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Bounds on the Average Bending of the
Convex Hull Boundary of a Kleinian Group

Martin Bridgeman

1. Introduction

In this paper we consider hyperbolic manifolds with incompressible convex core
boundary. We show that total bending along a geodesic arc on the boundary of the
convex core is bounded above by a function of its length. Integrating this function
over the unit tangent bundle of the boundary of the convex core, we obtain a new
universal upper bound on the total bending of the convex core boundary. Further-
more, we produce a new universal upper bound on the Lipschitz constant for the
map from the convex core boundary to the hyperbolic structure at infinity. These
results improve on earlier bounds of Bridgeman and Canary.

LetN = H 3/0 be an orientable hyperbolic manifold with domain of disconti-
nuity�(0) and limit setL0. In this paper we restrict ourselves to the case when
all the components of�(0) are simply connected. This is a natural restriction
to make and includes the set of quasi-Fuchsian groups. LetCH(L0) be the con-
vex hull of 0 and letβ0 be the bending lamination on∂CH(L0). Let C(N ) =
CH(L0)/0 be the convex core and letβN be the bending lamination on∂C(N ).
Then we observe that∂C(N ) is incompressible if and only if the components of
�(0) are all simply connected.

If α is a geodesic arc inCH(L0) then the average bendingB(α) is defined to
be the bending per unit length, or specifically

B(α) = i(α, β0)

l(α)
,

wherei is the intersection number andl(α) is the length ofα (see [2]).
In [2], Bridgeman considers bounds on the average bending for quasi-Fuchsian

groups and proves that, for a quasi-Fuchsian group0, if l(α) ≤ log 3 then
i(α, β0) ≤ 2π. In [3], the geometry of the convex core boundary∂C(N ) is com-
pared with the geometry of the domain of discontinuity�/0 for a general Kleinian
group. One outcome is an improvement of the bound just described on intersec-
tion number to prove that, for a Kleinian group0 such that the components of
�(0) are simply connected, ifl(α) ≤ 2 sinh−11 theni(α, β0) ≤ 2π.

Both these bounds on the intersection number give universal upper bounds for
the average bending of geodesic arcs of a given fixed length. By considering
geodesicsα of lengthl(α) = 2 sinh−11, we obtainB(α) ≤ π/sinh−11.
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Bounds on the average bending imply a surprising number of results about the
geometry of the convex hull boundary. In particular, Bridgeman and Canary prove
the following.

Theorem 1.1 [3; 4]. LetK = π/sinh−11 ≈ 3.5644, and let0 be a Kleinian
group such that the components of�(0) are simply connected. Then:

1. if l(βN) is the length of the bending laminationβN, then

l(βN) ≤ K · π2|χ(∂C(N ))|;
2. if α is a closed geodesic in the boundary of the convex core∂C(N ), then

B(α) = i(α, βN)

l(α)
≤ K;

3. there exists a(1+K) Lipschitz maps : ∂C(N )→ �(0)/0 that is a homotopy
inverse of the retract mapr : �(0)/0→ ∂C(N ).

Epstein, Marden, and Markovic [6] consider convex pleated planes inH 3 and prove
a number of important results. One part of their paper defines theroundedness
of a convex pleated plane. Given a convex pleated planeP with bending lamina-
tion βP , the roundedness ofP is defined to be the supremum ofi(α, βP ) over all
geodesicsα of length 1. Epstein, Marden, and Markovic defineC1 to be the supre-
mum of roundedness over all embedded convex pleated planes, and they note that
the upper bound on the intersection number in [2] applies in the absence of a group
structure and hencei(α, βP ) ≤ 2π for l(α) ≤ log 3. Because 1< log 3, this im-
plies thatC1 ≤ 2π and, giving an example of an embedded convex pleated plane
with roundedness ofπ +1, the authors therefore prove thatπ +1≤ C1 ≤ 2π.

The main result of this paper is the following theorem.

Main Theorem. There exists a monotonically increasing function

F : [0,2 sinh−11]→ [π,2π]

such that, if0 is a Kleinian group(where the components of�(0) are simply
connected) and if α is a geodesic arc in∂CH(L0) of lengthl(α) ≤ 2 sinh−11,
then

i(α, β0) ≤ F(l(α)).
In this paper we give an explicit formula forF and use it to demonstrate the fol-
lowing improvement on Theorem1.1.

Theorem 1.2. There exist constantsK0,K1 < K withK0 < 2.8396andK1 <

3.4502such that, if0 is a Kleinian group where the components of�(0) are
simply connected, then:

1. if l(βN) is the length of the bending laminationβN, then

l(βN) ≤ K0 · π2|χ(∂C(N ))|;
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2. if α is a closed geodesic in the boundary of the convex core∂C(N ), then

B(α) = i(α, βN)

l(α)
≤ K1;

3. there exists a(1+K1) Lipschitz maps : ∂C(N )→ �(0)/0 that is a homotopy
inverse of the retract mapr : �(0)/0→ ∂C(N ).

