Bounds on the Average Bending of the Convex Hull Boundary of a Kleinian Group

Martin Bridgeman

1. Introduction

In this paper we consider hyperbolic manifolds with incompressible convex core boundary. We show that total bending along a geodesic arc on the boundary of the convex core is bounded above by a function of its length. Integrating this function over the unit tangent bundle of the boundary of the convex core, we obtain a new universal upper bound on the total bending of the convex core boundary. Furthermore, we produce a new universal upper bound on the Lipschitz constant for the map from the convex core boundary to the hyperbolic structure at infinity. These results improve on earlier bounds of Bridgeman and Canary.

Let $N=\mathbf{H}^{3} / \Gamma$ be an orientable hyperbolic manifold with domain of discontinuity $\Omega(\Gamma)$ and limit set L_{Γ}. In this paper we restrict ourselves to the case when all the components of $\Omega(\Gamma)$ are simply connected. This is a natural restriction to make and includes the set of quasi-Fuchsian groups. Let $C H\left(L_{\Gamma}\right)$ be the convex hull of Γ and let β_{Γ} be the bending lamination on $\partial C H\left(L_{\Gamma}\right)$. Let $C(N)=$ $C H\left(L_{\Gamma}\right) / \Gamma$ be the convex core and let β_{N} be the bending lamination on $\partial C(N)$. Then we observe that $\partial C(N)$ is incompressible if and only if the components of $\Omega(\Gamma)$ are all simply connected.

If α is a geodesic arc in $C H\left(L_{\Gamma}\right)$ then the average bending $B(\alpha)$ is defined to be the bending per unit length, or specifically

$$
B(\alpha)=\frac{i\left(\alpha, \beta_{\Gamma}\right)}{l(\alpha)}
$$

where i is the intersection number and $l(\alpha)$ is the length of α (see [2]).
In [2], Bridgeman considers bounds on the average bending for quasi-Fuchsian groups and proves that, for a quasi-Fuchsian group Γ, if $l(\alpha) \leq \log 3$ then $i\left(\alpha, \beta_{\Gamma}\right) \leq 2 \pi$. In [3], the geometry of the convex core boundary $\partial C(N)$ is compared with the geometry of the domain of discontinuity Ω / Γ for a general Kleinian group. One outcome is an improvement of the bound just described on intersection number to prove that, for a Kleinian group Γ such that the components of $\Omega(\Gamma)$ are simply connected, if $l(\alpha) \leq 2 \sinh ^{-1} 1$ then $i\left(\alpha, \beta_{\Gamma}\right) \leq 2 \pi$.

Both these bounds on the intersection number give universal upper bounds for the average bending of geodesic arcs of a given fixed length. By considering geodesics α of length $l(\alpha)=2 \sinh ^{-1} 1$, we obtain $B(\alpha) \leq \pi / \sinh ^{-1} 1$.

Bounds on the average bending imply a surprising number of results about the geometry of the convex hull boundary. In particular, Bridgeman and Canary prove the following.

Theorem 1.1 [3; 4]. Let $K=\pi / \sinh ^{-1} 1 \approx 3.5644$, and let Γ be a Kleinian group such that the components of $\Omega(\Gamma)$ are simply connected. Then:

1. if $l\left(\beta_{N}\right)$ is the length of the bending lamination β_{N}, then

$$
l\left(\beta_{N}\right) \leq K \cdot \pi^{2}|\chi(\partial C(N))|
$$

2. if α is a closed geodesic in the boundary of the convex core $\partial C(N)$, then

$$
B(\alpha)=\frac{i\left(\alpha, \beta_{N}\right)}{l(\alpha)} \leq K
$$

3. there exists $a(1+K)$ Lipschitz map $s: \partial C(N) \rightarrow \Omega(\Gamma) / \Gamma$ that is a homotopy inverse of the retract map $r: \Omega(\Gamma) / \Gamma \rightarrow \partial C(N)$.

Epstein, Marden, and Markovic [6] consider convex pleated planes in \mathbf{H}^{3} and prove a number of important results. One part of their paper defines the roundedness of a convex pleated plane. Given a convex pleated plane P with bending lamination β_{P}, the roundedness of P is defined to be the supremum of $i\left(\alpha, \beta_{P}\right)$ over all geodesics α of length 1. Epstein, Marden, and Markovic define C_{1} to be the supremum of roundedness over all embedded convex pleated planes, and they note that the upper bound on the intersection number in [2] applies in the absence of a group structure and hence $i\left(\alpha, \beta_{P}\right) \leq 2 \pi$ for $l(\alpha) \leq \log 3$. Because $1<\log 3$, this implies that $C_{1} \leq 2 \pi$ and, giving an example of an embedded convex pleated plane with roundedness of $\pi+1$, the authors therefore prove that $\pi+1 \leq C_{1} \leq 2 \pi$.

The main result of this paper is the following theorem.
Main Theorem. There exists a monotonically increasing function

$$
F:\left[0,2 \sinh ^{-1} 1\right] \rightarrow[\pi, 2 \pi]
$$

such that, if Γ is a Kleinian group (where the components of $\Omega(\Gamma)$ are simply connected) and if α is a geodesic arc in $\partial C H\left(L_{\Gamma}\right)$ of length $l(\alpha) \leq 2 \sinh ^{-1} 1$, then

$$
i\left(\alpha, \beta_{\Gamma}\right) \leq F(l(\alpha))
$$

In this paper we give an explicit formula for F and use it to demonstrate the following improvement on Theorem 1.1.

Theorem 1.2. There exist constants $K_{0}, K_{1}<K$ with $K_{0}<2.8396$ and $K_{1}<$ 3.4502 such that, if Γ is a Kleinian group where the components of $\Omega(\Gamma)$ are simply connected, then:

1. if $l\left(\beta_{N}\right)$ is the length of the bending lamination β_{N}, then

$$
l\left(\beta_{N}\right) \leq K_{0} \cdot \pi^{2}|\chi(\partial C(N))|
$$

2. if α is a closed geodesic in the boundary of the convex core $\partial C(N)$, then

$$
B(\alpha)=\frac{i\left(\alpha, \beta_{N}\right)}{l(\alpha)} \leq K_{1}
$$

3. there exists a $\left(1+K_{1}\right)$ Lipschitz map $s: \partial C(N) \rightarrow \Omega(\Gamma) / \Gamma$ that is a homotopy inverse of the retract map $r: \Omega(\Gamma) / \Gamma \rightarrow \partial C(N)$.

We define the constant B_{N} by

$$
B_{N}=\frac{l\left(\beta_{N}\right)}{\pi^{2} \mid \chi(\partial C(N) \mid} .
$$

Then B_{N} can be interpreted as the average bending of the manifold N. Thus, Theorem 1.2 gives that $B_{N} \leq 2.8396$.

