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ABSTRACT

:

This report deals with the problem of computing the availability
function for an alternating renewal process with exponential failure
times and general repair times. General expressions giving upper and
lower bounds on the availability are derived, as well as an estimate of
the error. Several of the bounds with greatest practical consequence are
worked out and illustrated for a gamma repair distribution with any integer
shape parameter. The case of constant repair is compared to the case of

gamma repair with a large shape parameter. Finally, some simulation results
using a log normal repair distribution are compared to the gamma results,
suggesting that a gamma distribution can be used in lieu of a log normal
for purposes of computing the availability function.
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I. Introduction and Summary.

The standard model in the reliability literature for a one

unit repairable system is the alternating renewal process. This

model is appropriate for a system (or subsystem) which begins in

an operative condition and operates for some random time, begins

repair whenever failure occurs and when the repair is completed,

is fully restored to an operating condition where it remains until

failure followed by repair, ... etc.

The availability of such a system is defined as the proba-

bility that the system is operative. The basic problem treated

here is to isolate some cases in which the availability can be

computed exactly or at least approximated with reasonable accuracy.

The results obtained are upper and lower bounds on the

availability for the case of exponential failure times and general

repair times. The bounds can (in principle) be computed to any

degree of accuracy. With a minimal amount of calculation, the

bounds for the case of repair times having a gamma distribution

with any integer shape parameter are worked out and illustrated

along with comparisons to the exact availability for shape param-

eters equal to one through four. The accuracy for all illustrated

computations is = (failure rate/repair rate) 3
. For example, if

the steady state availability is 90%, the error of either bound is

at most (1/9) 3 = .00137. If steady state availability is 90%,

the error is less than .0000085.



The availability when repair times are constant is computed

exactly and compared to the case of gamma repair with a large shape

parameter. Also, some justification for using gamma distributed

repair times when they are actually log-normal distributed is given.

An application of the present work is to correctly account

for the availability as a function of time in lieu of the steady

state value which must frequently be taken as a constant value in

practical situations. It may, in fact, justify the use of steady

state values.

II. Conclusions.

The problem of computing the availability of an alternating

renewal process with exponential failure and general repair has

been treated here. The general expression (3) is used to find

lower and upper bounds with arbitrarily small maximum error. Further,

the error in the bounds does not depend on the specific repair

distribution in question.

Several of the bounds with the greatest practical consequence

are worked out for a gamma repair distribution, integer shape param-

eter, and illustrated along with the exact values of availability.

The error was, as theoretically predicted, quite small when the

steady state availability was 90% or more. In fact, the upper and

lower bounds differ by at most .00137 for the case when steady

state availability = 90%, by at most .0000085 for the 98% case.



The availability for constant repair is given along with a

comparison to gamma repair, showing that generally the shape param-

eter must be quite large for the gamma repair to closely approximate

constant repair in so far as availability is concerned. The bounds

given allow one to judge this approximation for himself.

The log normal repair distribution is briefly discussed.

Some simulation results are presented which suggest that the gamma

distribution may be used in lieu of log normal for purposes of

stochastic modelling of availability.

III. Specific Problem Description.

An alternating renewal process is specified by two sequences

{X ,X , . . . } and {Y ,Y , . . . } , of random variables ; the first

sequence represents the durations of operation between failures and

the second the durations of repair between failures. Thus, the

process is in an operative state during [0,X ), under repair

during [X ,X +Y ) , operative during [X +Y ,X +Y +X
2

) , ... etc.

(Note that we could begin in a repair state if desired.) The

operative times X ,X , . . . , will be given the exponential distri-

bution, parameter A, and the repair times Y ,Y , . . . , will have

an unspecified distribution G, with some finite positive mean.

All random times are assumed to be jointly independent. Thus we

have,



P(X £ t) = 1 - e
Xt

n = 1,2,...n

P(Y
n
i t) = G(t) n = 1,2,... (1)

{X.. ,Y ,X_ ,Y , . . . } independent random variables

Within the assumptions of (1) , we wish to compute the

availability function A(t) , the probability of being in an

operative state at time t. A precise definition would be

A(t) = P

n n

I (X +Y ) £ t <
I (X +Y ) + X for some n ;>

k=l k=l

where empty summations are taken as zero in the probability state-

ment .

