresponding cross ratios

I : (−ρ,−ρ̄)

II : (ρ, ρ̄)

III : (1, 1)

IV : (−1,−1)

z(ρ) =
z21z34

z24z31
=

4ρ

(ρ+ 1)2
, z̄(ρ̄) =

z̄21z̄34

z̄24z̄31
=

4ρ̄

(ρ̄+ 1)2

(E.2)

These insertions are depicted schematically in the figure 13 (we will consider the iǫ corrected

cross ratios shortly).

Note that the ρ plane is a double cover of the z plane; similarly the ρ̄ plane is a double

cover of the z̄ plane. Any given value of z corresponds96 to two distinct values of ρ. In fact

if ρ is one solution to the equation

4ρ

(ρ+ 1)2
= z (E.3)

then 1
ρ is a second solution to the same equation. Identical remarks apply to ρ̄ and z̄.

In what follows we will need the iǫ corrections to (E.2). This is achieved by making

the following replacements in (E.2)

ρ → (ρ+ ρ̄)

2
− (ρ̄− ρ)

2
e−iǫ, ρ̄ → (ρ+ ρ̄)

2
+

(ρ̄− ρ)

2
e−iǫ (E.4)

((E.4) simply implements (D.2)).

96Except z = 1, see below.
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Figure 14. Specification of E, R, and TR regions in (t, x) plane.

From a causal point of view the (ρ, ρ̄) plane has 16 inequivalent regions. This comes

about as follows. As depicted in figure 14, the ρ plane has 3 interesting lightcone lines with

slope unity. As the operator II goes through these lines (moving from down to up), it cuts

these lines — the right-moving lightcones of operators III, I and IV. In a similar way the

plane has 3 interesting lightcone lines of slope −1 (again see figure 14). As the operator II

moves from bottom to top, it cuts these lines — the lightcones of operators IV, I and III.

This grid of lightcones divides the plane into a criss cross of (3 + 1) × (3 + 1) = 16 distinct

causal regions, as depicted in figure 14.

In this section we will only explore 3 of these causal regions. The first of these is the

diamond marked E (for Euclidean) in figure 14 defined by the conditions 0 < ρ < 1 and

0 < ρ̄ < 1. In the region E all operators are spacelike separated with respect to each other.

In other words the causal relations between operators in the region E is the same as that

in the Causally Euclidean configurations of (2.3).

The second region we consider is the half strip marked R (for Regge) in figure 14

defined by the conditions 0 < ρ < 1 together with ρ̄ > 1. The causal relations between

operators in this region is the same as that of the Causally Regge configurations in (2.3).

Finally, the third region we consider is the half strip marked TR (for Timelike Regge)

in figure 14 defined by the conditions −1 < ρ < 0 together with ρ̄ > 1. The causal relations

between operators in this region is in between that of the Causally Regge and the Causally

scattering sheets (it is not identical to that of the Causally Scattering sheet because the

operators III and IV are spacelike separated with respect to each other in the region TR

unlike in the Causally Scattering region).
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E.2 Mapping into the ρ plane: qualitative comments

Provided ρ > 0 it from (E.3) that 0 < z < 1. Similarly whenever ρ̄ > 0 0 < z̄ < 1. It

follows that both in the regions E and the region R

0 < z < 1, 0 < z̄ < 1 (E.5)

This is precisely the range over which the cross ratios in the Causally Euclidean and

Causally Regge regions of (2.1) vary (see (2.5)). So it seems very plausible that the Causally

Euclidean and Causally Regge regions of (2.1) map into the regions E and R of (E.2).

In the region TR, on the other hand we have

z < 0, 0 < z̄ < 1 (E.6)

However the z cross ratio for the insertions (2.1) is never negative. This is another demon-

stration of the fact that the Causally Scattering region of (2.1) cannot map into the region

TR of (E.2) (this follows more elementarily, of course, from causal considerations, as we

have explained above). In fact the causally scattering region simply has no analogue in the

coordinate charge (E.2).97

If it is indeed the case that the Causally Euclidean region maps to E while the Causally

Regge region maps to R then it should also be the case that the transition from E to R

involves circling counterclockwise around the branch cut at z̄ = 1, as was the case for (2.1)

(see around (2.16)). It is easy to directly verify that this is indeed the case. Indeed in the

neighbourhood of the transition region the Minkowski time is positive which implies that

ρ → ρ+ iǫ, ρ̄ → ρ̄− iǫ

In particular

z̄ =
4(ρ̄− iǫ)

(ρ̄− iǫ+ 1)2
, ρ̄ = ρ0e

τ (E.7)

An analysis very similar to that around (2.16) will convince the reader that the transition

from the region Ē to R̄ — which is the transition from ρ̄ < 1 to ρ̄ > 1 takes us along a

path in cross ratio space that circles counter clockwise around the branch cut at z̄ = 1.

E.3 Mapping into the ρ plane: quantitative formulae

The quantitative map from (2.1) to (E.2) is obtained by equating the z and z̄ cross ratios

of the two configurations, i.e. by imposing the equations

4ρ

(ρ+ 1)2
=

1 − cos(θ − τ)

2

4ρ̄

(ρ̄+ 1)2
=

1 − cos(θ + τ)

2

(E.8)

97A very rough analogy might be the following. If (2.1) is like the ingoing Eddington Finklestein co-

ordinate system in a black hole, (E.2) is the analogue of the outgoing Eddington Finklestein coordinate

system. Just like the two EF coordinates agree on the exterior of the event horizon but continue to different

regions of spacetime for r < rH , the two conformal coordinate patches (2.1) and (E.2) agree on the Causally

Euclidean i.e. E and Causally Regge i.e. R regions, but have different continuations beyond z = 0.
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Figure 15. The image of the part of the path of subsection 2.4 that has a map in the ρ, ρ̄ plane.

The right black curve depicts the insertion position of opertor II. The trajectory is one of decreasing

τ ; it starts at τ = π and ends at τ = θ.