Evaluating F at 1, we obtain an improved upper bound on the constant C_{1}.
Theorem 1.3. The supremum C_{1} of roundedness over embedded convex pleated planes satisfies

$$
C_{1} \leq F(1)=2 \pi-2 \sin ^{-1}\left(\frac{1}{\cosh 1}\right)=4.8731
$$

Acknowledgments. This paper is an outgrowth of a collaboration with Dick Canary. I would like to thank him for the collaboration and for his advice on this paper. Also I would like to thank Vladomir Markovic, whose questions motivated me to improve on the earlier work. Finally, I would like to thank Rich Schwartz, Ed Taylor, and Francis Bonahon for their support and mathematical advice.

2. Background

An orientable hyperbolic 3-manifold \mathbf{H}^{3} / Γ is the quotient of hyperbolic 3-space \mathbf{H}^{3} by a discrete torsion-free subgroup of the group Isom ${ }_{+}\left(\mathbf{H}^{3}\right)$ of orientationpreserving isometries of \mathbf{H}^{3}. We may identify Isom $+_{+}\left(\mathbf{H}^{3}\right)$ with the group $\mathrm{PSL}_{2}(\mathbf{C})$ of Möbius transformations of $\hat{\mathbf{C}}$. The domain of discontinuity $\Omega(\Gamma)$ is the largest open set in $\hat{\mathbf{C}}$ on which Γ acts properly discontinuously, and the limit set L_{Γ} is its complement. In this paper we will consider only Kleinian groups Γ such that the components of $\Omega(\Gamma)$ are simply connected. We note that, in particular, if Γ is quasi-Fuchsian then $\Omega(\Gamma)$ has two simply connected components.

The main object of interest in this paper is the convex hull of a Kleinian group. The convex hull $C H\left(L_{\Gamma}\right)$ of L_{Γ} is the smallest convex subset of \mathbf{H}^{3} such that all geodesics with both limit points in L_{Γ} are contained in $\mathrm{CH}\left(L_{\Gamma}\right)$. The convex core $C(N)$ of $N=\mathbf{H}^{3} / \Gamma$ is the quotient of $C H\left(L_{\Gamma}\right)$ by Γ, and it is the smallest convex submanifold of N such that the inclusion map is a homotopy equivalence. Each component of the boundary $\partial C(N)$ of the convex core is a pleated surface; in other words, there is a pathwise isometry $f: S \rightarrow \partial C(N)$ from a hyperbolic surface S onto N that is totally geodesic in the complement of a disjoint collection β_{N} of
geodesics known as the pleating locus. For a complete description of the geometry of the convex hull, see Epstein and Marden [5].

The pleating locus β_{N} inherits a measure on arcs transverse to β_{N} that records the total amount of bending along any transverse arc, so β_{N} is a measured lamination. A measured lamination on a finite-area hyperbolic surface S consists of a closed subset λ of S that is the disjoint union of geodesics, together with an invariant measure (with respect to projection along λ) on arcs transverse to λ. The set of measured laminations whose support is a finite collection of simple closed geodesics is dense in the space $M L(S)$ of all measured laminations on S (see [7]).

3. Hyperbolic Geometry

We now state some elementary facts about hyperbolic geometry. For a reference see either Thurston [9] or Beardon [1]. In the following we compactify \mathbf{H}^{n} using the sphere at infinity, $\mathbf{S}_{\infty}^{n-1}$.

Let g_{1}, g_{2} be two geodesics in \mathbf{H}^{n}. Then g_{1}, g_{2} are parallel if $g_{1} \cap g_{2}=\emptyset$. Furthermore, g_{1}, g_{2} are ultraparallel if $\bar{g}_{1} \cap \bar{g}_{2}=\emptyset$. Note that g_{1}, g_{2} have a unique commmon perpendicular if and only if they are ultraparallel.

The following lemma describes the shortest curve between a geodesic and a ray in the hyperbolic plane. The proof is an elementary exercise and is omitted for the sake of brevity.

Lemma 3.1. Let g be a geodesic and let r be a ray in \mathbf{H}^{2}, with r having finite endpoint x, such that $\bar{g} \cap \bar{r}=\emptyset$. Let g_{r} be the unique geodesic such that $r \subset g_{r}$. If g and g_{r} are ultraparallel, let p be the unique perpendicular between g and g_{r}. If p exists and if $p \cap r \neq \emptyset$, then the shortest curve from g to r is p; otherwise, the shortest curve from g to r is the unique perpendicular from x to g.

Let T be a hyperbolic triangle with vertices v_{1}, v_{2}, v_{3} and edges e_{1}, e_{2}, e_{3} such that e_{i} is opposite v_{i}. A curve α in T joins e_{1} to e_{3} via e_{2} if α has endpoints on e_{1} and e_{3} (respectively) and contains a point of e_{2}.

Lemma 3.2. Let T have angle θ at v_{1} and let v_{2} and v_{3} both be ideal vertices. Then the shortest curve in T that joins e_{1} to e_{3} via e_{2} has length $L(\theta)$, given by

$$
L(\theta)= \begin{cases}\cosh ^{-1}\left(\frac{2}{\sqrt{3-\sec \theta}}\right)+\cosh ^{-1}\left(\frac{2 \cos \theta}{\sqrt{3-\sec \theta}}\right), & \theta<\frac{\pi}{3} \tag{1}\\ \cosh ^{-1}\left(\frac{1}{\sin (\theta / 2)}\right), & \theta \geq \frac{\pi}{3}\end{cases}
$$

Proof. We reflect T in edge e_{2} to obtain triangle T^{\prime} with vertices v_{i}^{\prime} and edges e_{i}^{\prime}. Because we reflected in e_{2}, we have $e_{2}^{\prime}=e_{2}$ as well as $v_{1}^{\prime}=v_{1}$ and $v_{3}^{\prime}=v_{3}$. We consider the quadrilateral $Q=T \cup T^{\prime}$. The geodesic e_{1} is opposite the ray e_{3}^{\prime} in the quadrilateral Q. Let α be the shortest curve from e_{1} to e_{3}^{\prime}, as described in Lemma 3.1. If $\alpha \subset Q$ then α must intersect the diagonal e_{2} of Q. Therefore,

Quadrilateral Q
by reflecting T^{\prime} back onto T, we obtain the shortest curve in T that joins e_{1} to e_{3} via e_{2}. We will show that α is indeed always in Q and that the formula for L is correct.