From our convention of beginning operative at time =0, we

have that A(0) = 1. Due to the assumptions in (1), we know that

A(°°) = limit A(t) = ——r-
, where v = mean repair time under the

t->oo

distribution G [Barlow & Proschan, 1967]. For obvious reasons,

we will call X the failure rate and v the repair rate (even

when G is not an exponential) . Note that the steady state value

of availability depends only on the first moment of G.

Using script letters to denote Laplace-Stieltjes transforms,

—g v
so A(s) = e " dA(x) , it is easily established that [Barlow &

Proschan, 1967]



1

A(S ) = — A+s

^S 9 '-'

which simplifies to

(S) =
1 + rG (s)

=
I (-^

e
(s))

n1

'e
x ~' n=0

where r = X/v
t

G (t) = v
e

(2)

(1-G(x))dx

Assuming r < 1, the series in (2) is valid and gives, on inversion,

A(t) = 1 - rG (t) + r 2G *G (t) - r 3G *G *G (t) + ...
e e e e e e

(3)where * denote convolution

and we assume r = X/v < 1.

The distribution G appearing in (3) is well known in

renewal theory as the equilibrium excess distribution for a renewal

process with inter-event distribution G. Unfortunately, no such

interpretation applies to the present work.

The expansion given by (3) can be terminated to give either

upper or lower bounds on A(t) ; an estimate of the error shows

that arbitrarily high accuracy can be obtained by taking sufficiently

many terms. First notice that the terms in (3) are, in absolute

value, monotonic decreasing, for any t. In fact, if F is any



distribution on [0,°°) and « r < 1, then rV1
(t) ;> r

n+1
F

('n+1 ^*
(t)

n*
holds for all t (here F is the n-fold convolution of F

with itself). This follows from the interpretation F (t) =

P(X+Ys:t) s; P(X<t)P(Y*t) = F (t)F(t) < F (t) where X and Y are

n*independent random variables with P(X£t) = F (t) and P(Yst) = F(t).

Now define the following functions;

for n odd, L (t) = J r
k
G
k
*(t)

kio
e

n t{

for n even, U (t) = 7 r G (t)
n " e

k=0

Using the above inequality and (3) , we have that

n+1
for n odd; L (t) : A(t) , A(t) - L (t) < r

n = n

for n even; U (t) > A(t) , U (t) - A(t) < r
n+1

n = n =

(4)

The upper and lower bounds U and L can be made to
n n

have an arbitrarily small error by choosing n sufficiently large,

since r < 1. The restriction r < 1 is equivalent to A(°°) > .5,

since A(°°) = l/(l+r). It should not be a practical restriction;

in fact, for the reasonable case of A(°°) = 90%, we have r = 1/9

and with A(°°) = 98%, r = 1/49. Then, for example, the lower
t

(1-G(x))dx has a maximum error of r 2 = .0123

or r 2 = .000416 for A(°°) = 90% or 98% respectively.

bound L (t) = 1 - X

The first (non-trivial) upper bound is U (t) . This bound,

as L
1
(t) , is easily computed for a repair distribution G which



is gamma with an integer shape parameter. Numerical examples are

fully illustrated in the following section. The maximum error of

U"

2
is r 3 which is .00138 or .0000085 for A(°°) = 90% or

98% respectively.

The bounds U and L are usually cumbersome to compute

for n ^ 3 unless the distribution G takes on a simple form.

One can, however, define a lower bound whose error is at most r 3
;

it involves no more computation than that involved in U , namely

U
2
(t) - r 3 = 1 - rG (t) + r 2G

2
*(t) - r 3

, for which we have

£ A(t) - (U
2
(t)-r 3

) < r 3
. (5)

By combining the lower bound L and (5) , we define a revised

version of L , namely L'(t) = Max (L (t) ,U (t) - r 3
) , for

which we have

< A(t) - L|(t) £ r 3
. (6)

IV. Specific Examples Illustrated.

In this section, numerous specific examples are illustrated

by graphs showing the theoretical bounds and, when available, the

exact values of availability.

