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Abstract. We consider a ferromagnetic Ising spin system isomorphic to a lattice gas
with attractive interactions. Using the Fortuin, Kasteleyn and Ginibre (FKG) inequalities
we derive bounds on the decay of correlations between two widely separated sets of par-
ticles in terms of the decay of the pair correlation. This leads to bounds on the derivatives
of various orders of the free energy with respect to the magnetic field h, and reciprocal
temperature β. In particular, if the pair correlation has an upper bound (uniform in the
size of the system) which decays exponentially with distance in some neighborhood of
(/?', h') then the thermodynamic free energy density ψ(β, h) and all the correlation functions
are infinitely differentiable at (/?', h'). We then show that when only pair interactions are
present it is sufficient to obtain such a bound only at h = 0 (and only in the infinite volume
limit) for systems with suitable boundary conditions. This is the case in the two dimensional
square lattice with nearest neighbor interactions for 0^β<β0, where β^1 is the Onsager
temperature at which ψ(β,h = 0) has a singularity. For β > β0, dψ(β, h)/dh is discontinuous
at h = 0, i.e. β0 = βc, where β~1 is the temperature below which there is spontaneous
magnetization.

I. Introduction

The concept of a "correlation length", κ~\ defined so that regions
of a system whose spatial separation is greater than κ" 1 are "essentially"
uncorrelated plays an important part in the study of critical point phe-
nomena and generally serves to characterize the degree of order which
a system possesses1. It is therefore important to understand the relation
between the (possibly) different correlation lengths obtained by looking
at the decay of correlations between different pairs of observables,
"located a distance r apart", as r->oo, [3, 5]. In this note we prove that
for ferromagnetic spin systems the decay of the spin-spin pair correlation
"dominates" the decay of all higher order correlations. This result is
combined with some observations about the relationship between deriv-

* Research supported by AFOSR Contract #F44620-7l-C-0013.
1 The concept of a correlation length and its relation to critical point phenomena goes

back at least to Ornstein and Zernike [1]. Fisher in particular has emphasized the im-
portance of this quantity [2, 3], see in particular [3] for more references. The general
relation between clustering and the uniqueness of the equilibrium state is found in
Ruelle [4] and references contained there.
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atives of the free energy (and of the different spin expection values) with
respect to β and h and the decay of correlations to obtain bounds on
such derivatives.

The systems we consider are such that their Hamiltonians satisfy the
conditions of the Fortuin, Kasteleyn and Ginibre (FKG) inequalities [6].
An important class of such systems (and this note will deal primarily
with them) are Ising spin systems with ferromagnetic pair interactions,
whose Hamiltonians have the form

H Λ = - $ Σ Jij°iσj-hΣ°t-Σ Jijwj (i-i)
i,jeA ieA ieA
iΦj jeΛ

Here A is a finite subset of a v-dimensional lattice Zv, σt = ± 1 is an Ising
spin variable at each lattice site, i e A, the Jtj are translation invariant
ferromagnetic interactions, Jtj ̂  0, ̂  J θ 7 = α < oo, /z is a uniform external

field, and the variables σj in jeΆ = ZV\A, are specified as a boundary
condition bΛ, σj = {± 1, 0). The case σ7 = 0 for all / corresponds to "free
boundaries". (We shall also consider "periodic" boundary conditions.)

Let /(σ ι V ..., σfϊ) and g(σjl9..., σjm) with ίk, jk e A be monotone func-
tions (say non-decreasing) of their arguments then FKG show that /
and g are positively correlated,

<fg>-<f><g>^o (1.2)
where

Σ jSHJ. (1.3)

We shall use (1.2) to prove our basic result that the decay of all the
correlation functions is dominated by the decay of the pair correlation
function. It will be convenient to use, instead of the σj9 the lattice gas
occupation number variables, ρf = \ (σt + 1) = (0,1), i e A.

Let A, B, be sets of lattice sites: A, Be A. We define for such sets,

sA=Σeι > βΛ=Uβi (i 4)
ieA ieA

Clearly, SA9 ρA and (SA — ρA) are non-negative monotone functions of the
{ρj and thus also of the {σj. Hence, by (1.2),

<QB(SΛ~QA)> ^ <QB> <SA-QA>^0 (1.5)

and

Combining (1.5) and (1.6) yields the desired result;

Lemma 1.