We let $p_{v_{1}}$ be the perpendicular from e_{1} to v_{1}. Then $p_{v_{1}}$ bisects T and meets e_{3}^{\prime} in an angle $3 \theta / 2$. Let E_{3}^{\prime} be the geodesic containing the ray e_{3}^{\prime} and let p be the perpendicular from e_{1} to E_{3}^{\prime}, if it exists. If p exists then both $p_{v_{1}}$ and p are perpendicular to e_{1}. Therefore, if p exists then either $p=p_{v_{1}}$ or p does not intersect with $p_{v_{1}}$. Since $p_{v_{1}}$ makes an angle $3 \theta / 2$ with e_{3}^{\prime}, it follows that $p=p_{v_{1}}$ if and only if $3 \theta / 2=\pi / 2$. Furthermore, p intersects the interior of e_{3}^{\prime} if and only if $3 \theta / 2<\pi / 2$. Thus for $\theta<\pi / 3$ we have that p intersects the interior of e_{3}^{\prime} and $\alpha=p$. Otherwise, if $\theta \geq \pi / 3$ then $\alpha=p_{v_{1}}$. Therefore, by hyperbolic trigonometry we have

$$
L(\theta)=\cosh ^{-1}\left(\frac{1}{\sin (\theta / 2)}\right) \quad \text { for } \theta \geq \frac{\pi}{3}
$$

We now consider $\theta<\pi / 3$. Then $\alpha=p$ and intersects e_{3}^{\prime} in an interior point. Since Q is convex, α intersects the diagonal e_{2} in an interior point c. We join c to each vertex of Q and then drop a perpendicular from c to each side of Q. This decomposes Q into eight hyperbolic right-angled triangles. Let ϕ be the angle at c between α and e_{2} in this decomposition. By symmetry, all but two of the angles at c are equal to ϕ. Hence, the other angles are both $\pi-3 \phi$ (see figure).

We let l_{1} be the length of α in T and l_{2} the length of α in T^{\prime}. Then in T we have a right-angled triangle with one ideal vertex having one angle equal to ϕ and one side of length l_{1}. Thus, by hyperbolic trigonometry we have

$$
\cosh \left(l_{1}\right)=\frac{1}{\sin (\phi)} .
$$

Also we have a right-angled triangle with one ideal vertex having one angle equal to $\pi-3 \phi$ and one side equal to l_{2}. Therefore,

$$
\cosh \left(l_{2}\right)=\frac{1}{\sin (\pi-3 \phi)}=\frac{1}{\sin (3 \phi)}
$$

As a result,

$$
\begin{equation*}
L(\theta)=\cosh ^{-1}\left(\frac{1}{\sin (\phi)}\right)+\cosh ^{-1}\left(\frac{1}{\sin (3 \phi)}\right) \tag{2}
\end{equation*}
$$

To relate ϕ to θ, we note that we have a right-angled hyperbolic triangle with angles θ and ϕ and with side of length l_{2} opposite angle θ. Then it follows that

$$
\cosh \left(l_{2}\right)=\frac{\cos \theta}{\sin \phi}
$$

Substituting in for $\cosh \left(l_{2}\right)$, we obtain

$$
\cos \theta=\frac{\sin \phi}{\sin (3 \phi)}=\frac{1}{2 \cos (2 \phi)+1}
$$

Solving for ϕ in terms of θ, we obtain

$$
\cos 2 \phi=\frac{1-\cos \theta}{2 \cos \theta}=\frac{1}{2}(\sec \theta-1)
$$

Thus

$$
\sin ^{2} \phi=\frac{1}{2}(1-\cos 2 \phi)=\frac{3-\sec \theta}{4} .
$$

Therefore, we finally have the form of L for $\theta<\pi / 3$ given by

$$
L(\theta)=\cosh ^{-1}\left(\frac{2}{\sqrt{3-\sec \theta}}\right)+\cosh ^{-1}\left(\frac{2 \cos \theta}{\sqrt{3-\sec \theta}}\right)
$$

We now describe the behavior of the function L.
Lemma 3.3. The function $L:[0, \pi] \rightarrow \mathbf{R}$ is continuous and monotonically decreasing.

Proof. By definition, L is a smooth function on each of the intervals $[0, \pi / 3)$ and $[\pi / 3, \pi]$. For $\theta=\pi / 3$ we have $L(\pi / 3)=\cosh ^{-1}(2)$. Also, $\lim _{\theta \rightarrow(\pi / 3)^{-}} L(\theta)=$ $\cosh ^{-1}(2)+\cosh ^{-1}(1)=\cosh ^{-1}(2)$. Thus L is continuous.

To prove the remainder of the lemma, we consider $L^{\prime}(\theta)$ restricted to the intervals $[0, \pi / 3)$ and $[\pi / 3, \pi]$ separately. We note that if $f(x)=\cosh ^{-1}\left(\frac{1}{\sin x}\right)$ then the derivative satisfies

$$
f^{\prime}(x)=\frac{-|\tan x|}{\tan x \sin x}=\frac{ \pm 1}{\sin x},
$$

where the sign is determined by the sign of $-\tan x$.
On the interval $[\pi / 3, \pi]$ we have

$$
L^{\prime}(\theta)=\frac{-1}{2 \sin (\theta / 2)}
$$

Thus L is monotonically decreasing on the interval $[\pi / 3, \pi]$.
We now consider the monotonicity of L on the interval $[0, \pi / 3)$. Since $\phi \in$ $(\pi / 6, \pi / 4]$, it follows by equation (2) that

$$
L^{\prime}(\phi)=\frac{-1}{\sin \phi}+\frac{3}{\sin 3 \phi}
$$

Since $\sin 3 \phi=\sin \phi(2 \cos 2 \phi+1)$ we have

$$
L^{\prime}(\phi)=\frac{3-(2 \cos 2 \phi+1)}{\sin \phi(2 \cos 2 \phi+1)}=\frac{2(1-\cos 2 \phi)}{\sin \phi(2 \cos 2 \phi+1)},
$$

and since $\sin ^{2} \phi=\frac{1}{2}(1-\cos 2 \phi)$ we have

$$
L^{\prime}(\phi)=\frac{4 \sin ^{2} \phi}{\sin \phi(2 \cos 2 \phi+1)}=\frac{4 \sin \phi}{(2 \cos 2 \phi+1)}
$$

As $\phi \in(\pi / 6, \pi / 4]$, both the numerator and denominator are greater than zero and hence $L^{\prime}(\phi)>0$. Since ϕ is monotonicaly decreasing as a function of θ, we conclude that L is monotonically decreasing on $[0, \pi / 3$).

Finally we observe that, since L is continuous on $[0, \pi]$ and monotonically decreasing on both $[0, \pi / 3)$ and $[\pi / 3, \pi]$, it follows that L is monotonically decreasing on the interval $[0, \pi]$.