We define the constantBN by

BN = l(βN)

π2|χ(∂C(N )| .

ThenBN can be interpreted as the average bending of the manifoldN. Thus, The-
orem 1.2 gives thatBN ≤ 2.8396.

EvaluatingF at 1, we obtain an improved upper bound on the constantC1.

Theorem 1.3. The supremumC1 of roundedness over embedded convex pleated
planes satisfies

C1 ≤ F(1) = 2π − 2 sin−1

(
1

cosh1

)
= 4.8731.
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2. Background

An orientable hyperbolic 3-manifoldH 3/0 is the quotient of hyperbolic 3-space
H 3 by a discrete torsion-free subgroup of the group Isom+(H 3) of orientation-
preserving isometries ofH 3.We may identify Isom+(H 3)with the group PSL2(C)
of Möbius transformations of̂C. Thedomain of discontinuity�(0) is the largest
open set inĈ on which0 acts properly discontinuously, and the limit setL0 is
its complement. In this paper we will consider only Kleinian groups0 such that
the components of�(0) are simply connected. We note that, in particular, if0 is
quasi-Fuchsian then�(0) has two simply connected components.

The main object of interest in this paper is the convex hull of a Kleinian group.
Theconvex hullCH(L0) of L0 is the smallest convex subset ofH 3 such that all
geodesics with both limit points inL0 are contained inCH(L0). Theconvex core
C(N ) of N = H 3/0 is the quotient ofCH(L0) by0, and it is the smallest convex
submanifold ofN such that the inclusion map is a homotopy equivalence. Each
component of the boundary∂C(N ) of the convex core is a pleated surface; in other
words, there is a pathwise isometryf : S → ∂C(N ) from a hyperbolic surfaceS
ontoN that is totally geodesic in the complement of a disjoint collectionβN of
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geodesics known as thepleating locus.For a complete description of the geome-
try of the convex hull, see Epstein and Marden [5].

The pleating locusβN inherits a measure on arcs transverse toβN that records
the total amount of bending along any transverse arc, soβN is a measured lami-
nation. Ameasured laminationon a finite-area hyperbolic surfaceS consists of a
closed subsetλ of S that is the disjoint union of geodesics, together with an in-
variant measure (with respect to projection alongλ) on arcs transverse toλ. The
set of measured laminations whose support is a finite collection of simple closed
geodesics is dense in the spaceML(S) of all measured laminations onS (see [7]).

3. Hyperbolic Geometry

We now state some elementary facts about hyperbolic geometry. For a reference
see either Thurston [9] or Beardon [1]. In the following we compactifyH n using
the sphere at infinity,Sn−1∞ .

Let g1, g2 be two geodesics inH n. Theng1, g2 areparallel if g1 ∩ g2 = ∅.
Furthermore,g1, g2 are ultraparallel if ḡ1 ∩ ḡ2 = ∅. Note thatg1, g2 have a
unique commmon perpendicular if and only if they are ultraparallel.

The following lemma describes the shortest curve between a geodesic and a ray
in the hyperbolic plane. The proof is an elementary exercise and is omitted for the
sake of brevity.

Lemma 3.1. Let g be a geodesic and letr be a ray inH 2, with r having finite
endpointx, such thatḡ ∩ r̄ = ∅. Letgr be the unique geodesic such thatr ⊂ gr .
If g andgr are ultraparallel, letp be the unique perpendicular betweeng andgr .
If p exists and ifp ∩ r 6= ∅, then the shortest curve fromg to r is p; otherwise,
the shortest curve fromg to r is the unique perpendicular fromx to g.

Let T be a hyperbolic triangle with verticesv1, v2, v3 and edgese1, e2, e3 such
thatei is oppositevi. A curveα in T joinse1 to e3 via e2 if α has endpoints one1

ande3 (respectively) and contains a point ofe2.

Lemma 3.2. Let T have angleθ at v1 and letv2 andv3 both be ideal vertices.
Then the shortest curve inT that joinse1 to e3 via e2 has lengthL(θ), given by

L(θ) =


cosh−1

(
2√

3− secθ

)
+ cosh−1

(
2 cosθ√
3− secθ

)
, θ <

π

3
,

cosh−1

(
1

sin(θ/2)

)
, θ ≥ π

3
.

(1)

Proof. We reflectT in edgee2 to obtain triangleT ′ with verticesv ′i and edgese ′i .
Because we reflected ine2, we havee ′2 = e2 as well asv ′1 = v1 andv ′3 = v3.