In the E region the solution to these equations is given by

ρ = tan2
(

τ − θ

4

)

ρ̄ = cot2
(

τ + θ

4

) (E.9)

It is interesting to investigate how the equivalent insertion points in the ρ, ρ̄ plane

evolve as we move along the path in cross ratio space described in (2.4). Recall that this

path is obtained by varying τ from π to 0 at fixed t. As depicted in figure 15, at τ = π the

corresponding insertion for operator II in the (ρ, ρ̄) plane starts out at the point on the x

axis, x = cot2
(

π+θ
4

)

, t = 0. This point lies in the E region of figure 14.

As τ decreases the insertion point follows the path depicted on the rightmost curve in

figure 15. This path cuts the left-moving lightcone of the operator III at ρ̄ = 1, ρ = 1−sin θ
1+sin θ .

It then moves into the region R of figure 14. As τ decreases further the path approaches

nearer and nearer to the right moving lightcone of operator I, cutting it when τ = θ at the

point x = t = 1
2 cot2

(

θ
2

)

.

In figure 16 we depict the image of the analogous trajectory at a smaller value of θ.

Note that the path starts much nearer to the point x = 1 on the x axis and then runs along

the lightcone of the origin for a much longer ‘time’, intersecting it only at late times (and

far distances) x = t ≈ 2
θ2 .

E.4 Summary of the mapping

Let us summarize. The point τ = π in (2.1) maps to a point on the x axis (x =

tan2
(

π−θ
4

)

, t = 0) in the ρ plane. Note that the x coordinate of this insertion is less

than unity. As τ decreases, the our ρ point leaves the x axis, moving to positive values of
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Figure 16. The image of the trajectory of subsection 2.4 — with a small fixed value of θ — onto

the ρ plane.

the time t in the ρ plane (see the trajectory of the point II in figure 15). When τ decreases

to π−θ, the trajectory in the ρ plane cuts the lightcone ρ̄ = 1 (the red line which is oriented

at angle −π
4 to the x axis in figure 15). As τ further increased the trajectory approaches

the lightcone ρ = 0 (the red line oriented at an angle π
4 with the x axis in figure 15),

hitting it at τ = θ. As we have pointed out, the subsequent evolution of the trajectory of

this subsection (the part between τ = θ and τ = 0, i.e. the part of our trajectory on the

Conformally Scattering sheet) has no image in the ρ plane.

Let us now return to the part of the fixed θ trajectory of this subsection that lies on

the Causally Regge sheet. As we have seen above this part does have an image on the ρ

plane. When we choose the fixed value of θ to be small, the image of this trajectory on the

ρ plane is qualitatively (though not quantitatively) similar to a familiar trajectory on this

plane, namely the path traced out by boosting a point on the x axis, i.e. the trajectory

often discussed in the study of the Regge or chaos limits.

F Example of bulk Regge scaling

In this appendix we explicitly evaluate the bulk integral (3.1) in the Regge limit in the

special case that N is a constant (let’s take it to be unity).

At leading order in the small θ limit the bulk integral simplifies to

I =

∫

HD−1

dD−1yfi(a, y0, yi) (F.1)

where

fi(a, y0, yi) =

∫

dUdV

(U + a y0 + iǫ)a1(−U + y1 + iǫ)a2(V + a y0 + iǫ)a3(−V − y1 + iǫ)a4

(F.2)
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As we have explained in the main text, the integral over U and V is easily evaluated. Using

a change of variable, U + a y0 = ũ and V + a y0 = ṽ, the above integral becomes,

fi(a, y0, yi) =

∫

dũ dṽ

(ũ+ iǫ)a1(−ũ+ a y0 + y1 + iǫ)a2(ṽ + iǫ)a3(−ṽ + a y0 − y1 + iǫ)a4
(F.3)

Using a Schwinger parameter representation of the denominators we find that

fi(a, y0, yi) =
Ca1,a2,a3,a4

(a y0 + y1 + iǫ)a1+a2−1 (a y0 − y1 + iǫ)a3+a4−1 (F.4)

where

Ca1,a2,a3,a4 =
Γ (a1 + a2 − 1) Γ (a3 + a4 − 1)

Γ (a1) Γ (a2) Γ (a3) Γ (a4)
(F.5)

Plugging (3.16) into (F.1), we find that

I =

∫

HD−1

dD−1y
Ca1,a2,a3,a4

(a y0 + y1 + iǫ)a1+a2−1 (a y0 − y1 + iǫ)a3+a4−1 (F.6)

In order to perform the integral over HD−1 it is convenient to use the following coordinates:

yµ = (y0, y1, yi) = (cosh r cosh θ, cosh r sinh θ, sinh r n̂i(φ
a)) (F.7)

in terms of which

I =

∫

sinhD−3 r

(cosh r)−3+
∑

ai
dr dθ dΩD−3

× Ca1,a2,a3,a4

(a cosh θ + sinh θ + iǫ)a1+a2−1 (a cosh θ − sinh θ + iǫ)a3+a4−1

=Ca1,a2,a3,a4ΩD−3

∫

dr
sinhD−3 r

(cosh r)−3+
∑

ai

×
∫

dθ

(a cosh θ + sinh θ + iǫ)a1+a2−1 (a cosh θ − sinh θ + iǫ)a3+a4−1

(F.8)

The integral over r above is a number independent of a. Although it will play no role in

what follows, for completeness we record the value of this constant.

M ≡
∫ ∞

0
dr

sinhD−3 r

cosh4∆−3 r
=

Γ
(

D
2 − 1

)

Γ
(

2∆ − D
2

)

2 Γ(2∆ − 1)
(F.9)

where, ∆ = 1
4

∑4
i=0 ai.