Evaluating the endpoints yields

$$
L(0)=2 \cosh ^{-1}(\sqrt{2})=2 \sinh ^{-1} 1, \quad L(\pi)=0
$$

Thus, L maps the interval $[0, \pi]$ on to the interval $\left[0,2 \sinh ^{-1} 1\right]$.
We define Θ to be the inverse function of L. Because L when restricted to $[\pi / 3, \pi]$ has a simple inverse function, we have

$$
\Theta(x)=2 \sin ^{-1}\left(\frac{1}{\cosh x}\right) \quad \text { for } 0 \leq x \leq \cosh ^{-1} 2=1.3169
$$

We define the function $F:\left[0,2 \sinh ^{-1} 1\right] \rightarrow[\pi, 2 \pi]$ by $F(x)=2 \pi-\Theta(x)$. In particular, we note that $1 \leq \cosh ^{-1} 2$ entails

$$
F(1)=2 \pi-2 \sin ^{-1}\left(\frac{1}{\cosh 1}\right)=4.8731 .
$$

A direct corollary of the description of L is the following description of F.
Corollary 3.4. The function $F:\left[0,2 \sinh ^{-1} 1\right] \rightarrow[\pi, 2 \pi]$ is continuous and monotonically increasing.

Graph of function F

We now consider a configuration of planes in \mathbf{H}^{3}. Let H_{1}, H_{2}, H_{3} be three closed half-spaces in \mathbf{H}^{3} and set $P_{i}=\partial H_{i}$. We consider the convex set $C=\mathbf{H}^{3}-\bigcup H_{i}^{o}$ obtained by taking the complements of the interiors of the half-spaces H_{i}. A curve $\alpha:[0,1] \rightarrow C$ joins P_{1} to P_{3} via P_{2} if $\alpha(0) \in P_{1}, \alpha(1) \in P_{3}$, and $\alpha(t) \in P_{2}$ for some $t \in[0,1]$.

Lemma 3.5 [3]. Let H_{1}, H_{2}, H_{3} be disjoint half-spaces in \mathbf{H}^{3} and let $\alpha:[0,1] \rightarrow$ C be a curve joining P_{1} to P_{3} via P_{2}. Then $l(\alpha) \geq 2 \sinh ^{-1} 1$. Furthermore, if $l(\alpha)=2 \sinh ^{-1} 1$ then $\bar{H}_{1} \cap \bar{H}_{2}=\{a\}, \bar{H}_{2} \cap \bar{H}_{3}=\{b\}$, and $\bar{H}_{1} \cap \bar{H}_{3}=\{c\}$, where a, b, c are three distinct points in \mathbf{S}_{∞}^{2}.

We now consider a configuration that arises in the proof of the main theorem.
Lemma 3.6. Let H_{1}, H_{2}, H_{3} be half-spaces such that $H_{1} \cap H_{2}=\emptyset, H_{1} \cap H_{3}=$ \emptyset, and $\bar{H}_{1} \cap \bar{H}_{2}=\{a\}$ for $a \in \mathbf{S}_{\infty}^{2}$. If there exists a curve $\alpha:[0,1] \rightarrow C$ of length $l \leq 2 \sinh ^{-1} 1$ joining P_{1} to P_{3} via P_{2}, then the interior dihedral angle θ between H_{2} and H_{3} satisfies

$$
\theta \geq \Theta(l)
$$

Proof. Since $l \leq 2 \sinh ^{-1} 1$, by Lemma 3.5 we can assume that $\bar{H}_{2} \cap \bar{H}_{3} \neq \emptyset$ and hence the interior dihedral angle is well-defined. Take P to be the unique plane perpendicular to P_{1}, P_{2}, and P_{3}; hence P must pass through the point a. We let $L_{i}=P_{i} \cap P$ and let $Q=C \cap P$. Then Q is a (possibly infinite-area) quadrilateral with vertex v given by $v=L_{2} \cap L_{3}$. Because P is perpendicular to P_{2} and P_{3}, the angle at v in Q is the dihedral angle between H_{2} and H_{3}. Orthogonal projection maps α onto the region Q and decreases distance. Therefore, projecting α onto Q yields a curve $\alpha^{\prime}:[0,1] \rightarrow Q$ of length $l^{\prime} \leq l$ that joins L_{1} to L_{3} via L_{2}. Let $\alpha^{\prime}(t) \in L_{2}$; then we let g be the geodesic arc joining $\alpha^{\prime}(0)$ to $\alpha^{\prime}(t)$. We replace the $\operatorname{arc} \alpha^{\prime}([0, t])$ by g to obtain $\alpha^{\prime \prime}=g \cup \alpha^{\prime}([t, 1])$, and hence length $l^{\prime \prime}$ of $\alpha^{\prime \prime}$ satisfies $l^{\prime \prime} \leq l^{\prime} \leq l$. We truncate Q to form a finite-area triangle T by letting L_{3}^{\prime} be the diagonal in Q containing v. Triangle T is bounded by L_{1}, L_{2}, and L_{3}^{\prime}. The angle θ^{\prime} at v in T satisfies $\theta^{\prime} \leq \theta$. By definition of g, we have $g \subset T$. Therefore, as L_{3}^{\prime} separates L_{3} from L_{1} in Q, a subarc of $\alpha^{\prime \prime}$ must join L_{1} to L_{3}^{\prime} via L_{2}. We thus have $l \geq l^{\prime \prime} \geq L\left(\theta^{\prime}\right)$. Since $\theta^{\prime} \leq \theta$ and L is monotonically decreasing, $L\left(\theta^{\prime}\right) \geq L(\theta)$. Therefore, $l \geq L(\theta)$ and again, as L is monotonically decreasing, $L^{-1}(l) \leq \theta$. Thus, finally, $\theta \geq \Theta(l)$.

4. Support Planes

We first need to recall some background material on convex hulls. For a full description of convex hulls, see [5].

If Γ is a Kleinian group with convex hull $\mathrm{CH}\left(L_{\Gamma}\right)$, then a support plane to $C H\left(L_{\Gamma}\right)$ is a hyperbolic plane P in H^{3} that bounds a half-space H_{P} such that $H_{P} \cap \partial C H\left(L_{\Gamma}\right) \subseteq P$. The half-space H_{P} is considered to be implicit, so P is naturally oriented by taking the normal to point toward the interior of H_{P}.