We consider the quadrilateralQ = T ∪ T ′. The geodesice1 is opposite the ray
e ′3 in the quadrilateralQ. Let α be the shortest curve frome1 to e ′3, as described
in Lemma 3.1. Ifα ⊂ Q thenα must intersect the diagonale2 of Q. Therefore,
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QuadrilateralQ

by reflectingT ′ back ontoT, we obtain the shortest curve inT that joinse1 to e3

via e2. We will show thatα is indeed always inQ and that the formula forL is
correct.

We letpv1 be the perpendicular frome1 to v1. Thenpv1 bisectsT and meets
e ′3 in an angle 3θ/2. Let E ′3 be the geodesic containing the raye ′3 and letp be
the perpendicular frome1 to E ′3, if it exists. If p exists then bothpv1 andp are
perpendicular toe1. Therefore, ifp exists then eitherp = pv1 or p does not in-
tersect withpv1. Sincepv1 makes an angle 3θ/2 with e ′3, it follows thatp = pv1

if and only if 3θ/2= π/2. Furthermore,p intersects the interior ofe ′3 if and only
if 3θ/2< π/2. Thus forθ < π/3 we have thatp intersects the interior ofe ′3 and
α = p. Otherwise, ifθ ≥ π/3 thenα = pv1. Therefore, by hyperbolic trigonom-
etry we have

L(θ) = cosh−1

(
1

sin(θ/2)

)
for θ ≥ π

3
.

We now considerθ < π/3. Thenα = p and intersectse ′3 in an interior point.
SinceQ is convex,α intersects the diagonale2 in an interior pointc. We joinc to
each vertex ofQ and then drop a perpendicular fromc to each side ofQ. This de-
composesQ into eight hyperbolic right-angled triangles. Letφ be the angle atc
betweenα ande2 in this decomposition. By symmetry, all but two of the angles
at c are equal toφ. Hence, the other angles are bothπ − 3φ (see figure).

We letl1 be the length ofα in T andl2 the length ofα in T ′. Then inT we have
a right-angled triangle with one ideal vertex having one angle equal toφ and one
side of lengthl1. Thus, by hyperbolic trigonometry we have

cosh(l1) = 1

sin(φ)
.

Also we have a right-angled triangle with one ideal vertex having one angle equal
to π − 3φ and one side equal tol2. Therefore,

cosh(l2) = 1

sin(π − 3φ)
= 1

sin(3φ)
.
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As a result,

L(θ) = cosh−1

(
1

sin(φ)

)
+ cosh−1

(
1

sin(3φ)

)
. (2)

To relateφ to θ, we note that we have a right-angled hyperbolic triangle with
anglesθ andφ and with side of lengthl2 opposite angleθ. Then it follows that

cosh(l2) = cosθ

sinφ
.

Substituting in for cosh(l2), we obtain

cosθ = sinφ

sin(3φ)
= 1

2 cos(2φ)+1
.

Solving forφ in terms ofθ, we obtain

cos 2φ = 1− cosθ

2 cosθ
= 1

2
(secθ −1).

Thus

sin2 φ = 1

2
(1− cos 2φ) = 3− secθ

4
.

Therefore, we finally have the form ofL for θ < π/3 given by

L(θ) = cosh−1

(
2√

3− secθ

)
+ cosh−1

(
2 cosθ√
3− secθ

)
.

We now describe the behavior of the functionL.

Lemma 3.3. The functionL : [0, π] → R is continuous and monotonically
decreasing.

Proof. By definition,L is a smooth function on each of the intervals [0, π/3) and
[π/3, π]. For θ = π/3 we haveL(π/3) = cosh−1(2). Also, limθ→(π/3)− L(θ) =
cosh−1(2)+ cosh−1(1) = cosh−1(2). ThusL is continuous.

To prove the remainder of the lemma, we considerL′(θ) restricted to the inter-
vals [0, π/3) and [π/3, π] separately. We note that iff(x) = cosh−1

(
1

sinx

)
then

the derivative satisfies

f ′(x) = −|tanx|
tanx sinx

= ±1

sinx
,

where the sign is determined by the sign of−tanx.
On the interval [π/3, π] we have

L′(θ) = −1

2 sin(θ/2)
.

ThusL is monotonically decreasing on the interval [π/3, π].
We now consider the monotonicity ofL on the interval [0, π/3). Sinceφ ∈

(π/6, π/4], it follows by equation (2) that

L′(φ) = −1

sinφ
+ 3

sin 3φ
.
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Since sin 3φ = sinφ(2 cos 2φ +1) we have

L′(φ) = 3− (2 cos 2φ +1)

sinφ(2 cos 2φ +1)
= 2(1− cos 2φ)

sinφ(2 cos 2φ +1)
,

and since sin2 φ = 1
2(1− cos 2φ) we have

L′(φ) = 4 sin2 φ

sinφ(2 cos 2φ +1)
= 4 sinφ

(2 cos 2φ +1)
.