It is convenient to club all the constants together, i.e. to define

N = MΩD−3Ca1,a2,a3,a4 (F.10)

in terms of which

I = N
1

(a cosh θ + sinh θ + iǫ)a1+a2−1 (a cosh θ − sinh θ + iǫ)a3+a4−1 (F.11)
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n
4

n

n(a2
−1)n F1

(

n; n,n; n + 1; 1−a

a+1
, a+1

1−a

)

1 1
a

log
(

a+1
a−1

)

2 1
2a3

[

(

a2 + 1
)

log
(

a+1
a−1

)

− 2a
]

3 1
8a5

[

(

3a4 + 2a2 + 3
)

log
(

a+1
a−1

)

− 6a
(

a2 + 1
)

]

...
...

Table 1. Functional form of the integral (F.13) for few integer n.

For ease the rest of this appendix we will specialize to the case a1 +a2 = a3 +a4 = 2∆

(this case is relevant, for instance, to the evaluation of the four point function of 4 operators,

each of dimension ∆, caused by a bulk φ4 interaction). With this specialization (F.11)

simplifies to

I = N

∫ ∞

−∞

dθ
(

(a+ iǫ)2 cosh2 θ − sinh2 θ
)2∆−1 (F.12)

When a > 1 our integrand has no singularities on the real axis. In this case the iǫ in (F.12)

makes no difference to the integral and can be dropped. When a < 1, on the other hand,

the integrand in (F.12) has two poles on the real axis, located at

tanh θ = ±(a+ iǫ)

In this case the iǫ is crucial to the definition of the integral in (F.12).

In the main text we have argued that the integral I has a branch cut singularity at

a = 1. Moreover we have argued that if we evaluate I for a > 1 and then analytically

continue this result to a < 1 via the upper half of the complex a plane, then we will obtain

the correct result for I for a < 1. In the rest of this appendix we will directly verify these

claims by explicitly evaluating I separately for a > 1 and a < 1.

F.1 Exact result for every value of n when a > 1

In this case, as we have explained above, we can ignore the iǫ in the integrand. For this

reason Mathematica is able to evaluate the integral; we find

∫

dθ
1

(

a2 cosh2 θ − sinh2 θ
)2∆−1

=
42∆−1F1

(

2∆ − 1; 2∆ − 1, 2∆ − 1; 2∆; 1−a
a+1 ,

a+1
1−a

)

(2∆ − 1) (a2 − 1)2∆−1

(F.13)

Where F1 is the Appell function. While the function F1 may be unfamiliar, it is not par-

ticularly complicated, atleast for the values of parameters of relevance to our computation.

To illustrate this in (1) below we have listed the specific functional form of F1 for small

integer values of n = 2∆ − 1 in terms of elementary functions
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As we see from the examples listed in table 1, the integral I does indeed always have a

branch cut singularity at a = 1 as anticipated on general grounds. Indeed the fact that this

branch cut is logarithmic in nature is true at (atleast) all integer values of n = (2∆ − 1) as

we see from the formula

lim
a→1+

4nF1

(

n;n, n;n+ 1; 1−a
a+1 ,

a+1
1−a

)

n (a2 − 1)n = log

(

2

a− 1

)

+ O(a− 1)0. ∀n ∈ Z+ (F.14)

We will now check that the analytic continuation of this result — taken through the

upper half complex a plane — correctly reproduces the result for I(a) for a < 1. For

simplicity we restrict attention in this part of the appendix to the especially simple case

n = 1, though we do not think it would be too difficult to generalize the computations

presented in the rest of this appendix to (at least) arbitrary integer values of n.

F.2 Complete analytic structure in a special case n = 1

We will now completely analyse I in the case n = 1. We do this by re evaluating the

integral over θ, first for the case a > 1, but in a manner that easily allows us to generalize

to a < 1.

I =N

∫ ∞

−∞

dθ

(a cosh θ + sinh θ + iǫ) (a cosh θ − sinh θ + iǫ)

= 2N

∫ ∞

0

dθ

(a cosh θ + sinh θ + iǫ) (a cosh θ − sinh θ + iǫ)

(F.15)

Now we will do a change of variable, eθ = w, which gives,

I = 2N

∫ ∞

0

dw

w

1
(

a
(

w + 1
w

)

+
(

w − 1
w

)

+ iǫ
) (

a
(

w + 1
w

)

−
(

w − 1
w

)

+ iǫ
)

= 2N

∫ ∞

0

w dw

((a+ 1)w2 + a− 1 + iǫ) ((a− 1)w2 + a+ 1 + iǫ)

=N

∫ ∞

0

dz

((a+ 1)z + a− 1 + iǫ) ((a− 1)z + a+ 1 + iǫ)

(F.16)

In going from the second to the third line in (F.16) we have made the variable change

z = w2. Eq. (F.16) applies both to the cases a > 1 and a < 1. In the case a > 1 the

integral (F.16) is elementary because none of the poles lie on the integration axis. In this

case ǫ can simply be set to zero and we obtain

I>

N
=

1

a
log

(

a+ 1

a− 1

)

= −1

a
log

(

a− 1

a+ 1

)

(F.17)

As the analytic continuation of ln(a− 1) to a < 1 via the upper half complex plane is98

ln(a− 1) → ln(1 − a) + iπ

98This is because the argument of a − 1 changes continuously from 0 to π as we go from the real axis

with a > 1 to the real axis with a < 1 via the upper half of the complex plane.
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it follows that the analytic continuation of I> to a < 1 via the upper half plane, I<, is

given by

I�<
N

=
1

a

[

−iπ − log

(

1 − a

1 + a

)]

=
1

a

[

−iπ + log

(

1 + a

1 − a

)]

(F.18)

We will now directly evaluate the integral (F.16) for the case a < 1 and verify that we

indeed obtain the result (F.18). When a < 1, the integrand in (F.16) has two poles that

lie (approximately) on the integration contour (i.e. the positive real axis). These two poles

occur at z = z± where

z+ =
1 + a

1 − a
+

iǫ

1 − a
, and, z− =

1 − a

a+ 1
− iǫ

1 + a
. (F.19)

The integral (F.16) may be evaluated by rotating the contour counter-clockwise by an

angle π, i.e. changing the integral from zero to ∞ along the positive real axis to zero to

−∞ along the negative real axis. In performing this integral we cut the pole at z = z+. As

the integrand decays like 1/|z|2 at infinity, the contribution to the integral from the arc at

infinity vanishes, and so it follows that the integral in (F.16) equals the value of the same

integral evaluated along the negative real axis plus the contribution of the pole at z = z+.

