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BOUNDS ON THE DIMENSION OF SPACES OF 
MULTIVARIATE PIECEWISE POLYNOMIALS 

LARRY L. SCHUMAKER 

1. Introduction. Spaces of piecewise polynomials defined over a partition 
of a planar set are of considerable interest in approximation theory. In 
addition to their usefulness in a variety of data fitting problems, they 
also play a central role in the finite element method. Clearly, they are a 
natural generalization of the classical one-dimensional polynomial spline 
functions. 

Despite their obvious importance, until recently there has been relatively 
little work on general spaces of piecewise polynomials in two variables. 
In the last few years, however, the literature has grown considerably—see 
[1-25] and references therein. 

Some years ago in [19], I gave a lower bound on the dimension of spaces 
of piecewise polynomials defined on a triangulation. The purpose of this 
paper is to present both lower and upper bounds for general rectilinear 
partitions. The plan of the paper is as follows. In the remainder of this 
section we introduce the spline spaces of interest and establish some nota
tion. In §2 and §3 we establish our upper and lower bounds, respectively. 
§4 of the paper contains a variety of applications to special partitions. We 
conclude the paper with remarks. 

Suppose Q is a closed subset of R2, and suppose that A = {Û,-} is a 
collection of open subsets such that 

i) o = Ü Qi 
i 

2) Q{ n Oj = 0 , a l l U = 1,2, . . . , « . 

We call A a partition of Q. If each Qt- is a polygon, then we call A a recti
linear partition. If each Q{ is a triangle and if no vertex of any triangle 
lies in the middle of an edge of another triangle, then we call A a triangula
tion of Ö. 

Given a positive integer d we define the space of polynomials of order 
d(\n two variables) by 
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d d-i 

Pd = {Pi*, y) = g L au #y'9 aa s R}. 

DEFINITION 1.1. Let 0 < r < d, and set 

(1.1) Sd(A) = {se Cr(Q):s\Qi e Pd, i = 1, . . . , n) 

We call S the space of polynomial splines of order d and smoothness r 
associated with the partition A. 

It is clear that S is a linear space. In this paper we are interested in 
computing its dimension. It turns out that it is not possible to give a 
general formula—there are some cases where the dimension depends on 
the exact geometry of the partition — see [17, 19]. In general, we must 
be satisfied with upper and lower bounds for it. 

2. An upper bound on dimension. In order to state our main result, we 
need some additional notation. Throughout the remainder of this section 
we shall suppose that A is a rectilinear partition of a set Q. Given such a 
partition, we call the straight line segments making up the partition the 
edges of the partition, and refer to the points where these edges join toge
ther as the vertices of the partition. We denote the number of edges 
and the number of vertices in the interior of Q by E and V, respectively. 

Associated with the integers d and r, we define 

(2.1) a = {d + \){d + 2)/2, ß = (d - r)(d - r + l)/2 

and 

(2.2) r = [(d + \)(d + 2) - (r + l)(r + 2)]/2. 

We are now ready for the main result of the paper. 

THEOREM 2.1. Suppose that the vertices of the partition A are numbered in 
such a way that each pair of consecutive vertices in the list are corners of a 
common subset in A. For each i = 1,2, . . . , V, let 

(2.3) ëi = number of edges with different slopes attached to the i-th vertex 
but not attached to any of the first i — 1 vertices in the list, 

and let 

(2.4) ^ = L ( r + y + 1 - 7 •*,-)+. 

Then 

(2.5) dim Sr
d(A) ^ a + ßE - rV + £ ât-. 

PROOF. Let N be the number on the right-hand side of (2.5). By an element-
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ary lemma of linear algebra (cf. [19, Lemma 3.3]), it suffices to construct 
linear functionals Ai, . . . , kN such that 

(2.6) if j e S a n d fa = 0, i = 1, . . . , N, then s = 0. 