0 ύ <QA QB> = <QA> <QB> ^ <SA ρB} - < ^ > <ρβ> ^ (SASB) - (SA> <SB}

V V r Λ
 ( 1 7 )

ieA jeB
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where u2(Uj) is the two particle correlation function (Ursell function)

o s u 2 ( i 9 j ) = { ρ i ρ j y - <Qiy <ρj> = i [ < ^ > - < a > <σ, >] g I . (i.8)

If u2(Uj) is bounded by a monotone non-increasing function of the
Euclidean distance rtj between the i-th and /-the site, u2(Uj)^ΰ(rij) then
it follows from Lemma 1 that

0 S <QΛQB> - <QA> <QB> S \A\ \B\ ϋ(d(A, B)) (1.9)

where \A\, \B\ are the number of sites in A and B respectively and d(A, B)
is the "distance" between the sets A and B. (We may choose the nearest
neighbor distance as unity.)

The inequalities (1.7)—(1.9) will clearly remain valid also in the
thermodynamic limit, A ->oo. Hence, denoting by B + r the set B trans-
lated by a lattice vector r, with length \r\, the correlations between ρA and
ρB+v will decay asymptotically, |r| —>oo, at least as fast ΰ(\r\).

The spin correlations (σAσB} — (σAy <σβ>, where σA = ]~J σt can be
ieA

expressed as sums of terms of the form (QA,ρB>y — (ρA,y (ρB,y where
A' C A and B' c B so that their decay as d(A, B)^co is also dominated
by that of ΰ(d(A, B)).

We shall also define the higher order Ursell (cluster) functions
ufa, ...,it) as [4,7],

U3(i,j, k) = <ρiρjρky - <ρ f> <ρJ ρfc> - <ρ7 > ̂ f c > - <ρk> <ρ i ρ j >

The definition of the Ursell functions is chosen so as to make them vanish,
for / ̂  2, whenever any subset of the variables in the expectation values
is independent of the rest. The corresponding spin Ursell functions, with
σi9σj9...9 replacing ρi9ρp ..., in (1.10) will be denoted by U2(i,j\ etc.,
and it is readily found that

Ufa9...,iί)^2ίufa,...Jί) for J £ 2 . (1.11)

It follows from the definition of the Ursell functions [4, 7], that for
any partition of the set {il9..., it} into two disjoint sets, A and 22, Ufa,..., it)
can be written as a finite sum of terms each having the form

( ± ! ) Π<e*.> KQΛ U*> - <ai'X(?B<>]
α

where A' cA9B
f CB and the disjoint sets {{Xα}, A#, B'} exhaust {il9..., i j .

Hence, using (1.9) and the bound \ρx\ < 1, we find that

\Ufa9...,Q\^Ctu(d(A9B)) (1.12)

22 Commun. math. Phys., Vol. 28
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with Cι some finite constant. Consequently, we always have,

(^/0, (1.13)

where Rt is the "diameter" of the set {ΐi,...,ΐj, Rι = Max{|rf.— r j } ,

II. Differentiability Properties in the Thermodynamic Limit

The free energy density per unit volume (multiplied by — β) of the
system specified by the Hamiltonian (1.1) is defined as

ψ(β,h;AbA) = \Λ\-1lnZΛ (2.1)

where we have set βh = ft, \Λ\ is the number of sites in Λ9 and bΛ indicates
the boundary conditions. The following statements are known to be true
for the thermodynamic limit, Λ->ΌO, of the free energy density

ψ(β,h)= limψ(β, h;Λ,bΛ),
Λ—*• oo

and of the correlation functions

(σAy(β,h)= \im(σAy(β,h;Λ,bΛ);
Λ-* oo

for references see [4, 7, 9].

(i) ψ(β, ft) exists (independent of bΛ) and is continuous in β and ft
for all real β and ft.

(ii) ψ is analytic in the complex ft-plane for Re ft Φ 0 and β ^ 0.
(iii) ψ is real analytic in β for β ^ 0 when Re h Φ 0.
(iv) There exists a β'>0 such that for βS-β'> ψ(β>h) is also real

analytic in β and hath = O.
(v) The thermodynamic limit of the correlation functions <^> (β, h),

exist (independent of bΛ), are translation invariant, having some clus-
tering property and are continuous in h at all those values of β ^ 0, and
of h at which ψ(β, h) is differentiable with respect to ft, [10].

(vi) The regions of β and ft, mentioned in (ii)—(iv), at which ψ is
known to be analytic are also regions of analyticity for the (σAy (/?, ft)
with the same analyticity properties as ψ(β, ft).

Thus, if we define the reciprocal critical temperature βc as the value
of β above which the spontanuous magnetization, which is a non-

decreasing function of /?, is positive

m*(β)= \im m(β,h)=\ ° ' ^ c (2.2)

where „ „
m(β,h) = δψ(β,h)/dh, (2.3)
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we have, ath = O, uniqueness and continuity of the correlation functions
and differentiability of ψ(β, h) (in h) for β<βc and analyticity in h and
Re β for β S β' < βc (f°r h φ 0 the analyticity holds of course for all β).
For β > βc the correlations (σA} (β, h) are discontinuous at h = 0 and the
limit A -^oo of (σ^) (β, h — O Λ, bΛ) will depend on the boundary con-
ditions bΛ [10].