We now evaluate these two contributions separately.

The integral along the negative real axis can be evaluated by setting z = −y in (F.16).

rotated path has no pole in its path (recall a > 0)) so can be integrated in an elementary

manner (and in particular dropping the iǫ) and yields

I←

N
=

∫ ∞

0

dy

(−(a+ 1)y + a− 1) ((a− 1) − y + a+ 1)

=
1

a
log

(

1 + a

1 − a

)

.

(F.20)

The contribution of the pole at z+ is given by

I⊙

N
= 2πi Res

[

1

((a+ 1)z + a− 1) ((a− 1)z + a+ 1)

]

z=z+

= − iπ

a
.

(F.21)

It follows that the final answer for I at a < 1 is

I<

N
=
I←

N
+
I⊙

N

=
1

a

[

−iπ + log

(

1 + a

1 − a

)]

= I	< .

(F.22)

We have thus verified in this special example that the appropriate analytic continuation of

the a > 1 result for I does indeed reproduce I at a < 1, as predicted on general grounds

in the main text.
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F.3 Integral at small a

In this subsection we evaluate (F.11) at leading order in the small a expansion. For

small a, major contribution to the integral (F.11) comes θ ∼ a. So the last integral

in (F.11) becomes,

∫

dθ

(a+ θ + iǫ)a1+a2−1 (a− θ + iǫ)a3+a4−1 =

∫

dθ

(θ + iǫ)a1+a2−1 (2a− θ + iǫ)a3+a4−1

=
Γ(a1 + a2 + a3 + a4 − 3)

Γ(a1 + a2 − 2)Γ(a3 + a4 − 2)

1

(2a)−3+4
∑

i
ai

(F.23)

G Singularities of holographic correlators from contact interactions

In this subsection we will demonstrate that the classical holographic correlator with inser-

tion points (2.1) — generated by a bulk local contact interaction — is an analytic function

of its parameters (τ and θ) away from the ‘bulk point singularity’ line τ = 0 and also the

‘lightcone singularity lines’ τ = θ and τ = π − θ. The result of this section is a simple

specialization of the general results of sections 2 and 3 of [36] to the particular case of (2.1).

Any correlator obtained from a local contact interaction is a sum of terms of the form

C =

∫

AdSD+1

dD+1X
Q(Zi, Pi, X)

∏4
i=1(−2Pi.X)qi

(G.1)

Here Pi are the boundary insertion points, Zi are the boundary polarizations, X position

of the interaction vertex in AdSD+1 and qi = ∆i + ni where ∆i is the dimension of the

operator inserted at Pi and ni is a positive integer.99

Because of potential singularities from the denominator, the expression (G.1) is not

yet completely unambiguous; it needs to be iǫ corrected. Note that

−2Pi.X = 2 cosh r cos(τ − τi) + . . .

where τi is the global time of the boundary point Pi and τ is the global point of the bulk

interaction point X. The iǫ replacement rule (D.2) instructs us to make the replacement

− 2Pi.X → −2Pi.X + i sin(τ − τi)(τ − τi)ǫ (G.2)

In particular when

|τ − τi| < π (G.3)

Eq. (G.2) simplifies to

− 2Pi.X → −2Pi.X + iǫ (G.4)

For X such that (G.3) is obeyed, (G.1) is modified to

C =

∫

AdSD+1

dD+1X
Q(Zi, Pi, X)

∏4
i=1(−2Pi.X + iǫ)qi

(G.5)

99In the case that the operator Oi is traceless symmetric with Ji indices, ni ≥ Ji. We get terms with

ni > Ji when derivatives — from the bulk interaction vertex — hit the propagator.
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The integral over X in (G.5) is potentially singular when one or more of the four

denominator factors in (G.5) vanish — and the contour of integration over Xµ cannot be

modified in the complex XM plane (in a manner consistent with Cauchy’s theorem, i.e.

without crossing a pole) to avoid all singular points.

G.1 End point singularities

The boundary of the integration contour for the integral over the AdS lies at the boundary

of AdS. The integral is potentially singular when the integrand of (G.5) has a pole at a

boundary point. This happens at four points on the boundary, namely X = P1, X = P2,

X = P3 and X = P4.

For generic values of Pa these potentially problematic points do not in fact lead to a

singularity in the integral. Let us, for instance, consider the pole at X = P1. The iǫ in (G.5)

ensures that the singularity does not really lie on the integration contour, the potentially

dangerous contribution from integral in the neighbourhood of this point is proportional

to the non-singular residue of this ‘pole’. This residue is singular only if Pa.P1 = 0 for

a = 2, 3, 4. This happens only when the points P1 and Pa are lightlike separated on the

boundary (i.e.), and leads to the usual ‘lightcone’ singularities familiar from the study of

conformal field theories. As is familiar — and as we have explained earlier in this section —

these light cone singularities lead to branch cuts in correlators, and the correlation function

continues to be analytic on the branched cover of cross ratio space.

In this paper we are interested in the correlator at the points (2.1). Lightcone singular-

ities occur at τ = π−θ (at which point the pairs of points (P1, P4) and (P3, P2) are lightlike

separated, and the conformal cross ratio z̄ = 1) and also at τ = θ (at which point (P1, P2)

and (P3, P4) are lightlike separated and the conformal cross ratio z = 1). At exactly the

points described, (namely τ = π − θ and τ = θ) we land exactly at the branch points

of the correlator which is thus singular. As we have explained, however, we can continue

past this singularity by going around it; and so the value of the correlator at in the ranges

τ ∈ (0, θ), τ ∈ (θ, π−θ), (π−θ, π) are different ‘boundary values’ (across cuts) of the same

analytic function.