The first case treated is when the repair distribution G

belongs to the gamma family with an integer shape parameter. If

a, an integer, is the shape parameter and 3, a positive number,



the scale parameter, we have

3=1

(t) - 1 - f 41^ e-
6t i2Sd±ll

e * (j-1)! a

Recall that we are always taking the failure distribution to be

exponential with parameter A. Since r = — = —r— , the lower
v p

bound L becomes

t (^ '

i
Xa 4 A ? (Bt)

j X
-Bt , .....

L
x
(t) -

1 - T + ? ^ "cjifyr
e <a-j+1 >-

The upper bound U is also a straight-forward computation

with

vt) = i - f (i - f)G. ( t) -
(})

2

j I
(8t>J+k+1 -g^ .-*.

k— 1 j—

1

The revised version L' (t) based on U (t) is simply

Max(L
1
(t),U

2
(t)-(-^) ).

Figure 1 shows the bounds, L ,L' ,U , and the exact avail-

ability A for a = 4, 3 = 18.0 and X = .5. The exact avail-

ability was found by inverting the transform equation (2) . The
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FIGURE I.

lustration of Bounds on Availability.

exact availability
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Failure Rate = O.I
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Failure Rate = 0.5

exact availability
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repair rate v equals 4.5 so the steady state value A(°°) = 90%.

This graph is typical for a less than, say 10, with 3 such that

the repair rate v remains fixed at 4.5.

Figure 1 also shows the lower bound L and the exact

availability for a = 4, 6 = 19.6 and A = .1 so v = 4.9 and

the steady state availability A(°°) = 98%. The accuracy of the

bounds is significantly improved for these values; in fact, both

L' and U_ are indistinguishable from the exact availability on

this graph.

When the parameters a and 3 tend to infinity such that

v = — remains fixed, the gamma distribution tends to the degenerate
a

distribution at the mean v . For this reason, the availability

with constant repair, which is easily computed exactly, will approxi-

mate the case of gamma distributed repair when the shape parameter

a is large. The question is, of course, how large must a be

for the approximation to be adequate. The bounds can, within

their error limits, predict how large a must be to obtain a

given degree of fit by simply plotting the bounds and the exact

solution for constant repair.

Figure 2 shows the bounds L
'

, U- and the exact avail-

ability for constant repair when a = 4, 3 = 18., A = .5 and

a = 36, 3 = 162., A = .5. The constant repair time was taken to

-1 a
be v " = — = .222 so that all solutions would have the same

3

steady state value.
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While the degree of approximation improves as shown, it

seems generally the case that a must be somewhat larger than

36 in order for the constant repair solution to approximate the

gamma repair case as well as the bounds L' and IL do, particu-

larly for times t near v . Computing experience not shown

here verifies that the same general conclusion holds when the

steady-state availability is 98% instead of 90%.

The exact solution for constant repair was found directly

from the definition (not transforms) and is given here for complete-

ness. If the repair time is denoted by v , and the failure rate

by X (exponential failures) , then

A(t) = I e-^-*"
1
'

[A(t
ty"

1)]k

k=0
k "

where n = [tv] = greatest integer in tv.

Figure 3 shows the above solution for availability along

with the bounds L , L' and U for a constant repair time of

.222 and a failure rate of .5.

Since repair times are frequently believed to obey a log

normal distribution, some study of that situation is in order. In

this case, a closed form for availability is not available. The

theoretical bounds L and U_ are computable by numerical methods

only and this was not undertaken. Instead, the process was simu-

lated and the results compared to gamma repair results.
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Figure 4 shows the results of 40,000 simulations using first

the log normal repair distribution and then the gamma repair dis-

tribution with shape parameter 3. The other parameters were chosen

so that both repair distributions had the same mean and variance;

the repair rate v = 4.5 and the repair time variance = .01646.

The failure rate was = .1 so that the steady state A(°°) = 97.83%,

Also shown is the exact value of availability for the gamma repair

distribution used. The +2a lines refer to the gamma repair

simulation averages. That is, these simulation outcomes are nor-

mally distributed with the exact availability as mean and standard

deviation a as indicated. The log normal simulation results are

seen to lie in this band as well. Within the limits of stochastic

modelling, the use of a gamma in place of a log normal repair

distribution may well be acceptable.
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