As φ∈ (π/6, π/4], both the numerator and denominator are greater than zero and
henceL′(φ) > 0. Sinceφ is monotonicaly decreasing as a function ofθ, we con-
clude thatL is monotonically decreasing on [0, π/3).

Finally we observe that, sinceL is continuous on [0, π] and monotonically
decreasing on both [0, π/3) and [π/3, π], it follows thatL is monotonically de-
creasing on the interval [0, π].

Evaluating the endpoints yields

L(0) = 2 cosh−1
(√

2
) = 2 sinh−11, L(π) = 0.

Thus,L maps the interval [0, π] on to the interval [0,2 sinh−11].
We define2 to be the inverse function ofL. BecauseL when restricted to

[π/3, π] has a simple inverse function, we have

2(x) = 2 sin−1

(
1

coshx

)
for 0 ≤ x ≤ cosh−1 2= 1.3169.

We define the functionF : [0,2 sinh−11] → [π,2π] by F(x) = 2π − 2(x).
In particular, we note that 1≤ cosh−1 2 entails

F(1) = 2π − 2 sin−1

(
1

cosh1

)
= 4.8731.

A direct corollary of the description ofL is the following description ofF.

Corollary 3.4. The functionF : [0,2 sinh−11] → [π,2π] is continuous and
monotonically increasing.

Graph of functionF
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We now consider a configuration of planes inH 3. LetH1, H2, H3 be three closed
half-spaces inH 3 and setPi = ∂Hi. We consider the convex setC = H 3−⋃Ho

i

obtained by taking the complements of the interiors of the half-spacesHi. A curve
α : [0,1] → C joinsP1 to P3 via P2 if α(0) ∈ P1, α(1) ∈ P3, andα(t) ∈ P2 for
somet ∈ [0,1].

Lemma 3.5 [3]. LetH1, H2, H3 be disjoint half-spaces inH 3 and letα : [0,1]→
C be a curve joiningP1 to P3 via P2. Thenl(α) ≥ 2 sinh−11. Furthermore, if
l(α) = 2 sinh−11 thenH̄1∩ H̄2 = {a}, H̄2∩ H̄3 = {b}, andH̄1∩ H̄3 = {c},where
a, b, c are three distinct points inS2∞.

We now consider a configuration that arises in the proof of the main theorem.

Lemma 3.6. LetH1, H2, H3 be half-spaces such thatH1∩H2 = ∅, H1∩H3 =
∅, andH̄1∩ H̄2 = {a} for a ∈S2∞. If there exists a curveα : [0,1]→ C of length
l ≤ 2 sinh−11 joiningP1 toP3 viaP2, then the interior dihedral angleθ between
H2 andH3 satisfies

θ ≥ 2(l).
Proof. Sincel ≤ 2 sinh−11, by Lemma 3.5 we can assume thatH̄2 ∩ H̄3 6= ∅ and
hence the interior dihedral angle is well-defined. TakeP to be the unique plane
perpendicular toP1, P2, andP3; henceP must pass through the pointa. We let
Li = Pi ∩ P and letQ = C ∩ P. ThenQ is a (possibly infinite-area) quadrilat-
eral with vertexv given byv = L2 ∩ L3. BecauseP is perpendicular toP2 and
P3, the angle atv inQ is the dihedral angle betweenH2 andH3. Orthogonal pro-
jection mapsα onto the regionQ and decreases distance. Therefore, projecting
α ontoQ yields a curveα ′ : [0,1] → Q of lengthl ′ ≤ l that joinsL1 to L3 via
L2. Let α ′(t) ∈ L2; then we letg be the geodesic arc joiningα ′(0) to α ′(t). We
replace the arcα ′([0, t ]) by g to obtainα ′′ = g ∪ α ′([t,1]), and hence lengthl ′′
of α ′′ satisfiesl ′′ ≤ l ′ ≤ l. We truncateQ to form a finite-area triangleT by let-
tingL′3 be the diagonal inQ containingv. TriangleT is bounded byL1, L2, and
L′3. The angleθ ′ at v in T satisfiesθ ′ ≤ θ. By definition ofg, we haveg ⊂ T .
Therefore, asL′3 separatesL3 from L1 in Q, a subarc ofα ′′ must joinL1 to L′3
via L2. We thus havel ≥ l ′′ ≥ L(θ ′). Sinceθ ′ ≤ θ andL is monotonically de-
creasing,L(θ ′) ≥ L(θ). Therefore,l ≥ L(θ) and again, asL is monotonically
decreasing,L−1(l ) ≤ θ. Thus, finally,θ ≥ 2(l).