G.2 Pinch singularities

As explained in [36], a potential singularity at X = X0 (where some subset {Pa} = S

obey Pa.X0 = 0) can be avoided provided we can find a small vector δQ so that on the

new contour

X0 → X0 + iδQ

and

δQ.X0 = 0, and − 2Pa.δQ > 0, for all Pa in S, (G.6)

The first equation is needed to ensure that

(X0 + iδQ)2 = −1 (G.7)
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(i.e. the modified contour is on the AdSD+1 sub-manifold — note we work to first order in

the small modification δQ). The second condition is needed to ensure that the modification

does not pass through any of the poles in (G.1).100

The first condition (G.6) tells us that δQ is orthogonal to X, and so forces δQ to lie

in an RD,1 in RD,2. As each Pa obeys Pa.X = 0, each Pa lies in this RD,1. Each Pa is

associated with a co-dimension one hyperplane in RD,1 that passes through the origin (Pa

is the one-form normal to this plane — this is the plane, whose intersection with X2 = −1

gives the light sheet that emanates out of Pa). The condition Pa.δQ > 0 tells us that δQ

lies on one side of this hyperplane in RD,1.

Let us first consider a point X at which the equation Pa.X = 0 is obeyed for m values

of a. Since no collection of three or fewer Pa in (2.1) are linearly dependent (and since

D − 1 ≥ 3) the hyperplanes associated with the m Pa slice up the RD,1 into 2m distinct

sectors. The positivity condition in (G.6) is met provided we choose δQ to lie within one of

these (the all positive) sector. It follows that (G.6) admits an infinite number of solutions,

and the integral (G.5) receives regular contributions from all such points.

If τ 6= 0 then the four Pi span an R2,2 and there are no solutions (in AdSD+1) to the

simultaneous equation Pi.X = 0.

It follows that the integral (G.5) can only be singular at τ = 0. At this value of τ the

four Pi span an R2,1 and the simultaneous equations Pi.X = 0 are obeyed on the HD−2

X = (0, cosh r, 0, 0, (sinh r)~m)

where ~m is any unit vector in RD−2. When τ = 0

P1 + P2 + P3 + P4 = 0 (G.8)

It follows from (2.18) that

P1.δQ+ P2.δQ+ P3.δQ+ P4.δQ = 0 (G.9)

As (2.18) is clearly inconsistent with the condition Pa.δQ > 0 for all a [36], it follows

that (G.6) cannot be obeyed, and so it is not possible to deform the integration contour

away from the singular hyperboloid and the contribution to (G.5) is singular.

In summary, we have demonstrated that the holographic correlator with insertions

at (2.1) has a pinch singularity at τ = 0. It also has endpoint singularities at τ = θ and

τ = π− θ, but these are branch cut singularities that can be continued around, as we have

explained earlier in this section.

100To see why this is the case, consider the single variable integral
∫

dz
z+iǫ

along the real axis. The pole in

the integrand lies at z = iǫ. Hence we are free to move the contour of integration in the upper half plane, i.e.

to give z a positive imaginary part. In other words the +iǫ in the integrand tells us that we are allowed to

change the integration contour so that Im(z) is positive when Re(z) = 0; however the reverse modification

is not allowed. In the same way the integral contour in (G.5) can be modified (without changing the value

of the integral) if we ensure that at all X that obey Pa.X = 0, Pa.Im(X) > 0.
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H ρ = 0 branch cuts and UV softening

H.1 D = 2

The branch cut singularity in (4.36) had its origin in the integral
∫ ∞

0
dω

(

ω∆−4 ωr e−2iωτ
)

(H.1)

(see the middle equation in (4.32)). The factor of ωr in the integrand in (H.1) had its origin

in the fact that the bulk S matrix for the corresponding contact term grew like ωr. Of

course, this is an approximation. In any ‘real’ bulk theory we expect this power-law growth

of the S matrix to be ameliorated by stringy and quantum effects. As a crude model for the

stringy softening, we can follow [35, 36] and make the replacement ωr → ωre−l2sω2
. We have

chosen the name ls suggestively. In weakly coupled string theory ls will be proportional

to the string length. In the stringy context while ls is constant in the sense that it is

independent of energy, it is, however, a function of the scattering angle. We will return to

a study of the angular dependence below.

In this section we wish to study the integral

Ĩ(τ) =

∫ ∞

0
dω

(

ω∆−4+re−l2sω2−2iωτ
)

(H.2)

In our intermediate analysis, we will find it more convenient to work with the differently

normalized integral

I(τ) = l∆−3+r
s

∫ ∞

0
dω

(

ω∆−4+re−l2sω2−2iωτ
)

(H.3)

Of Ĩ(τ) is proportional to I(τ)

Ĩ(τ) = l−∆+3−r
s I(τ) (H.4)

this proportionality factor will gain physical significance when ls is a function of the scat-

tering angle.

The change of variables ω = x
ls

and y = τ
ls

transforms (H.3) to

I(y) =

∫ ∞

0
dx

(

x∆−4+re−x2−2ixy
)

(H.5)

Note that τ , ρ and y are all proportional to each other at fixed σ, and so the analytic

structure of I(y) around y = 0 is the same as the analytic structure of the r.h.s. of (4.36).

In the rest of this subsection, we analyze the function I(y).

First, note that I(y) is a manifestly single-valued function of y that is analytic every-

where in the y complex plane. It is instructive to study this function in various regimes.