There are still many questions, however about the analytic nature of
ψ(β, h) and of the <σ^> at h = 0 and β' < β < βc.

We shall now show that we may use (1.7) to establish such results
for ψ(β, h) and (σA} (β, h) when something is known about the asymptotic
behavior of the two-particle Ursell function in the neighborhood of h = 0.
(It is known that when the pair potential Jtj has a finite range, Jtj = 0
for rtj > R, (or decays exponentially) then the correlations

and also all Ursell functions, decay exponentially fast for any fixed h Φ 0
or when β ^ β\ [7].) To this end we shall make use of the following
relationship, between the derivatives of the free energy and sums over
the Ul9

~(
dh

(2.4a)

= Σ
ieΛ

δhm

(2.4 b)
= Σ Um + ι(iJu-Jm,β,kΛ,bΛ), m = l , 2 , . . . ,

ji, , jm e A

dψ(β, ft; A, bΛ) = 1 Σ < σ ; > ( f t -. Λ b ^ m ( ^ ~. A K ) (25)

dh \Λ\ ieΛ

Eqs. (2.4)-(2.5) can be readily obtained by explicit computation
[4, 7, 9]. Expressions similar to (2.4)-(2.5) (involving sums of combina-
tions of different order Ursell functions) hold for the derivatives of ψ
and (σAy with respect to /?, as well as for mixed derivatives.

It is now readily seen that when the magnitude of each term in the
sum on the right side of (2.4) is bounded in the neighborhood of h = 0,
uniformly in Λ9 for all m < fc, k ^ 1, and the sum of the bounds converges,
then xp(β, h) is k times differentiable at h = 0. In particular if, for some
boundary condition bΛ, U2(U j , β,h' >A bΛ) rg Kri~j

(v+ε\ with K and ε fixed
positive constants independent of A and h then taking the thermo-
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dynamic limit (via some subsequence, if necessary) of (σ^) (β, ft; A, bΛ)
we find that the limit {σA} (β, ft) is continuous and hence independent
of bΛ, even at ft = 0, since it is independent of bΛ for ft Φ 0. Consequently,
since each term on the right side of (2.4 a) is continuous in ft and the
series converges uniformly, d(σA) (β, h)/dh is continuous. The magneti-
zation m(β, ft), an odd function of ft, has a continuous derivative at ft = 0
and ψ(β, ft) is twice differentiable. Similar results hold for differentiation
with respect to β (and the cross derivative oϊψ(β, ft)) in any open interval,
β1<β<β2,m which the bound holds uniformly.

More generally a uniform bound on U2 of the form ΰ(r) =zKr~{kv+ε)

will make ψ(β, ft) e Ck+ί and (σAy e Ck in both variables. Finally if the
pair correlation decays exponentially

U2(i,j9 β9 ft; Λ9 bΛ) S K e x p [ - κr y ] , (2.6)

with K and κ>0, independent of A and ft (around ft = 0) then ψ{β,h)
and (σAy (j8, ft) e C00 in ft, (and also with respect to β in an open jβ-interval
in which the bound (2.6) held uniformly). This can be seen by using (1.13)
in (2.4) to give,

-^•iσ^iβ, 9A9 Λ)^Dm}^u{r)r

where Dm is a finite constant and the sum is over all lattice sites with
the site i serving as the origin. (Unfortunately, as fc-*oo, Dk grows as
bkCkk

vk, where b is a constant and Ck is defined in (1.12).) Ck itself may
grow as k\ so that we cannot, with the present bounds, establish
analyticity at ft = 0 even when (2.6) holds.

III. Bounds at ft = 0 and the Two Dimensional Ising System

In order to apply the results of the last sections to obtain information
about the behavior oϊψ and (σAy at a particular value of β and h we need
(for a general system satisfying the FKG inequalities) to have a bound
on U2(i,j β,h;A, bΛ), in a neighborhood of (/?, ft), which is uniform in A.
We shall show however that for the Ising spin system with only ferro-
magnetic pair interactions (the system we have been considering ex-
plicitely) it is sufficient to have a bound valid in the thermodynamic
limit (for boundary conditions to be specified) just at ft = 0 and some
value β to deduce the desired results for all values of ft and all 0 ̂  β rg β.
To this end we establish the following lemma.

