# Bounds on the labeling numbers of chordal graphs 

Peter Che Bor Lam ${ }^{1}$, Guohua $\mathrm{Gu}^{2}$, Wensong Lin ${ }^{2}$ and Ping-Tsai Chung ${ }^{3}$<br>1. Department of mathematics, Hong Kong Baptist University, Hong Kong, P. R. China.<br>2. Department of Mathematics, Southeast University, Nanjing, P. R. China<br>3.Department of Computer Science, Long Island University, Brookville, New York, USA.


#### Abstract

Motivated by the conjecture on the $L(2,1)$-labelling number $\lambda(G)$ of a graph $G$ by Griggs and Yeh [2] and the question: "Is the upper bound $(\Delta+3)^{2} / 4$ for $\lambda(G)$ for chordal graphs with maximum degree $\Delta$ is sharp?", posed by Sakai [3], we study the bounds for $\lambda(G)$ for chordal graphs in this paper. Let $G$ be a chordal graph on $n$ vertices with maximum degree $\Delta$ and maximum clique number $\omega$. We improve the upper bound $(\Delta+3)^{2} / 4$ on $\lambda(G)$ and the upper bound $(\Delta+2 d-1)^{2} / 4$ on $\lambda_{d}(G)$ with $d \geq 2$, answering question of Sakai and improving results of Chang et al. Finally, we study the labelling numbers of $r$-power paths $P_{n}^{r}$ on $n$ vertices. We obtain $\lambda_{d}\left(P_{n}^{r}\right)$ for small integers $d \geq 2$ and $r \geq 2$, and give a better bound of $\lambda_{d}\left(P_{n}^{r}\right)$ for large integers $d$ and $r$.


Key words. channel assignment problem, distance two labelling, chordal graph

## 1. Introduction

The problem of labelling vertices of a graph with a condition at distance two is a variation of the channel assignment problem introduced by Hale and Roberts, respectively in [6] and [7], where "close" transmitters receive different channels and "very close" transmitters must receive channels at least two apart. This problem was first introduced and formulated as a graph labelling problem by Griggs and Yeh [2].

Given a graph $G$ with vertex set $V$ and edge set $E$, for any $u, v \in V$, let $d_{G}(u, v)$ denote the distance (the length of a shortest path) between $u$ and $v$ in $G$. An $L(2,1)$ - labelling $f$ is an integer assignment $f: V \rightarrow\{0,1,2, \ldots\}$ such that if $u v \in E$, then $|f(u)-f(v)| \geq 2$; and if $d_{G}(u, v)=2$, then $|f(u)-f(v)| \geq 1$. The number assigned to each vertex under $f$ will be called $f$-labels, or simply labels. The span of an $L(2,1)$-labelling $f$, denoted $\operatorname{span}(f)$, is the absolute difference between the maximum and minimum labels. Clearly, we may assume the smallest and the largest label of each labelling $f$ of $G$ is 0 and $\operatorname{span}(f)$ respectively. The $L(2,1)$-labelling number, $\lambda(G)$, is the minimum of $\operatorname{span}(f)$ over all $L(2,1)$-labellings of $G$. In [5], the authors considered a generalization of $L(2,1)$-labelling, namely, $L(d, 1)$ labelling of graphs. For a positive integer $d$, an $L(d, 1)$-labelling of $G$ is an integer assignment $f: V \rightarrow\{0,1,2, \ldots\}$ such that if $u v \in E$, then $|f(u)-f(v)| \geq d$; and if $d_{G}(u, v)=2$, then $|f(u)-f(v)| \geq 1$. The $L(d, 1)$-labelling number of $G, \lambda_{d}(G)$, is the minimum of $\operatorname{span}(f)$ over all $L(d, 1)$-labellings of $G$. Clearly, any complete graph of $n$ vertices has the $L(d, 1)$-labelling number $(n-1) d$.

The $L(2,1)$-labelling and the $\mathrm{L}(\mathrm{d}, 1)$-labelling of graphs have been extensively studied in the past decade $([2])$. For any graph $G$, we shall denote by $\Delta(G)$, or simply by $\Delta$, its maximum degree. Griggs and Yeh [2] proved that $\lambda(G) \leq \Delta^{2}+2 \Delta$ and conjectured that $\lambda(G) \leq \Delta^{2}$; Chang and Kuo [4] improved this bound to $\Delta^{2}+\Delta$. Chang et al [5] proved that $\lambda_{d}(G) \leq \Delta^{2}+(d-1) \Delta$ for any integer $d \geq 2$. In [3], Sakai investigated the $L(2,1)$-labelling
of chordal graphs and unit interval graphs and proved that $\lambda(G) \leq(\Delta(G)+3)^{2} / 4$ for any chordal graph $G$ and asked whether this upper bound is sharp.

In Section 2, we improved the above upper bound. By similar arguments, we also improve the upper bound $(2 d+\Delta-1)^{2} / 4$ for $\lambda_{d}(G)$ of any chordal graph $G$ and any integer $d \geq 2$, presented by Chang et al [5]. In Section 3, we determine $\lambda(G)$ and give an upper bound of $\lambda_{d}(G)$, where $G$ are $r$-power paths for any positive integers $d, r \geq 2$. Also, we correct a result on power paths by Chang et al [5].