Suppose the vertices of the partition are ft, . . . , f F , and let Q° be a set 
in A with a corner at & (cf. Figure 1). It is well-known (cf. [16]) that we 
can find a set A0 of a point functionals in Q° which annihilate Pd. Let E1 

be the number of edges attached to the vertex &. We claim that we can 
find an additional ßE± - y + <7i functionals to obtain a set / l1 which an
nihilates any function in s y, where Q1 = (J{Û,-: Û,- has a vertex at &}. 
To show this, we may suppose that & is at the origin, and that the figure 
is rotated so that none of the edges lie on the x or y axes. Suppose we num
ber the edges counter clockwise, starting from Q°. Each of these edges is 
described by an angle fly or equivalently by an equation y + ocj x = 0, 
j = 1, ...,EX. 

FIGURE 1. A rectilinear partition. 

Now suppose s = 0 on 0°. Then after crossing the first edge, 5 must 
have the form 

(2.7) *(*, 7) = E t cj,k <f>), *(*. y), 

where in general $tk(x9 y) = xJ~k(y + atx)r+k. Define 
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$9k(x,y)+ = 
'$,k(x,y) if arctanQV^) à 0i9 

0 otherwise. 

Then it follows that the set of functions in S\Q\ Which vanish on Q° are 
precisely the functions of the form 

n d—r j 

s{x, y) = E L Ü cvjk(j)%{x, y)+, (n = E{) 
V=l j — \ k=l 

where the coefficients satisfy the equations 

Ê E i Cvjk<f>h(x> y) = o 
v = l y = i k=l 

for all x, y e Q°. By equating the coefficients of the various powers of 
xvyv to zero, we can rewrite this as a homogeneous system of linear equa
tions 

(2.8) AC = 0, 

where c = (ch . . .,cd-r)
T, cj = (cw, . . . , cm, . . .,cnJj; . . . , cnJ1)

T, and 

A = 

^rf-r 

where for each j = 1, . . . , d— r, Aj is an r + y = 1 by n • y matrix of the 
form Aj = [Aji, ..., ^fyj with y4y,- given by 

1 

{'t'y, i 

Clearly (2.8) is a system of 7- equations in nß unknowns. It is shown in 
[19] that the rank of A is 7- — ö\. We conclude that we can add nß — 
Y + ai requations to force the coefficients to be zero. Since n = El9 this 
is equivalent to adding ßEx — y + ô\ linear functionals to A0 to get A1. 

We now continue this process one vertex at a time. In particular, if E{ 

denotes the number of edges attached to the vertex & (but not to any of 
the vertices £1? . . . , f ,-_i), then we can add a set of ßE{ — y + 07 func
tionals to yl**_1 to get a set yl' which annihilates splines on 

0s = O1'-1 U ( û / : Ûy has a corner at &}. 
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After proceeding through all vertices and adding ß functional associated 
with each remaining uncounted edge, we end up with a set of N linear 
functional which annihilates all of S. This completes the proof. 

For convenience, we give values of a, ß, and y in Table 1 for several 
choices of d and r. 

d r a ß 7* 

2 
3 
4 
5 
3 
4 
5 
4 
5 

1 
1 
1 
1 
2 
2 
2 
3 
3 

6 
10 
15 
21 
10 
15 
21 
15 
21 

1 
3 
6 
10 
1 
3 
6 
1 
3 

3 
7 
12 
18 
4 
9 
15 
5 
11 

TABLE 1. The coefficients (2.1)-(2.2) for some choices of d and r. 

It is clear that the upper bound given in Theorem 2.1 is numerically 
computable. The following example shows that its value depends on the 
ordering of the vertices. 

EXAMPLE 2.2. Let Q and A be as shown in Figure 2, and let d = 2 and 
r = 1. Compute an upper bound for the associated spline space. 

DISCUSSION. Here a = 6, ß = 1, and 7- = 3. If we order the vertices so 
that the lower one comes first, then we have d\ = (3 — ë{)+ = 0 and 
a2 = (3 - ë2)+ = 1, and hence dim S\{â) ^ 6 + 7 - 2 - 3 + 1 = 8. 

FIGURE 2. The partition for Example 2.2. 
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On the other hand, if we order the vertices so that the upper one comes 
first, then <?i = â2 = 0, snd now dim S\{A) ^ 6 + 7 - 2 - 3 = 7 . 