Intersection of H_{1}, H_{2}, H_{3} with unique perpendicular plane

Thus, a support plane P to a convex hull $\mathrm{CH}\left(L_{\Gamma}\right)$ does not pass through $\partial C H\left(L_{\Gamma}\right)$ but does have a glancing intersection with it. In general, the intersection of P and $\partial C H\left(L_{\Gamma}\right)$ can either be a single geodesic, called a bending line, or a flat piece of the convex hull boundary bounded by a set of disjoint geodesics, called a flat. If P_{1} and P_{2} are support planes with $P_{1} \cap P_{2} \neq \emptyset$ and $P_{1} \neq P_{2}$, then the line $r=P_{1} \cap P_{2}$ is called a ridge line.

If $x \in \partial C H\left(L_{\Gamma}\right)$ then either x lies in the interior of a flat or x is on some bending line. If x is in the interior of a flat then there is a unique support plane P containing x. If $x \in b$, where b is a bending line, let $\Sigma(b)$ be the set of support planes to b. The set $S(b)$ of oriented planes containing b is a circle and $\Sigma(b) \subseteq S(b)$. Since $\Sigma(b)$ is connected, it is either a closed arc or a point. We let P_{1} and P_{2} be the two extreme planes of $\Sigma(b)$. If b is oriented then we can refer to the extreme planes as the left and right extreme planes. The bending angle at b is defined to be the angle between P_{1} and P_{2}. Thus, the bending angle is the exterior dihedral angle between the extreme planes at b. If x is on a bending line b, we define $\beta(x)$ to be the bending angle at b; otherwise we define $\beta(x)=0$.

The union of the bending lines in $\partial \mathrm{CH}\left(L_{\Gamma}\right)$ is denoted β_{Γ} and is called the bending lamination. Thurston defined a transverse measure on β_{Γ} that assigns, to every arc α transverse to β_{Γ}, a value $i\left(\alpha, \beta_{\Gamma}\right)$ that corresponds to the amount of bending along α (see [8]). Therefore, β_{Γ} is a measured lamination. In particular, the bending measure is a countable additive measure on the set of transverse arcs (see [5]); that is, if α is subdivided into subarcs $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ transverse to β_{Γ}, then

$$
i\left(\alpha, \beta_{\Gamma}\right)=\sum_{i=1}^{n} i\left(\alpha_{i}, \beta_{\Gamma}\right)
$$

If the arc α is a closed arc with endpoints x, y whose interior α^{o} is transverse to β_{Γ}, then we define

$$
i\left(\alpha, \beta_{\Gamma}\right)=\beta(x)+i\left(\alpha^{o}, \beta_{\Gamma}\right)+\beta(y)
$$

The bending lamination β_{Γ} on $\partial C H\left(L_{\Gamma}\right)$ projects to the pleating locus β_{N} of $\partial C(N)$.

In [3], the definition of the intersection form is modified to allow the subarcs to have endpoints on β_{Γ} and keep track of support planes. Let P and Q be support planes at x and y, respectively. If α intersects a bending line b, then an orientation on α gives an orientation on the bending line b. Thus we orient α from x to y, and we let \bar{P} be the rightmost support plane at x and \bar{Q} the leftmost support plane at y. Let θ_{P} be the exterior dihedral angle between P and \bar{P}, and let θ_{Q} be the exterior dihedral angle between the support planes \bar{Q} and Q. Then we define

$$
i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q}=\theta_{P}+i\left(\alpha^{o}, \beta_{\Gamma}\right)+\theta_{Q}
$$

Observe that if α has unique support planes at its endpoints then $i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q}=$ $i\left(\alpha, \beta_{\Gamma}\right)$.

Let $\alpha:[0,1] \rightarrow \partial \mathrm{CH}\left(L_{\Gamma}\right)$ be a path whose interior is transverse to β_{Γ} and let $\left\{0=t_{0}<t_{1}<\cdots<t_{n}=1\right\}$ be a subdivision of $[0,1]$. Let α_{i} be the closed subarc obtained by restricting α to the interval $\left[t_{i-1}, t_{i}\right]$. Let P_{i} be a support plane at $\alpha\left(t_{i}\right)$ with $P_{0}=P$ and $P_{n}=Q$. Then it follows from the additivity of the standard intersection number that

$$
i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q}=\sum_{i=1}^{n} i\left(\alpha_{i}, \beta_{\Gamma}\right)_{P_{i-1}}^{P_{i}} .
$$

This is the key additivity property for our modified intersection number.
Let $\alpha:[0,1] \rightarrow \partial \operatorname{CH}\left(L_{\Gamma}\right)$ be a path whose interior is transverse to β_{Γ} and let P and Q be support planes to $\partial C H\left(L_{\Gamma}\right)$ at $\alpha(0)$ and $\alpha(1)$. We travel along α to obtain a continuous one-parameter family of support planes $\left\{P_{t} \mid t \in[0, k]\right\}$ along α from P to Q (see [3] for a full description). Since a point on α may not have a unique support plane, there is a continuous monotonically increasing (piecewise linear) function $s:[0, k] \rightarrow[0,1]$ such that P_{t} is a support plane to $\alpha(s(t))$.

We say that (P, Q) is a roof over α if, for all $t \in[0, k], P \cap P_{t} \neq \emptyset$ and the interiors of the half-spaces H_{P} and $H_{P_{t}}$ also intersect. Furthermore, we say that (P, Q) is a π-roof if $\left(P, P_{t}\right)$ is a roof over $\alpha([0, s(t)])$ for all $0 \leq t<k$ but (P, Q) is not a roof over α. We will see that if (P, Q) is a π-roof then $\bar{H}_{P} \cap \bar{H}_{Q}=\{a\}$ where $a \in \mathbf{S}_{\infty}^{2}$.

We now define monotonicity for geodesics in the hyperbolic plane. Let $\left\{g_{t}\right\}$ be a continuous family of geodesics in a hyperbolic plane that is indexed by an interval J. We say that the family is monotonic on J if, given $a, b \in J$ such that $a<b$ and $g_{a} \cap g_{b} \neq \emptyset$, we have $g_{t}=g_{a}$ for all $t \in[a, b]$.

The following lemma allows us to estimate the intersection number along a geodesic on $\partial C H\left(L_{\Gamma}\right)$ by using support planes.

Lemma 4.1 [3]. Let $\alpha:[0,1] \rightarrow \partial C H\left(L_{\Gamma}\right)$ be a parameterized geodesic arc, let (P, Q) be a roof over α, and let $\left\{P_{t} \mid t \in[0, k]\right\}$ be the continuous one-parameter family of support planes over α joining P to Q. Then:

1. we have

$$
i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q} \leq \theta \leq \pi
$$

where θ is the exterior dihedral angle between P and Q; and
2. there is a $\bar{t} \in[0, k]$ such that $P_{t}=P$ ift $\in[0, \bar{t}]$ and the ridge lines $\left\{r_{t}=P \cap P_{t} \mid\right.$ $t>\bar{t}\}$ exist and form a monotonic family of geodesics on P.