4. Support Planes

We first need to recall some background material on convex hulls. For a full de-
scription of convex hulls, see [5].

If 0 is a Kleinian group with convex hullCH(L0), then asupport planeto
CH(L0) is a hyperbolic planeP in H 3 that bounds a half-spaceHP such that
HP ∩ ∂CH(L0) ⊆ P. The half-spaceHP is considered to be implicit, soP is
naturally oriented by taking the normal to point toward the interior ofHP .
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Intersection ofH1, H2, H3 with unique perpendicular plane

Thus, a support planeP to a convex hullCH(L0) does not pass through
∂CH(L0) but does have a glancing intersection with it. In general, the intersection
of P and∂CH(L0) can either be a single geodesic, called abending line,or a flat
piece of the convex hull boundary bounded by a set of disjoint geodesics, called
a flat. If P1 andP2 are support planes withP1∩ P2 6= ∅ andP1 6= P2, then the
line r = P1∩ P2 is called aridge line.

If x ∈ ∂CH(L0) then eitherx lies in the interior of a flat orx is on some bending
line. If x is in the interior of a flat then there is a unique support planeP contain-
ing x. If x ∈ b, whereb is a bending line, let6(b) be the set of support planes to
b. The setS(b) of oriented planes containingb is a circle and6(b) ⊆ S(b). Since
6(b) is connected, it is either a closed arc or a point. We letP1 andP2 be the two
extreme planes of6(b). If b is oriented then we can refer to the extreme planes
as the left and right extreme planes. Thebending angleat b is defined to be the
angle betweenP1 andP2. Thus, the bending angle is the exterior dihedral angle
between the extreme planes atb. If x is on a bending lineb, we defineβ(x) to be
the bending angle atb; otherwise we defineβ(x) = 0.

The union of the bending lines in∂CH(L0) is denotedβ0 and is called the
bending lamination.Thurston defined atransverse measureon β0 that assigns,
to every arcα transverse toβ0, a valuei(α, β0) that corresponds to the amount
of bending alongα (see [8]). Therefore,β0 is a measured lamination. In partic-
ular, the bending measure is a countable additive measure on the set of transverse
arcs (see [5]); that is, ifα is subdivided into subarcs{α1, . . . , αn} transverse to
β0, then

i(α, β0) =
n∑
i=1

i(αi, β0).
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If the arcα is a closed arc with endpointsx, y whose interiorαo is transverse to
β0, then we define

i(α, β0) = β(x)+ i(αo, β0)+ β(y).
The bending laminationβ0 on ∂CH(L0) projects to the pleating locusβN of
∂C(N ).

In [3], the definition of the intersection form is modified to allow the subarcs to
have endpoints onβ0 and keep track of support planes. LetP andQ be support
planes atx andy, respectively. Ifα intersects a bending lineb, then an orienta-
tion onα gives an orientation on the bending lineb. Thus we orientα from x to
y, and we letP̄ be the rightmost support plane atx andQ̄ the leftmost support
plane aty. Let θP be the exterior dihedral angle betweenP andP̄, and letθQ be
the exterior dihedral angle between the support planesQ̄ andQ. Then we define

i(α, β0)
Q
P = θP + i(αo, β0)+ θQ.

Observe that ifα has unique support planes at its endpoints theni(α, β0)
Q
P =

i(α, β0).

Let α : [0,1]→ ∂CH(L0) be a path whose interior is transverse toβ0 and let
{0= t0 < t1 < · · · < tn = 1} be a subdivision of [0,1]. Let αi be the closed sub-
arc obtained by restrictingα to the interval [ti−1, ti ]. Let Pi be a support plane at
α(ti) with P0 = P andPn = Q. Then it follows from the additivity of the stan-
dard intersection number that

i(α, β0)
Q
P =

n∑
i=1

i(αi, β0)
Pi
Pi−1
.

This is the key additivity property for our modified intersection number.
Let α : [0,1]→ ∂CH(L0) be a path whose interior is transverse toβ0 and let

P andQ be support planes to∂CH(L0) at α(0) andα(1). We travel alongα to
obtain a continuous one-parameter family of support planes{Pt | t ∈ [0, k]} along
α from P toQ (see [3] for a full description). Since a point onα may not have a
unique support plane, there is a continuous monotonically increasing (piecewise
linear) functions : [0, k] → [0,1] such thatPt is a support plane toα(s(t)).