For |y| ≪ 1 the term 2ixy is a small perturbation of the argument of the exponent

in (H.5). It follows that the integral in (H.5) admits a power series expansion in y, which

can be evaluated by first expanding the integrand in a power series and performing the

integral term by term. We find

I(y) =
∑

n

any
n an =

(−2i)n

2n!
Γ

(

∆ − 3 + r + n

2

)

(H.6)
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At large values of n

an ≈ 1

2

(

−i
√

2e

n

)n

(H.7)

From which it follows that the expansion (H.6) is convergent, with an infinite radius of

convergence.101 Of course the truncation of (H.6) to the first few terms gives a good

approximation to I(y) only for all complex values such that |y| ≪ 1 or

|τ | ≪ ls (H.8)

When |y| ≫ 1, on the other hand, I(y) behaves very differently depending on whether

Im(y) > 0 or Im(y) < 0. When Im(y) > 0 the damping and oscillations from the factor

e2ixy cut off the integral before the factor e−x2
becomes important at all when y is large.

In this case the integral is well approximated by dropping the factor e−x2
and so is well

approximated by

I(y) =
Γ (∆ − 3 + r)

(2i)(∆−3+r)y∆−3+r
(H.9)

Note that y ∝ ρ, so (H.9) reproduces the singularity visible in (4.36). Corrections to (H.9)

can be systematically computed by expanding the factor of e−x2
in a power seies in x and

then integrating term by term. This is reasonable as the integral receives its dominant

contribution from small values of x when Imy is large and positive. We find

I(y) =
∞
∑

n=0

(−1)n

n!

Γ(∆ + r + 2n− 3)

(2i)∆+r+2n−3

1

y∆+r+2n−3 (H.10)

In contrast with the expansion (H.6), (H.10) is an asymptotic rather than a convergent

expansion. This mathematical fact reflects the physical fact that the truncation of (H.10)

to a few terms gives us a good approximation to the actual behaviour of the function I(y)

only when Im(y) is positive rather than negative.102

When |y| ≫ 1 but Im(y) < 0, I(y) behaves completely differently from the case just

examined above. In this case, the factor e2ixy exponentially enhances (instead of cutting

off) the integrand, which continues to grow until it is eventually cut off at of order unity

by the factor e−x2
(which now plays a crucial role; without this factor the integral would

have divergent and so ill defined). In this regime, very, very approximately,

|I(y)| ∼ e−Im(y) (H.11)

(moreover, we expect the phase of I(y) to oscillate rapidly with the real part of y).

We now have a good qualitative picture of the behaviour of I(y) on the complex y

plane. This function is well approximated by the first few terms of (H.6) when |y| ≪ 1,

101See section 3.2 of [35] for discussion on hard scattering of string amplitudes whose bulk point integral

behave in a similar manner.
102An analogy is the following. The perturbation series for the energy spectrum of a harmonic oscillator is

asymptotic rather than convergent, reflecting the fact that the first few terms of the expansion give a good

approximation to the spectrum of the theory in the case that the quartic term in the potential is positive,

but a very bad approximation to the (ill defined, unbounded) spectrum of the theory in the case that the

quartic term is negative.
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is well approximated by the first few terms of (H.10) when |y| ≫ 1 and Im(y) > 0, but is

harder to control (very approximately given by (H.11) when |y| ≫ 1 and Im(y) < 0.

In summary, the softening of the integral induced by the factor e−x2
in I(y) impacts the

functional dependence of (4.36) in the complex ρ differently at different values of ρ (recall

ρ is proportional to y). First, it modifies the function at small values of ρ to smoothen out

the ρ = 0 (y = 0) singularity in (4.36). Second, it has a negligible impact on the value of

the function at large values of |ρ| provided Im(ρ) > 0; in this regime (4.36) continues to

be a good approximation to a regulated function. When Im(ρ) < 0, on the other hand,

I(y) is very different from (4.36) even at large values of |y| (the function behaves rather

wildly in this region, growing very large in modulus and also oscillating very rapidly). It

follows that (4.36) cannot be used to reliably compute the discontinuity around ρ = 0 even

at large ρ. In fact I(y) is an everywhere analytic and single valued function of y, that does

not have a branch cut.

H.1.1 Angular dependence

Returning to the function Ĩ(τ) and restricting our attention to the upper half plane, we

see that Ĩ(τ) interpolates between two cases,

Ĩ(τ) =



























Γ
(

∆−3+r
2

)

2l∆+r−3
s

τ ≪ ls

Γ (∆ − 3 + r)

(2i)(∆−3+r)τ∆−3+r
τ ≫ ls

(H.12)

Note that ls controls the exponential damping of the scattering amplitude in units in

which the radius of AdS is unity (as has been assumed through this paper) i.e. ls in the

formulae above is really ls
R where R is the AdS radius.

We have mentioned above that the parameter ls is, in general, a function of the scat-

tering angle. If, for instance, we follow [35] and use the textbook formula for the fixed

angle high energy behaviour of the classical string S matrix we obtain

l2s =
α′

2R2

(

− sin2
(

θ

2

)

log

[

sin2
(

θ

2

)]

− cos2
(

θ

2

)

log

[

cos2
(

θ

2

)])

(H.13)

In the small scattering angle limit this formula reduces to

ls =

√
α′

2R
θ log |θ| + · · · (H.14)

Plugging (H.14) into (E.7) we obtain (see [35])103

Ĩ(τ) =



























1

2
Γ

(

∆ − 3 + r

2

)(

2R√
α′

)∆+r−3 1

(θ log |θ|)∆+r−3
τ ≪

√
α′

2R
θ log |θ|

Γ (∆ − 3 + r)

(2i)(∆−3+r)

1

τ∆+r−3
τ ≫

√
α′

2R
θ log |θ|

(H.15)

103See [50] for related discussion in Mellin amplitude.
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In (H.15) have reinstated R, the radius of AdS, (recall that through out this paper we

have worked in units in which R is unity). Note that the logarithm of the angle in the first

of (H.15), together with interpolation between singular behaviours in τ and θ lends Ĩ(τ)

an intricate analytic structure as a function of θ and τ , i.e. of ρ and σ. This observation

suggests that the holographic correlator resulting from full string interactions has a much

more interesting analytic structure than the correlators obtained from local bulk contact

interactions that we have studied in the bulk of this paper. We hope to return to the study

of correlators holographically generated by string interactions in future work.