The following corollary follows immediately from Lemma 4.1 by continuity.
Corollary 4.2 [3]. If (P, Q) is a π-roof over α, then $i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q} \leq \pi$ and $\bar{H}_{P} \cap \bar{H}_{Q}=\{a\}$ where $a \in \Omega(\Gamma)$.

We now restate the main theorem before proving it.
Main Theorem. There exists a monotonically increasing function

$$
F:\left[0,2 \sinh ^{-1} 1\right] \rightarrow[\pi, 2 \pi]
$$

such that, if Γ is a Kleinian group (where the components of $\Omega(\Gamma)$ are simply connected) and if α is a geodesic arc in $\partial C H\left(L_{\Gamma}\right)$ of length $l(\alpha) \leq 2 \sinh ^{-1} 1$, then

$$
i\left(\alpha, \beta_{\Gamma}\right) \leq F(l(\alpha))
$$

Proof. Let $\alpha:[0,1] \rightarrow \partial C H\left(L_{\Gamma}\right)$ be a parameterized geodesic arc on the boundary of the convex hull of Γ. We let K be the corresponding component of $\Omega(\Gamma)$. Hence by hypothesis K is open and simply connected. Also, by the description of the convex hull, any bending line that α intersects has endpoints in ∂K (see [5]).

Let P be the leftmost support plane at $\alpha(0)$ and Q the rightmost support plane at α (1). Then by definition we have $i\left(\alpha, \beta_{\Gamma}\right)=i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q}$. Let $\left\{P_{t} \mid t \in[0, k]\right\}$ be the continuous one-parameter family of support planes to α joining P to Q, let H_{t} be the associated support plane of P_{t}, and let D_{t} be the closed disk in \mathbf{S}_{∞}^{2} given by $D_{t}=\bar{H}_{t} \cap \mathbf{S}_{\infty}^{2}$. In particular, $P_{0}=P$ and $P_{k}=Q$. We will make use of the fact that $D_{t}^{o} \subset K$, where D_{t}^{o} is the interior of D_{t}.

If (P, Q) is a roof over α, then (by Lemma 4.1) the exterior angle of intersection θ of P and Q is an upper bound for $i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q}$. Therefore, $i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q} \leq \theta \leq$ $\pi \leq F(l(\alpha))$.

Otherwise, we let t_{1} be the smallest value of $t>0$ such that $\left(P, P_{t}\right)$ is not a roof over $\alpha([0, s(t)])$. We let $s\left(t_{1}\right)=s_{1}$ and $\alpha_{1}=\left.\alpha\right|_{\left[0, s_{1}\right]}$. Then $\left(P, P_{t_{1}}\right)$ is a π-roof over α_{1} and so, by Corollary 4.2, $i\left(\alpha_{1}, \beta_{\Gamma}\right)_{P}^{P_{t_{1}}} \leq \pi$ and $\bar{H}_{0} \cap \bar{H}_{t_{1}}=\{a\}$ where $a \in$ \mathbf{S}_{∞}^{2}. If $\left(P_{t_{1}}, Q\right)$ is a roof over $\alpha\left(\left[s_{1}, 1\right]\right)$, we let $\alpha_{2}=\left.\alpha\right|_{\left[s_{1}, 1\right]}$. Hence the exterior angle of intersection θ_{1} of $P_{t_{1}}$ and Q is an upper bound for $i\left(\alpha_{2}, \beta_{\Gamma}\right)_{P_{t_{1}}}^{Q}$. Thus we have

$$
i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q}=i\left(\alpha_{1}, \beta_{\Gamma}\right)_{P}^{P_{t_{1}}}+i\left(\alpha_{2}, \beta_{\Gamma}\right)_{P_{t_{1}}}^{Q} \leq \pi+\theta_{1} .
$$

Case 1 (left) and Case 2 (right)
If $Q \cap P \neq \emptyset$ then we consider the set $S=\mathbf{S}_{\infty}^{2}-\left(D_{0}^{o} \cup D_{t_{1}}^{o} \cup D_{k}^{o}\right)$. Then we have that $\partial K \subset S$. Therefore $S=T_{1} \cup T_{2}$, where T_{i} are spherical triangles. Also we have that $T_{1} \cap T_{2}=\{a\}$, where $\bar{H}_{0} \cap \bar{H}_{t_{1}}=\{a\}$. Since $\left(P_{0}, P_{t_{1}}\right)$ is a π-roof, it follows that $a \in K$. Also, by monotonicity of ridge lines, the bending line on $P_{t_{1}}$ that α intersects has one endpoint in T_{1} and the other in T_{2} (Case 1 ; see figure). Thus ∂K is disconnected, contradicting the fact that K is simply connected. We therefore have that $Q \cap P=\emptyset$ and that the support planes $P, P_{t_{1}}, Q$ have the configuration described in Lemma 3.6. Hence the interior dihedral angle $\bar{\theta}_{1}=\pi-\theta_{1}$ between $P_{t_{1}}$ and Q satisfies $\Theta(l) \leq \bar{\theta}_{1}$, so

$$
i\left(\alpha, \beta_{\Gamma}\right)_{P}^{Q} \leq \pi+\theta_{1} \leq 2 \pi-\Theta(l)=F(l)
$$

Now let t_{2} be the smallest value of $t \in\left[t_{1}, k\right]$ such that $\left(P_{t_{1}}, P_{t}\right)$ is not a roof over $\alpha\left(\left[s_{1}, s(t)\right]\right)$, and let $s\left(t_{2}\right)=s_{2}$. Because $\left(P_{t_{1}}, P_{t_{2}}\right)$ is a π-roof, we have $\bar{H}_{t_{1}} \cap \bar{H}_{t_{2}}=\{b\}$. Since $l(\alpha)<2 \sinh ^{-1} 1$, by Lemma 3.5 it follows that $\bar{H}_{0} \cap \bar{H}_{t_{2}} \neq$ \emptyset. Then, letting $S=\mathbf{S}_{\infty}^{2}-\left(D_{0}^{o} \cup D_{t_{1}}^{o} \cup D_{t_{2}}^{o}\right)$, we have $\partial K \subset S$. As before, $S=$ $T_{1} \cup T_{2}$, where T_{i} are spherical triangles. Also as before, $a, b \in K$ and the bending line on $P_{t_{1}}$ that α intersects has one endpoint in T_{1} and the other in T_{2}. If $H_{0} \cap H_{t_{2}} \neq \emptyset$, then $T_{1} \cap T_{2}=\{a, b\}$ (Case 2). Hence ∂K is disconnected, giving a contradiction to K being simply connected.