Lemma 2. For an Ising spin system with only ferromagnetic pair
interactions,

U2(i,j, β, ft; A, b0) S U2(i9j9 β, 0; A, b0)£ U2(i,j, β, O A, b0)
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for β^β and Ac A. Here b0 indicates free boundaries, 5) = 0 in (1.1), and
bp indicates "periodic" boundary conditions. (This includes cylindrical
boundary conditions which are periodic in some directions and free in

others. "Screw" boundary conditions are also included. For all these
boundary conditions rtj is defined with the proper "modulo".)

Proof The first inequality in (3.1) follows from the work of Griffiths,
Hurst and Sherman [11] who proved that U3(ίJ, k,β,h; A, bo\ which is
an odd function of ft, is non-positive for ft ̂  0. But, as seen from (2.4),

= 2, U3(ι,j, k, β, ft; Λ, b0). (3.2)
dh keΛ

Hence, U2(Uj, β,h\A, bo\ which is a non-negative even function of ft, has
its maximum value at ft = 0. (The same is true for periodic boundary
conditions.)

To obtain the second inequality in (3.1) we note that U2 {ij, β,0;Λ, bo)
= <σίσ/ >(j8,0; yl, &0), since <σk> (β, O A, bo) = 0 by symmetry. We then
use the result of Griffiths [9] that <^^-> (β,h;Λ,b0) is monotone in-
creasing in β and in the "size" of A since increasing β or A increases
the ferromagnetic interactions. The last inequality holds for the same
reason; there are more ferromagnetic interactions in the periodic case.

It follows from (3.1) that (2.6), with bA = b0, will hold for all values
of ft and all β' ̂  β whenever

lim (σίσj)(β,h = O;A,bp)SKGxp[-κriΛ, K<oo, κ > 0 . (3.3)

An inequality of the form (3.3) can be established for the two dimen-
sional square lattice with nearest neighbor interactions for β < β0 β0 is
the (reciprocal) Onsager temperature defined by the relation sinh (2j80Λ)
sinh (2^S0 J2)= U with J1 and J2 the "horizontal" and "vertical" nearest
neighbor interaction. The value of κ in (3.3) is essentially equal to
ln{l+Δ) with A proportional to the "gap" in the spectrum of the transfer
matrix which is positve, A > 0 for β < β0 [12].

The bound (3.3) is a direct consequence of the expression for <^^>
in terms of the eigenvalues and eigenvectors of the transfer matrix
[3,12,13]. With cylindrical boundary conditions and i and / on the same
"row" (along the cylinder axis) the result is immediate, for "arbitrary"
directions use has to be made of the "symmetry" of the eigenvectors of
the transfer matrix (M. E. Fisher, private communication). Using more
abstract arguments Marinaro and Sewell [14] have shown recently that
a bound of the form (3.3) will hold for all correlations
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for an Ising system with arbitrary finite range interactions whenever
there is a gap in the spectrum of the transfer matrix.

We have thus established that for this two dimensional system ψ(β, h)
and <σAy (β, h) are C0 0 in h for β < β0 ^ βc. We also know [15], that the
formula for the "long range order spontaneous magnetization", m*(β)
= [1 - (sinft β/βo)~4Ϋ/8 for β^ βΌ, calculated by Onsager and Yang, is
a lower bound for m*(β), i.e. m*(β) > 0 for β > β0 which implies β0 ^ βc.
Hence β0 = βc for this system.

For more general Ising spin systems with ferromagnetic pair inter-
actions Fisher [16] has obtained a bound on <^^> (β9 ft = 0) in terms
of sums over self-avoiding walks on the lattice. These bounds which
Fisher has used to obtain lower bounds on βc9 may be combined with
our results to obtain information also about the derivatives of ψ and (σAy.

Concluding Remarks, (i) The above results (which do not involve
explicitely the Onsager result) apply also to higher spin Ising systems,
i.e. σt = l, / —2,..., — /, l>ί9 with ferromagnetic pair interactions [9].

(ii) The following may be useful for Ising systems with ferromagnetic
pair interactions at β>βc. Let ft^O be a field, which depends on Λ9

with hΛ-+0 as Λ->oo. Then, by [11], for ft>0,

U2(i,j, β,h + h'Λ;Λ, b0) £ U2(i,j, β9 hΛ Λ, b0).
Hence

U2 (i,j, β, ft) g U2 (ij9 β,0 + )^U2 (Uj, β) = lim inf U2 (i,j, β, hΛ Λ, b0).
Λ-* oo

Thus if we have an exponential bound on ϋ2(Uj, β\ <o^> (β, ft) will be
C°° as ft-^0. When this is true in some neighborhood of β then m*(β)
is also C00 at β.

Acknowledgements. I am greatly indebted to Michael E. Fisher, Jean Ginibre, Robert
B. Griffiths and Elliott H. Lieb for many helpful comments.
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