3. A lower bound on dimension. In order to be able to use the upper 
bound of Theorem 2.1 to determine the exact dimension of a space of 
splines, we need to have a lower bound to combine it with. We begin by 
presenting a lower bound which applies to arbitrary rectilinear partitions. 

THEOREM 3.1. Let Abe a rectilinear partition of a set Q, and let a, ß and 
f be as in (2.1)-(2.2). Given any ordering of the vertices, let 

(3.1) et- = number of edges with different slopes attached to the i-th vertex, 

(3.2) <r, = E ( r + 7 + 1 -J ' *V)+, *' = 1, . . . , V. 

Then 

(3.3) dim Sr
d{A) è a 4- ßE - rV + £ <j,. 

PROOF. The proof follows along the same lines as the proof of Theorem 
3.1 of [19]. In particular, if J is a partition of a set Q with only one interior 
vertex, then the argument proceeds exactly as before. To get the result 
for a general partition, we use a merging procedure. Indeed, given any 
vertex on the boundary of Q connected to an interior vertex £* by an edge, 
we may remove one polygon having these vertices to get a new set Qi 
with one less interior vertex (cf. Figure 3). Assuming the result for parti
tions with V — 1 interior vertices, we can then merge this space with a 
spline space over the cell Q2 with interior vertex £* to get the result — cf. 
the argument in [19]. 

partition. 

<r / \ \ f 

FIGURE 3. Merging cells of a 

We note that the lower bound in (3.3) has exactly the same form as 
the upper bound in (2.5), the only difference being that here at- replaces â{. 
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By the definitions (2.4) and (3.2), it is clear that for each i = 1, . . . , « , 
a è ài, and thus the upper bound is greater than or equal to the lower 
bound. We have the following immediate corollary. 

COROLLARY 3.2. Suppose that for some ordering of the vertices of a trian
gulation A we have 

(3.4) Oi = âi9i= 1, . . . . K. 

Then the expressions in (2.5) and (3.3) agree and give the dimension of the 
spline space (1.1). 

The following example (cf. [17,19)] shows that even for relatively simple 
triangulations, it may happen that our lower and upper bounds do not 
agree. 

EXAMPLE 3.3. Let A be the triangulation show in Figure 4, and let d = 2 
and r = 1. Compute the dimension of the corresponding spline space. 

DISCUSSION. It is easy to see that o\ = 02 = tf3 = 0 while no matter 
how we order the veitices, we will always have (?3 = 1. It follows that 
6 ^ dim S\(A) g 7. Indeed, it is known (cf. [17, 19]) that the exact di
mension of this spline space depends on the location of the vertices. If 
the figure is symmetric, the dimension is seven ; otherwise it is six. 

FIGURE 4. The partition in Example 3.3. 

We now give an example of a rectangular partition where the upper and 
lower bounds do agree. Other examples can be found in §5. 

EXAMPLE 3.4. Let A be the rectilinear partition shown in Figure 5. Let 
d — 2 and r = 1. Compute the dimension of the associated spline space. 

DISCUSSION. It is easily seen that if we number the vertices as shown in 
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Figure 5, then ât- = (3 - ê,)+ = 0, i = 1, . . . , 4, It follows that 
dimSKJ) = 6 + 17 - 4 • 3 = 11. 

FIGURE 5. The partition in Example 3.4. 

4. Examples and applications. In this section we apply our upper and 
lower bounds to several cases of interest. We begin with a special parti
tion of a rectangle. Let 

Q = [a, b] x [ä, b] 

a = x0 < xx < • - • < xk < xk+1 = b 

ä = x0 < xi < - • • < x% < Xk+i = b 

If A is the partition of Q which is obtained by drawing grid lines at the 
point xi, ..., xk and xl9 ..., x~k along with the upward sloping diagonals 
(cf. Figure 6), then we call A a type one partition. 

FIGURE 6. Type-1 partitions. 
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THEOREM 4.1. Let A be an equally spaced type-1 partition of a rectangle Û. 
Then for allO g r < d, 

dim Sr
d{A) = kk(d2 - 3rd + 2r2 + a) 

(4.2) + (k + &) (</2 - 2rrf + d - r + r2) 

+ (2rf2 + 4rf - 2™? - r + r2 + 2)/2, 

Ir2/4 if r is even and 3r + 1 > 2öf, 

(r2 - l)/4 i / r w odd and 3r + 1 > 2d, 

(d — r)(2r — d) otherwise. 
PROOF. We easily check that V = kk and E = 3Ä:fc + 2(A: + k) + 1. 