We can therefore assume that $\bar{H}_{0} \cap \bar{H}_{t_{2}}=\{c\}$ where $c \in \mathbf{S}_{\infty}^{2}$. Then $T_{1} \cap T_{2}=$ $\{a, b, c\}$. Also, by Lemma 3.5, $l\left(\alpha\left(\left[0, s_{2}\right]\right)\right) \geq 2 \sinh ^{-1} 1$. Since $l(\alpha) \leq 2 \sinh ^{-1} 1$ we have $l\left(\alpha\left(\left[0, s_{2}\right]\right)\right)=2 \sinh ^{-1} 1$ and $s_{2}=1$. Hence the support planes $P_{t}\left(t_{2} \leq\right.$ $t \leq k)$ intersect $P_{t_{2}}$ along a bending line γ with $\alpha(1) \in \gamma$. Thus the planes $P_{t}\left(t_{2} \leq\right.$ $t \leq k$) are obtained by rotating $P_{t_{2}}$ about γ. Because $b \in K$, we know that b is not an endpoint of γ. Also, by monotonicity of ridge lines at the point b, we obtain P_{t} $\left(t>t_{2}\right)$ by rotating $P_{t_{2}}$ away from $P_{t_{1}}$.

We first consider the case when the geodesic γ in $P_{t_{2}}$ separates the points b and c on the boundary of $P_{t_{2}}$. If γ does separate b and c then, rotating $P_{t_{2}}$ about γ, we see that for $t>t_{2}$ either $b \in D_{t}^{o}$ or $c \in D_{t}^{o}$. As $P_{t_{2}}$ is rotated away from $P_{t_{1}}$, there

Case 3 (left) and Case 4 (right)
is a $t_{3}>t_{2}$ such that $b \notin D_{t_{3}}^{o}$ (Case 3); hence $c \in D_{t_{3}}^{o}$ and $c \in K$. Therefore ∂K is disconnected, contradicting the fact that K is simply connected.

If γ does not separate b and c then, as $P_{t_{2}}$ is rotated away from $P_{t_{1}}$, we can choose a $t_{3}>t_{2}$ such that $\bar{H}_{t_{1}} \cap \bar{H}_{t_{3}}=\emptyset$ and $H_{0} \cap H_{t_{3}}=\emptyset$ (Case 4). Note that we cannot assume $\bar{H}_{0} \cap \bar{H}_{t_{3}}=\emptyset$, since the point c may be an endpoint of γ. It follows that the three half-spaces $H_{0}, H_{t_{1}}, H_{t_{3}}$ are disjoint, with a geodesic arc of length $2 \sinh ^{-1} 1$ joining P_{0} to $P_{t_{3}}$ via $P_{t_{1}}$. Then, by Lemma 3.5, the closures of the half-spaces $H_{0}, H_{t_{1}}, H_{t_{3}}$ intersect pairwise in a point on \mathbf{S}_{∞}^{2}. This contradicts the fact that $\bar{H}_{t_{1}} \cap \bar{H}_{t_{3}}=\emptyset$.

5. The Bending Lamination

Bridgeman and Canary [4] have shown that the length of the measured lamination β on a finite-area hyperbolic surface S can be evaluated by an integral over the unit tangent bundle. For $p \in T_{1}(S)$ we let $\alpha_{p}:(0, L) \rightarrow S$ be the parameterized geodesic arc of length L given by $\alpha_{p}(t)=g_{t}(p)$, where $g_{t}: T_{1}(S) \rightarrow S$ is time- t geodesic flow. Then

$$
l(\beta)=\frac{1}{4 L} \int_{T_{1}(S)} i\left(\alpha_{p}, \beta\right) d \Omega .
$$

Let β_{N} be the bending lamination on $\partial C(N)$, fix $L=2 \sinh ^{-1} 1$, and let $p \in$ $T_{1}(\partial C(N))$. Then, if α_{p} does not intersect β_{N}, we let $d(p)=L$; otherwise, we define $d(p)$ to be the minimum number such that $\alpha_{p}(d(p)) \in \beta_{N}$. Then α_{p} intersects β_{N} only for length at most $L-d(p)$. Therefore,

$$
i\left(\alpha_{p}, \beta_{N}\right) \leq F(L-d(p))
$$

Thus we have that

$$
l\left(\beta_{N}\right) \leq \frac{1}{4 L} \int_{T_{1}(S)} F(L-d(p)) d \Omega .
$$

To perform the integration, we decompose the complement of β_{N} in $\partial C(N)$ into ideal triangles by adding geodesics to β_{N} to obtain a geodesic lamination $\tilde{\beta}_{N}$ such
that $\beta_{N} \subset \tilde{\beta}_{N}$. If we let $\tilde{d}(p)$ be the minimum number such that $\alpha_{p}(\tilde{d}(p)) \in \tilde{\beta}_{N}$, then $\tilde{d}(p) \leq d(p)$. Therefore, since F is monotonically increasing, $F(L-d(p)) \leq$ $F(L-\tilde{d}(p))$. Thus

$$
l\left(\beta_{N}\right) \leq \frac{1}{4 L} \int_{T_{1}(S)} F(L-\tilde{d}(p)) d \Omega
$$

The right-hand side of this integral is the same over the unit tangent bundle of each ideal triangle. Since the area of $\partial C(N)$ is $2 \pi \mid \chi(\partial C(N) \mid$, it follows that $\partial C(N)-\tilde{\beta}_{N}$ consists of $2 \mid \chi\left(\partial C(N) \mid\right.$ ideal triangles. We therefore let $U \subset \mathbf{H}^{2}$ be an ideal hyperbolic triangle and, for each $p \in T_{1}(U)$, define $D(p)$ to be the minimum number such that $\alpha_{p}(D(p)) \in \partial U$. Then

$$
l\left(\beta_{N}\right) \leq \frac{2 \mid \chi(\partial C(N) \mid}{4 L} \int_{T_{1}(U)} F(L-D(p)) d \Omega
$$

To perform the integration, we work in the upper half-space model for \mathbf{H}^{2} and let

$$
U=\left\{(x, y) \mid-1 \leq x \leq-1, y \geq \sqrt{1-x^{2}}\right\}
$$

We denote the three sides of U by e_{1}, e_{2}, e_{3}, where $e_{1}=\{(-1, t) \mid t>0\}, e_{2}=$ $\{(1, t) \mid t>0\}$, and $e_{3}=\left\{\left(t, \sqrt{1-t^{2}}\right) \mid-1<t<1\right\}$.