We say that(P,Q) is a roof overα if, for all t ∈ [0, k], P ∩ Pt 6= ∅ and the
interiors of the half-spacesHP andHPt also intersect. Furthermore, we say that
(P,Q) is aπ -roof if (P, Pt ) is a roof overα([0, s(t)]) for all 0≤ t < k but(P,Q)
is not a roof overα. We will see that if(P,Q) is aπ -roof thenH̄P ∩ H̄Q = {a}
wherea ∈S2∞.

We now define monotonicity for geodesics in the hyperbolic plane. Let{gt } be
a continuous family of geodesics in a hyperbolic plane that is indexed by an inter-
val J. We say that the family ismonotoniconJ if, given a, b ∈ J such thata < b

andga ∩ gb 6= ∅, we havegt = ga for all t ∈ [a, b].
The following lemma allows us to estimate the intersection number along a geo-

desic on∂CH(L0) by using support planes.



Bounds on Bending the Convex Hull Boundary of a Kleinian Group 373

Lemma 4.1 [3]. Letα : [0,1]→ ∂CH(L0) be a parameterized geodesic arc, let
(P,Q) be a roof overα, and let{Pt | t ∈ [0, k]} be the continuous one-parameter
family of support planes overα joining P toQ. Then:

1. we have
i(α, β0)

Q
P ≤ θ ≤ π,

whereθ is the exterior dihedral angle betweenP andQ; and
2. there is āt ∈ [0, k] such thatPt = P if t ∈ [0, t̄ ] and the ridge lines{rt = P ∩Pt |
t > t̄ } exist and form a monotonic family of geodesics onP.

The following corollary follows immediately from Lemma 4.1 by continuity.

Corollary 4.2 [3]. If (P,Q) is a π -roof over α, then i(α, β0)
Q
P ≤ π and

H̄P ∩ H̄Q = {a} wherea ∈�(0).
We now restate the main theorem before proving it.

Main Theorem. There exists a monotonically increasing function

F : [0,2 sinh−11]→ [π,2π]

such that, if0 is a Kleinian group(where the components of�(0) are simply
connected) and if α is a geodesic arc in∂CH(L0) of lengthl(α) ≤ 2 sinh−11,
then

i(α, β0) ≤ F(l(α)).
Proof. Let α : [0,1]→ ∂CH(L0) be a parameterized geodesic arc on the bound-
ary of the convex hull of0. We letK be the corresponding component of�(0).
Hence by hypothesisK is open and simply connected. Also, by the description of
the convex hull, any bending line thatα intersects has endpoints in∂K (see [5]).

Let P be the leftmost support plane atα(0) andQ the rightmost support plane
atα(1). Then by definition we havei(α, β0) = i(α, β0)QP . Let {Pt | t ∈ [0, k]} be
the continuous one-parameter family of support planes toα joiningP toQ, letHt

be the associated support plane ofPt , and letDt be the closed disk inS2∞ given
byDt = H̄t ∩ S2∞. In particular,P0 = P andPk = Q. We will make use of the
fact thatDo

t ⊂ K, whereDo
t is the interior ofDt.

If (P,Q) is a roof overα, then (by Lemma 4.1) the exterior angle of intersec-
tion θ of P andQ is an upper bound fori(α, β0)

Q
P . Therefore,i(α, β0)

Q
P ≤ θ ≤

π ≤ F(l(α)).
Otherwise, we lett1 be the smallest value oft > 0 such that(P, Pt ) is not a roof

overα([0, s(t)]). We let s(t1) = s1 andα1 = α|[0,s1] . Then(P, Pt1) is aπ -roof

overα1 and so, by Corollary 4.2,i(α1, β0)
Pt1
P ≤ π andH̄0 ∩ H̄t1 = {a} wherea ∈

S2∞. If (Pt1,Q) is a roof overα([s1,1]), we letα2 = α|[s1,1]. Hence the exterior
angle of intersectionθ1 of Pt1 andQ is an upper bound fori(α2, β0)

Q
Pt1
. Thus we

have
i(α, β0)

Q
P = i(α1, β0)

Pt1
P + i(α2, β0)

Q
Pt1
≤ π + θ1.
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Case 1 (left) and Case 2 (right)

If Q ∩ P 6= ∅ then we consider the setS = S2∞ − (Do
0 ∪ Do

t1
∪ Do

k ). Then we
have that∂K ⊂ S. ThereforeS = T1 ∪ T2, whereTi are spherical triangles. Also
we have thatT1∩ T2 = {a}, whereH̄0 ∩ H̄t1 = {a}. Since(P0, Pt1) is aπ -roof, it
follows thata ∈K. Also, by monotonicity of ridge lines, the bending line onPt1
thatα intersects has one endpoint inT1 and the other inT2 (Case 1; see figure).
Thus∂K is disconnected, contradicting the fact thatK is simply connected. We
therefore have thatQ∩P = ∅ and that the support planesP, Pt1,Q have the con-
figuration described in Lemma 3.6. Hence the interior dihedral angleθ̄1= π − θ1

betweenPt1 andQ satisfies2(l) ≤ θ̄1, so

i(α, β0)
Q
P ≤ π + θ1 ≤ 2π −2(l) = F(l).