If we put the vertices of the partition in lexicographical order, then we 
note that e{ = e{ = 3 for all i, and thus 

d-r 
a. = öi = G «= L (r + 1 - 2 • y)+ 

for all Ï = 1, . . . , V. It follows that Corollary 3.2 can be applied, and 
after some algebra, we obtain (4.2) 

Our next theorem deals with arbitrary type-1 partitions. 

THEOREM 4.2. Let Abe a general type-1 partition. Then for all 1 < d, 

(4.4) dim S\{ A) = kk(d2 -3d+2) + (k + k){d2 -d) + (d2 + d+ 1). 

PROOF. If we put the vertices in lexicographical order, then it is easy to 
see that e{ is always at least three, and thus ât• = 0 for / = 1, . . . , V. Now 
applying Corollary 3.2, we obtain (4.4). 

Theorem 4.2 gives the dimension of C1 spline spaces on general type-1 
partitions. The following example shows that for r > 1, our upper and 
lower bounds do not agree, and in fact the actual dimension can be equal 
to the upper bound. 

EXAMPLE 4.3. Let A be the unequally spaced type-1 partition shown in 
Figure 6 with k = k = 2. Let d — 3 and r = 2. 

DISCUSSION. If we put the vertices in lexicographical order, then we see 
that Oi = 0 and #,- = <5,-3, / = 1, . . . , 4. It follows that 15 ^ dim S\(A) ^ 
16. The actual dimension of this space is sixteen. Indeed, in addition to 
the ten linearly independent polynomials in S, the following six splines 
also belong to the space : 
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(x - x{%, (x - x2)\, (y - xxf+9 (y - x2f+, 

(y~x2-(x-XQ)(X3-x2)l(x1 -x0))%9 (y-x0-(x-*2)C*i-x0)/(x3-x2))%. 

Theorem 4.1 asserts that this space has dimension nineteen in the case 
where A is an equally spaced type-1 partition. 

We turn now to another special partition of a rectangle. Let Q and grid 
points xi.. . , xk and xl5 . . . , x~k be given as in (4.1). If J is a partition of 
Q which is obtained by drawing all the grid lines plus both diagonals in 
each subrectangle, we call A a type-2 partition of Q. Typical type-2 parti
tions are shown in Figure 7. 

FIGURE 7. Type-2 partitions. 

THEOREM 4.4. Let A be an equally spaced type-2 partition of a rectangle 
Q. Then for all <ò g r < d, 

dim Sr
d{A) = kk(2d2 - 6rd + 4r2 + a8 + ac) 

(4.5) +{k + k)(2d2 - 5rd + d - r + 3r2 + ac) 

+ (Ad2
 + 4d _ Srd - r + 5r2 + 2 + 2ac)ß, 

where 

(4.6) a8 = § V + 1 - 3 • j)+, ac = 2 (r + 1 - ./)+• 

PROOF. Here there are &£ vertices at the corners of the grid and an 
additional kk + (k 4- k) + 1 vertices where the diagonals cross. The 
number of edges is given by E = 6kìc + 5(k + k) + 4. If we put the grid 
vertices in lexicographical order, followed by the cross vertices, then we 
note that at• = o^J= agïov i = 1, . . . , kk. For the remaining points we 
have at. =~^ = ac, i = kk + 1, . . . , V. Now Corollary 3.2 applies, and 
after some algebra, we obtain (4.5). 
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The theorem above deals with equally-spaced type-2 partitions. In the 
unequally-spaced case, we have the following result. 

THEOREM 4.5. Let A be an arbitrary type-2 partition of a rectangle Q. 
Then for all r < d with r = 0, 1, 2, 

(4.7) dim Sr
d(A) is given by the formula (3.3). 