H.2 D > 2

When D > 2 the singular part of (4.44) is generated by the integral

J(y) =

∫ ∞

0
dζ sinhD−3 ζ

∫ ∞

0
dx

(

x∆−4+re−x2−2ixy cosh ζ
)

. (H.16)

Performing the integral over x we obtain

J(y) =

∫ ∞

0
dζ sinhD−3 ζ I(y cosh ζ) (H.17)

It is easy to approximately perform the integral in (H.17) in two limits. When |y| ≫ 1 and

Im(y) > 0 the argument of the function I in (H.17) shares these two properties, so we can

use the approximation (H.9) for I(cosh ζy) to find

J(y) ≈ Γ (∆ − 3 + r)

(2i)(∆−3+r)y∆−3+r

∫ ∞

0
dζ

sinhD−3 ζ

cosh∆−3+r ζ

=ND,∆
Γ (∆ − 3 + r)

(2i)(∆−3+r)

1

y∆−3+r

(H.18)

where ND,∆ is defined in (4.45). The approximation (H.17) is easily improved by insert-

ing (H.10) rather than (H.9) into (H.17) but we will not bother to do so here.

At small |y|, on the other hand, the dominant contribution to the integral in (H.17)

comes from ζ such that y cosh ζ less than or of order unity. Working in a very crude

approximation one can replace I(y cosh ζ) by I(0) θ(1−y cosh ζ). Making this replacement

we find that for |y| ≪ 1

J(y) ∼ 1

2(D − 3)
Γ

(

∆ − 3 + r

2

)

1

yD−3
(H.19)

The approximation (H.19) is very crude (even the overall coefficient on the r.h.s. is not

reliable but the form of the y dependence is). We will not attempt to improve this approx-

imation here, but leave this as an exercise for the interested reader.

The main qualitative point is that the function J(y) roughly similar to I(y) in the

previous section with one key difference. While I(y) interpolates from a constant to a

rapid decay ∝ 1
y∆−3+r as y increases from zero to infinity, J(y) interpolates from the weaker

power 1
yD−3 [36] to the stronger power (more rapid decay) 1

y∆−3+r as y varies over the same

range. Most of the comments in the previous subsection about the analytic properties of

I(y) also hold for J(y) with small modifications. In particular it is a single valued function

of y everywhere in the complex plane.
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I Massive higher spin particles

I.1 Multiple powers of ρ

In this appendix we outline some of the complications that arise when attempting to

generalize the analysis of this paper to massive higher spin particles. We focus on the

simplest case, namely that of massive vector particles. The complications that arise all have

their origin in a familiar fact; namely that the S matrices of ‘longitudinal’ polarizations of

massive particles grow faster with energy in the high energy limit than those of transverse

polarizations.

Quantitatively, the complications arise as follows. As we have explained in the main

text ((4.51)) the bulk to boundary propagator for a vector operator of dimension ∆ is

given by
(

1 − 1

∆

)

Z⊥A
(P.X)∆

+ ∇A

(

Z.X

∆(P.X)∆

)

(I.1)

Applying (4.7) on (I.1) and working to leading order we find the wave form (4.82).

Let us first proceed by supposing (4.64) (which we reproduce here for convenience)

Gsing = −
2π3

(

∏

a C̃∆a,1

)

√

σ(1 − σ)

∫

HD−2

√
gD−2 d

D−2X

∫

dωω∆−4eiωP.XS (ω)

∆ =
∑

i

∆i

C̃∆a,1 =
C∆a,1

2∆+1i∆Γ(∆)

(I.2)

continues to capture all relevant singularities (we will see later this is untrue) where S(ω)

is the flat space S matrix for the waves (I.1).

Let us suppose that the bulk interaction term is of rth order in derivatives. Let us

decompose the S matrix in (I.2) as follows

S(ǫi, ki) =
4
∑

m=0

Sm(ǫi, ki) (I.3)

where Sn is the S matrix of n ‘longitudinal’ polarization (i.e. the polarization proportional

to ki) in (4.82) and 4 − n transverse polarizations (i.e. the polarizations proportional to

Z⊥i ).104 When the scattering matrix results from an r derivative bulk interaction term, the

quantity Sm scales with the overall energy scale of the scattering momenta (4.21) like

Sm ∼ ωr+m (I.4)

104Sn can be defined more formally as follows. We formally modify (4.82) to included a new counting

variable θ (which is set to unity at the end of the computation) as

ǫM =
(

1 −
1

∆i

)

(Z⊥
i )M + iθki

M (Zi.X0)

Sn is the part of the S matrix which scales like θn.
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(the dependence of the r.h.s. of (I.4) on m follows from the extra factor of momentum

in (4.82)). Note that the scattering waves (4.82) that produce Sn are not canonically

normalized (more about this in the next subsection).105

Plugging (I.3) into (I.2) we find that one contribution to the singularities in ρ of the

correlator is given by

Gsing =
4
∑

m=0

Gm
sing

Gm
sing = i

(

2π3
(

C̃∆a,1

)4
)

Γ(∆ + r +m− 3)e−
i(∆+r+m)

2

√
1 − σ

(∆+r+m−4)

σ
∆+r+m−2

2 ρ∆+r+m−3

×
∫

dωD−3dζ
sinhD−3 ζ

cosh∆+r+m−3 ζ
Ŝm(X0)

Ŝm =
Sm

ωr+m

X0 = (0, cosh ζ, 0, 0, sinh ζn̂i), i = 1 . . . D − 2

(I.5)

and Sm is the part of the S matrix of the un normalized waves (4.82) involving m longitu-

dinal and 4 − m transverse modes, where the scattering takes place for the waves (4.82),

with the scattering momenta given by (4.21) with ω set to unity. The dependence of the

power of the ρ singularity on m in (I.5) is a consequence of (I.4).