Now let t2 be the smallest value oft ∈ [t1, k] such that(Pt1, Pt ) is not a roof
over α([s1, s(t)]), and lets(t2) = s2. Because(Pt1, Pt2 ) is a π -roof, we have
H̄t1∩H̄t2 = {b}. Sincel(α) < 2 sinh−11, by Lemma 3.5 it follows that̄H0∩H̄t2 6=
∅. Then, lettingS = S2∞ − (Do

0 ∪Do
t1
∪Do

t2
), we have∂K ⊂ S. As before,S =

T1 ∪ T2, whereTi are spherical triangles. Also as before,a, b ∈K and the bend-
ing line onPt1 that α intersects has one endpoint inT1 and the other inT2. If
H0 ∩Ht2 6= ∅, thenT1∩ T2 = {a, b} (Case 2). Hence∂K is disconnected, giving
a contradiction toK being simply connected.

We can therefore assume thatH̄0 ∩ H̄t2 = {c} wherec ∈ S2∞. ThenT1∩ T2 =
{a, b, c}. Also, by Lemma 3.5,l(α([0, s2])) ≥ 2 sinh−11. Sincel(α) ≤ 2 sinh−11
we havel(α([0, s2])) = 2 sinh−11 ands2 = 1. Hence the support planesPt (t2 ≤
t ≤ k) intersectPt2 along a bending lineγ with α(1)∈ γ. Thus the planesPt (t2 ≤
t ≤ k) are obtained by rotatingPt2 aboutγ. Becauseb ∈K, we know thatb is not
an endpoint ofγ. Also, by monotonicity of ridge lines at the pointb, we obtainPt
(t > t2) by rotatingPt2 away fromPt1.

We first consider the case when the geodesicγ in Pt2 separates the pointsb and
c on the boundary ofPt2. If γ does separateb andc then, rotatingPt2 aboutγ, we
see that fort > t2 eitherb ∈Do

t or c ∈Do
t . As Pt2 is rotated away fromPt1, there
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Case 3 (left) and Case 4 (right)

is a t3 > t2 such thatb /∈Do
t3

(Case 3); hencec ∈Do
t3

andc ∈K. Therefore∂K is
disconnected, contradicting the fact thatK is simply connected.

If γ does not separateb andc then, asPt2 is rotated away fromPt1, we can
choose at3 > t2 such thatH̄t1 ∩ H̄t3 = ∅ andH0 ∩ Ht3 = ∅ (Case 4). Note that
we cannot assumēH0 ∩ H̄t3 = ∅, since the pointc may be an endpoint ofγ. It
follows that the three half-spacesH0, Ht1, Ht3 are disjoint, with a geodesic arc of
length 2 sinh−11 joining P0 to Pt3 via Pt1. Then, by Lemma 3.5, the closures of
the half-spacesH0, Ht1, Ht3 intersect pairwise in a point onS2∞. This contradicts
the fact thatH̄t1 ∩ H̄t3 = ∅.

5. The Bending Lamination

Bridgeman and Canary [4] have shown that the length of the measured lamination
β on a finite-area hyperbolic surfaceS can be evaluated by an integral over the
unit tangent bundle. Forp ∈ T1(S) we letαp : (0, L) → S be the parameterized
geodesic arc of lengthL given byαp(t) = gt(p), wheregt : T1(S)→ S is time-t
geodesic flow. Then

l(β) = 1

4L

∫
T1(S)

i(αp, β) d�.

Let βN be the bending lamination on∂C(N ), fix L = 2 sinh−11, and letp ∈
T1(∂C(N )). Then, ifαp does not intersectβN, we letd(p) = L; otherwise, we
defined(p) to be the minimum number such thatαp(d(p)) ∈ βN. Thenαp inter-
sectsβN only for length at mostL− d(p). Therefore,

i(αp, βN) ≤ F(L− d(p)).
Thus we have that

l(βN) ≤ 1

4L

∫
T1(S)

F(L− d(p)) d�.
To perform the integration, we decompose the complement ofβN in ∂C(N ) into

ideal triangles by adding geodesics toβN to obtain a geodesic laminatioñβN such
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thatβN ⊂ β̃N . If we let d̃(p) be the minimum number such thatαp(d̃(p)) ∈ β̃N ,
thend̃(p) ≤ d(p). Therefore, sinceF is monotonically increasing,F(L−d(p)) ≤
F(L− d̃(p)). Thus

l(βN) ≤ 1

4L

∫
T1(S)

F(L− d̃(p)) d�.