PROOF. If we order the vertices as in the proof of Theorem 4.4, then since 
ë{ ^ 4, we see that <?,• = 0, i = 1, . . . , kk. On the other hand, since 
e. = ë{ = 2 and thus 07 = 07 for/ = kk + 1, . . . , V, Corollary 3.2 applies 
to establish the result. 

We close this section with a result on a more general kind of partition. 
Let Q be the closure of an arbitrary domain, and suppose that a partition 
A is a simple cross cut partition (cf. [2]) obtained by drawing L lines across 
Q. (Being simple requires that exactly two lines meet at each vertex in Q— 
see Figure 8). 

L = 5 

F = 5 

E= 15 

FIGURE 8, A Simple cross-cut partition 

THEOREM 4.6. Let Abe a simple cross-cut partition of a set Q, and let a 
and ß be as in (2.1). Then for all 0 ^ r < d < 2r + 1, 

(4.8) dim Sr
d(A) = a + ßE - V(d2 + 3d - 2r2 - 4r)/2, 

while if2r+ 1 ^ d, then 
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(4.9) dim Sr
d{A) = a + ß(E - 2V). 

PROOF. Here et- = ë{ = 2 for i = 1, . . . , V, and so 

<*-' , , x [r(r+\)ß if 2 r+!<</ , 

/=i 1 l - 3 r 2 - r + </+4rfr-d2 iîr<d^2r. 

The result now follows from Corollary 3.2. 

The result (4.9) agrees with the formula obtained in Theorem 5.1 of 
[2] when we take note of the fact (cf. Lemma 5.1 of [2]) that L = E - 2V. 

5. Remarks. 1. In this paper we have confined our attention to rectilinear 
partitions since it is very difficult to see what the connection would be 
between polynomials in adjoining regions separated by a curved boundary. 
The boundary of Q itself can, of course, be curved. 

2. The idea of obtaining an upper bound on dimension by placing linear 
functional was used already in several earlier papers—see, e.g., [17-19], 
Despite using them in a similar way on some special cases in [19], I did not 
see the general result at the time, however. 

3. Generally I have followed the notation of [19] throughout this paper. 
One notable change, however, is that here I am using d for the degree 
of the polynomials, while in [19] I used m for the order. The two are 
connected by m = d + 1. 

4. Corollary 3.2 is easiest to apply when the number of edges at each 
vertex is relatively large compared with the smoothness order r. Un
fortunately, it is easy to construct a variety of examples similar to Example 
3.3 where the upper and lower bounds do not agree. On the other hand, 
there are also many examples where they do agree and provide a dimen
sion statement in situations where no other presently available methods 
apply. Example 4.3 is a case which does not seem to fit any available 
theory, not even the quasi-cross-cut theory of [6]. It is of interest to note 
that in this example the correct dimension equals the upper bound rather 
than the lower one. 

5. I had hoped that the upper bound presented here would shed some 
light on why high degree splines with low smoothness do not seem to be 
subject to the difficulty inherent in Example 3.3. (It is known [16] that for 
all d ^ 5, the C1 splines on the partition in Figure 4 have dimension given 
by the lower bound. The cases d = 3, 4 remain unclarified). 

6. Type-1 and Type-2 partitions have been considered in a variety of 
papers — see, e.g., [3-10, 19]. Dimension statements for the equally 
spaced case and for several values of rfand r can be found in [19]. Slightly 
difTerent looking (but equivalent) formulae were found for general d and 
r in [6]. The results for unequally spaced partitions are new. 

7. In comparing the upper and lower bounds given here for a variety of 
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quasi-cross-cut partitions, I found them to agree with each other and with 
the dimensionality formulae given in [6]. Hence, I conjecture that this 
holds for general quasi-cross-cut partitions. The problem in constructing 
a proof is that there does not seem to be a simple relation between vertices, 
edges, and lines in such a partition. 

8. Recently there have appeared a number of results on the dimension 
of spaces of splines which satisfy boundary conditions — see [8-10]. The 
tools presented here can also be used on these kinds of spline spaces. 

9. After identifying the dimension of a space of splines, the next im
portant question is to construct a basis, and if possible a local basis, for 
the space. Considerable work has been done on this problem for special 
partitions—see, e.g., [1-10] and references therein. 
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