Had (I.5) accurately captured the coefficients of all the ρ singularities that appear in

that formula, we could have used it to establish that if any of the S matrices that appear as

coefficients of different powers of ρ grow faster than s2 in the Regge limit then the correlator

continued to the Causally Regge sheet would violate the chaos bound. Unfortunately (I.5)

is not complete. The problem is that the term with, say, m = 4 in (I.3) has its origin in

the overlap of four longitudinal modes. The m = 4 term in (I.3) does indeed capture the

most singular term that arises from this overlap. However, the overlap of four longitudinal

modes could also produce lower order singularities (the coefficients of these singularities

would ‘see’ the fact that the bulk to boundary propagator does not quite yield a plane

wave, and that the elevator is not quite a flat space). These lower order singularities

can, in principle, modify the coefficients of 1
ρ∆+r+m−3 for m ≤ 3. Similarly, subleading

corrections from the overlap of 3 longitudinal and one transverse polarization can modify

the coefficients of 1
ρ∆+r+m−3 for m ≤ 2. Unlikely as it seems, these correction terms could,

in principle, cancel that rapid Regge growth of the S matrix from a particular contact

term, allowing it to give rise to a correlator that obeys the chaos bound even though the S

matrix in question violates the CRG conjecture. While it seems very likely that this will in

fact happen106 a clear argument for the connection between the chaos bound and massive

higher spin scattering requires further work.

105The fact that these waves do not have standard normalization is of no qualitative importance for

the transverse wave — whose normalization factor is independent of ω. However this point is of crucial

importance for the longitudinal mode. As we discuss in more detail in the next subsection, the norm of

this mode in (4.82) is ω dependent, and goes to zero in the limit ω → 0, cancelling the singular behaviour

of longitudinal mode scattering amplitudes at high energy.
106The reader might hope that the contamination from subleading corrections could be ‘quarantined’ in a

class of index structures, allowing us to read off the scattering of less than a maximal number of longitudinal
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I.2 Normalizations and connections to scattering

We have indicated above that the additional power of ω in the longitudinal waves is essen-

tially a reflection of the enhanced ω scaling of the scattering of longitudinal waves as com-

pared to transverse waves. In this brief subsection we explain this connection more clearly.

Through this paper we have been slightly imprecise in discussing the flat space S
matrix of the wave (4.82) in the case of massive particles (even massive scalars). For

massive particles (4.82) are free solutions of the relevant flat space bulk wave equations

only in the strict ω → ∞ limit (because the momenta of the scattering waves obey k2 = 0

rather than k2 = −m2). As the singularity in the flat space correlator arises from the

ω → ∞ part of frequency space, this imprecision was unimportant in the case of scalars.

In the case of massive vectors the imprecision extends also to the polarizations. A

polarization proportional to kM is not quite transverse and so not quite allowed except

in the ω → ∞ limit. In order to see this more clearly we could, for instance, arbitrarily

replace the scattering waves (4.82) with

Ai
M =

((

1 − 1

∆i

)

(Z⊥i )M +
imi

∆i
ǫ
‖
i (Zi.X0)

)

eik̃i.x (I.6)

where

k̃1 = (ω1, 0, p1, 0) ǫ
‖
1 =

1

m1
(p1, 0, ω1, 0)

k̃3 = (ω3, 0,−p3, 0) ǫ
‖
3 =

1

m3
(p3, 0,−ω3, 0)

k̃2 = −(ω2, 0, p2 cos θ, p2 sin θ) ǫ
‖
2 =

1

m2
(p2, 0, ω2 cos θ, ω2 sin θ)

k̃4 = (−ω4, 0,−p4 cos θ,−p4 sin θ) ǫ
‖
4 =

1

m4
(p4, 0,−ω4 cos θ,−ω4 sin θ)

p1 = p3 = p, p2 = p4 = p′ ωi =
√

m2
i + p2

i
√

m2
1 + p2 +

√

m2
3 + p2 =

√

m2
2 + (p′)2 +

√

m2
4 + (p′)2

(I.7)

Note that the waves (I.6) are identical to the waves (4.82) in the large ω limit that is relevant

for generating the singularity of the correlators. Unlike the waves (4.82), however, (I.6)

are genuine solutions of the free flat space massive vector equation with mass m,107 and so

polarizations from the other index structures. We were, however, unable to show this will always be the

case. Note that the fact that the terms in Gm
sing listed in (G) obeys the equations

∇M1 ∇M2 . . . ∇Mm+1 GM1M2...M4 = 0

∇M1 ∇M2 . . . ∇Mm GM1M2...M4 6= 0

does not help us, as the nothing we can see prevents the subleading corrections to flat space scattering from

obeying the same equations.
107In (I.7) we have corrected the momenta to ensure that they obey the true mass shell condition k2 = −m2,

and have simultaneously modified the expression for ǫ
‖
i to make sure that the equation ǫ‖.k = 0 continues

to be obeyed. Note that we have chosen our modifications to ensure that scattering continues to take place

in the centre of mass frame, as was the case in for the momenta (4.21). We have also ensured that the
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the S matrix of these waves is genuinely well defined. The quantity S that enters formulae

such as (I.5) should really be thought of as the S matrix of the true scattering waves (I.6).

The point we want to make is the following. In the expression (4.82) the extra factor of

ω in the longitudinal polarization comes from the fact that the polarization is proportional

to kµ. The reader might have suspected that this extra scaling with ω is a consequence

of using an ω dependent normalization for this wave. This is not the case. In (I.7) makes

clear that the polarization that appears in (4.82) differs from the properly normalized

polarization ǫ
‖
1 by the ω independent factor mi. The additional growth with ω of this S

matrix is a dynamical fact and not an issue of normalization.

The arbitrary replacement (I.7) (or any other convenient replacement) would be suf-

ficient to determine the leading order singularity in ρ. The crude replacement (I.7) would

not, however, be sufficient to capture the subleading ρ singularities that arise in longitudinal

scattering, and a more delicate analysis would be needed to capture these effects.
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