The right-hand side of this integral is the same over the unit tangent bundle
of each ideal triangle. Since the area of∂C(N ) is 2π|χ(∂C(N )|, it follows that
∂C(N ) − β̃N consists of 2|χ(∂C(N )| ideal triangles. We therefore letU ⊂ H 2

be an ideal hyperbolic triangle and, for eachp ∈ T1(U), defineD(p) to be the
minimum number such thatαp(D(p))∈ ∂U. Then

l(βN) ≤ 2|χ(∂C(N )|
4L

∫
T1(U)

F(L−D(p)) d�.

To perform the integration, we work in the upper half-space model forH 2 and
let

U = {(x, y) | −1≤ x ≤ −1, y ≥
√

1− x 2
}
.

We denote the three sides ofU by e1, e2, e3, wheree1 = {(−1, t) | t > 0}, e2 =
{(1, t) | t > 0}, ande3 =

{(
t,
√

1− t 2 ) | −1< t < 1
}
.

Letp ∈ T1(U),wherep has basepoint(x, y) and tangent vectorv.We drop per-
pendiculars from(x, y) to each of the sidese1, e2, e3 and label them asP1, P2, P3

respectively. Letdi(x, y) denote the length ofPi. We have

tanhd1(x, y) = 1+ x√
(1+ x)2 + y2

,

tanhd2(x, y) = 1− x√
(1− x)2 + y2

,

tanhd3(x, y) = x 2 + y2 −1√
(x2 + y2 −1)2 + 4y2

.

The geodesic ray in the directionp intersects at most one side ofU. Let the
ray intersect sideei and make an angleθ with Pi. Then we have a right-angled
triangle with angleθ, hypotenuse of lengthD(p), and adjacent side of length
di(x, y). Therefore,D(p) satisfies

tanhD(p) = tanhdi(x, y)

cosθ
.

SinceF(L−D(p)) = 0 forD(p) ≥ L, it follows that the domain over which we
integrate satisfies

cosθ ≥ tanhdi(x, y)

tanhL
.

Thus we split the integral overT1(U) and obtain
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T1(U)

F(L−D(p)) d�

=
∫
U

dx dy

y2

(
3∑
i=1

∫ cos−1
( tanhdi(x,y)

tanhL

)
−cos−1

( tanhdi(x,y)

tanhL

) F(L− tanh−1

(
tanhdi(x, y)

cosθ

))
dθ

)
.

We define the constantK0 by

K0

= 1

2π2L

∫
U

dx dy

y2

(
3∑
i=1

∫ cos−1
( tanhdi(x,y)

tanhL

)
−cos−1

( tanhdi(x,y)

tanhL

) F(L− tanh−1

(
tanhdi(x, y)

cosθ

))
dθ

)
.

We then perform the integration using Mathematica and, rounding up to four dec-
imal places, obtainK0 < 2.8396. We thus have the following improvement on the
bound on the length of the bending lamination.

Theorem1.2,part1. If 0 is a Kleinian group such that the components of�(0)

are simply connected, then

l(βN) ≤ K0 · π2|χ(∂C(N )|.

6. The Average Bending Function

In [2], Thurston’s description of the minimal Lipschitz constant between two hy-
perbolic surfaces (see [10]) is applied to prove the following: If the average bend-
ing satisfiesB(α) ≤ k for all geodesic arcsα of a fixed lengthl, then there is a
(1+k) Lipschitz map that is a homotopy inverse of the retract mapr : �(0)/0→
C(N ). In particular, by usingl = 2 sinh−11 we can choosek = K = π/sinh−11
(see [3]).

Graph ofF(x)/x for x near 2 sinh−11

The Main Theorem states that forl(α) ≤ 2 sinh−11 we haveB(α) ≤ F(l(α))/
l(α). Hence we consider the functionK(x) = F(x)/x (see figure); the minimum
value ofK on the interval [0,2 sinh−11] gives a better bound thanK in Theo-
rem 1.2. We letK1 be the minimum value ofK. GraphingK(x), we see that
the minimum ofK(x) is obtained at approximatelyx = 1.7063. Evaluating at
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x = 1.7063 then yieldsK1 ≤ K(1.7063) ≤ 3.4502. Thus we obtain the final two
parts of Theorem 1.2.

Theorem 1.2,part 2. If α is a closed geodesic on∂C(N ), then

B(α) ≤ K1.

Theorem 1.2,part 3. The retract mapr : �(0)/0 → ∂C(N ) has a homotopy
inverses : ∂C(N )→ �(0)/0 with Lipschitz constant(1+K1).
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