Let $p \in T_{1}(U)$, where p has basepoint (x, y) and tangent vector v. We drop perpendiculars from (x, y) to each of the sides e_{1}, e_{2}, e_{3} and label them as P_{1}, P_{2}, P_{3} respectively. Let $d_{i}(x, y)$ denote the length of P_{i}. We have

$$
\begin{aligned}
\tanh d_{1}(x, y) & =\frac{1+x}{\sqrt{(1+x)^{2}+y^{2}}} \\
\tanh d_{2}(x, y) & =\frac{1-x}{\sqrt{(1-x)^{2}+y^{2}}} \\
\tanh d_{3}(x, y) & =\frac{x^{2}+y^{2}-1}{\sqrt{\left(x_{2}+y^{2}-1\right)^{2}+4 y^{2}}}
\end{aligned}
$$

The geodesic ray in the direction p intersects at most one side of U. Let the ray intersect side e_{i} and make an angle θ with P_{i}. Then we have a right-angled triangle with angle θ, hypotenuse of length $D(p)$, and adjacent side of length $d_{i}(x, y)$. Therefore, $D(p)$ satisfies

$$
\tanh D(p)=\frac{\tanh d_{i}(x, y)}{\cos \theta}
$$

Since $F(L-D(p))=0$ for $D(p) \geq L$, it follows that the domain over which we integrate satisfies

$$
\cos \theta \geq \frac{\tanh d_{i}(x, y)}{\tanh L}
$$

Thus we split the integral over $T_{1}(U)$ and obtain

$$
\begin{aligned}
\int_{T_{1}(U)} & F(L-D(p)) d \Omega \\
& =\int_{U} \frac{d x d y}{y^{2}}\left(\sum_{i=1}^{3} \int_{-\cos ^{-1}\left(\frac{\tanh d_{i}(x, y)}{\tanh L}\right)}^{\cos ^{-1}\left(\frac{\tanh d_{i}(x, y)}{\tan }\right)} F\left(L-\tanh ^{-1}\left(\frac{\tanh d_{i}(x, y)}{\cos \theta}\right)\right) d \theta\right)
\end{aligned}
$$

We define the constant K_{0} by
K_{0}

$$
=\frac{1}{2 \pi^{2} L} \int_{U} \frac{d x d y}{y^{2}}\left(\sum_{i=1}^{3} \int_{-\cos ^{-1}\left(\frac{\tanh d_{i}(x, y)}{\tanh L}\right)}^{\cos ^{-1}\left(\frac{\tanh d_{i}(x, y)}{\tan h}\right)} F\left(L-\tanh ^{-1}\left(\frac{\tanh d_{i}(x, y)}{\cos \theta}\right)\right) d \theta\right)
$$

We then perform the integration using Mathematica and, rounding up to four decimal places, obtain $K_{0}<2.8396$. We thus have the following improvement on the bound on the length of the bending lamination.

Theorem 1.2, part 1. If Γ is a Kleinian group such that the components of $\Omega(\Gamma)$ are simply connected, then

$$
l\left(\beta_{N}\right) \leq K_{0} \cdot \pi^{2} \mid \chi(\partial C(N) \mid
$$

6. The Average Bending Function

In [2], Thurston's description of the minimal Lipschitz constant between two hyperbolic surfaces (see [10]) is applied to prove the following: If the average bending satisfies $B(\alpha) \leq k$ for all geodesic arcs α of a fixed length l, then there is a $(1+k)$ Lipschitz map that is a homotopy inverse of the retract map $r: \Omega(\Gamma) / \Gamma \rightarrow$ $C(N)$. In particular, by using $l=2 \sinh ^{-1} 1$ we can choose $k=K=\pi / \sinh ^{-1} 1$ (see [3]).

Graph of $F(x) / x$ for x near $2 \sinh ^{-1} 1$

The Main Theorem states that for $l(\alpha) \leq 2 \sinh ^{-1} 1$ we have $B(\alpha) \leq F(l(\alpha)) /$ $l(\alpha)$. Hence we consider the function $\mathcal{K}(x)=F(x) / x$ (see figure); the minimum value of \mathcal{K} on the interval $\left[0,2 \sinh ^{-1} 1\right]$ gives a better bound than K in Theorem 1.2. We let K_{1} be the minimum value of \mathcal{K}. Graphing $\mathcal{K}(x)$, we see that the minimum of $\mathcal{K}(x)$ is obtained at approximately $x=1.7063$. Evaluating at
$x=1.7063$ then yields $K_{1} \leq \mathcal{K}(1.7063) \leq 3.4502$ ．Thus we obtain the final two parts of Theorem 1．2．

Theorem 1．2，part 2．If α is a closed geodesic on $\partial C(N)$ ，then

$$
B(\alpha) \leq K_{1} .
$$

Theorem 1．2，part 3．The retract map $r: \Omega(\Gamma) / \Gamma \rightarrow \partial C(N)$ has a homotopy inverse s：$\partial C(N) \rightarrow \Omega(\Gamma) / \Gamma$ with Lipschitz constant $\left(1+K_{1}\right)$ ．

References

［1］A．F．Beardon，The geometry of discrete groups，Grad．Texts in Math．，91，Berlin， Springer－Verlag， 1983.
［2］M．Bridgeman，Average bending of convex pleated planes in hyperbolic three－space， Invent．Math． 132 （1998），381－391．
［3］M．Bridgeman and R．D．Canary，From the boundary of the convex core to the conformal boundary，Geom．Dedicata（to appear）；preprint available at〈http：／／www．math．lsa．umich．edu／～canary〉．
［4］－，Bounding the bending of a hyperbolic 3－manifold，preprint．
［5］D．Epstein and A．Marden，Convex hulls in hyperbolic space，a theorem of Sullivan， and measured pleated surfaces，Analytical and geometric aspects of hyperbolic space （Coventry／Durham，1984），pp．113－253，Cambridge Univ．Press， 1987.
［6］D．Epstein，A．Marden，and V．Markovic，Quasiconformal homeomorphisms and the convex hull boundary，preprint．
［7］J．L．Harer and R．C．Penner，Combinatorics of train tracks，Ann．of Math．Stud．， 125，Princeton Univ．Press，Princeton，NJ， 1992.
［8］W．P．Thurston，The geometry and topology of 3－manifolds，lecture notes，Princeton Univ．， 1979.
［9］－，Three－dimensional geometry and topology，Princeton Math．Ser．，Princeton Univ．Press，Princeton，NJ， 1997.
［10］——，Minimal stretch maps between hyperbolic surfaces，preprint，〈http：／／front．math．ucdavis．edu／math．GT／9801058〉．

Department of Mathematics
Boston College
Chestnut Hill，MA 02167
bridgem＠bc．edu