## 2. General Chordal Graphs

In this paper, all graphs are finite, simple and undirected. For undefined terms and concepts in graph theory, we refer to [1]. Let $G=(V, E)$ be a graph with vertex set $V$ and edge set $E$. The number of vertices, denoted by $n=|V|$, is called the order of $G$. Two vertices $u, v \in V$ are said to be adjacent if edge $u v \in E$. A vertex $u$ is a neighbor of vertex $v$ if $u$ is adjacent to $v$. For any set $S \subseteq V,|S|$ denotes the number of vertices of $S$ and $G[S]$ denote the subgraph of $G$ induced by $S$. Also, $G-S$ and $G-v$ denote the induced subgraph $G[V \backslash S]$ and $G[V \backslash\{v\}]$ respectively. A clique of order $k$, denoted by $K_{k}$, is a complete subgraph induced by $k$ vertices. We use $P_{k}=\left[v_{1}, \ldots, v_{k}\right]$ to denote a path of length $k-1$ from $v_{1}$ to $v_{k}$; and $C_{k}=\left[v_{1}, \ldots, v_{k}, v_{1}\right]$ a cycle of length $k$ in $G$. A chord of cycle $C_{k}$ is an edge joining two non-consecutive vertices on the cycle $C_{k}$. A subset $S \subset V$ is a separator or vertex cutset of $G$ if there are two vertices $x$ and $y$ in the same component of $G$ such that they are in two distinct components of $G-S$. We say $S$ separates $G$ and $S$ is an $x y$-separator. The set $S$ is a minimal separator of $G$ if $S$ is a separator and no proper subset of $S$ separates $G$. Likewise, $S$ is a minimal $x y$-separator if $S$ is an $x y$-separator and no proper subset of $S$ separates $x$ and $y$ into distinct components.

A graph is chordal if every cycle of length greater than three has a chord. Clearly, any induced subgraph of a chordal graph is also chordal. A simplicial vertex of a graph $G$ is a vertex such that its neighbors induce a clique in $G$. A perfect elimination ordering of $G$ on $n$ vertices is a vertex ordering $v_{1}, v_{2}, \ldots, v_{n}$ of $G$ such that for $1 \leq i \leq n$, the vertex $v_{i}$ is a simplicial vertex of the subgraph induced by $\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}$ in $G$. Dirac proved that every chordal graph has a simplicial vertex and characterized chordal graphs by minimal vertex separators, as shown below in Lemma 2.1 and Theorem 2.2.

Lemma $2.1[8,9]$ Every chordal graph $G$ has a simplicial vertex. If $G$ is not complete, then it has two nonadjacent simplicial vertices.

Theorem 2.2 [8] A graph $G$ is chordal if and if every minimal separator of $G$ induces a complete subgraph in $G$.

The following lemma is an useful fact that for any connected chordal graph $G$, the induced subgraph of $G$ obtained by removing some simplicial vertices from the graph remains connected and chordal.

Lemma 2.3 Let $G$ be a connected chordal graph and let $S$ be a set of simplicial vertices of $G$. Then $G-S$ is also a connected chordal graph.

Proof. Clearly, $G-S$ is chordal. If $G-S$ is not connected, then $S$ contains a minimal $x y$-separator $S^{\prime}$ for some vertices $x$ and $y$. By Theorem 2.2, $G\left[S^{\prime}\right]$ is complete in $G$. Let $G_{x}$ and $G_{y}$ be the connected of $G-S^{\prime}$ containing $x$ and $y$, respectively. Since $S^{\prime}$ is minimal, each vertex $v \in S^{\prime}$ is adjacent to some vertex in $G_{x}$ and some vertex in $G_{y}$; otherwise $S^{\prime} \backslash\{v\}$
would be an $x y$-separator, contrary to the minimality of $S^{\prime}$. Then each vertex in $S^{\prime}$ can not be simplicial, a contradiction. Hence $G-S$ is connected.

We now consider the labellings of chordal graphs. Sakai obtained [3] an upper bound of $\lambda(G) \leq(\Delta+3)^{2} / 4$ for any chordal graph $G$ and asked whether this upper bound is sharp. Theorem 2.5 below answers her question in the negative. We shall need the following proposition by Griggs and Yeh [2].

Proposition 2.4 Suppose $P_{n}$ denotes a path on $n$ vertices. Then $\lambda\left(P_{2}\right)=2, \lambda\left(P_{3}\right)=$ $\lambda\left(P_{4}\right)=3$ and $\lambda\left(P_{n}\right)=4$ for all $n \geq 5$.

Theorem 2.5 If $G$ is a chordal graph, then $\lambda(G) \leq\left\lfloor(\Delta+3)^{2} / 4\right\rfloor-1$.
Proof. We may assume without loss of generality that $G$ is connected and chordal. The theorem clear holds if $G$ is complete or if $\Delta \leq 2$, so we may also assume that $G$ is not complete and $\Delta \geq 3$. We proceed by induction on the number of vertices $n$ of $G$.

The case where $n=1$ is trivial. Suppose that the theorem holds for all chordal graphs with fewer than $n$ vertices, where $n>1$. By Lemma $2.1, G$ must have two nonadjacent simplicial vertices. Moreover, for any simplicial vertex $v$ of $\left.G, G_{v}\right)=G \backslash\{v\}$ is a chordal graph with fewer vertices than $G$; hence by induction $\lambda\left(G_{v}\right) \leq\left\lfloor(\Delta+3)^{2} / 4\right\rfloor-1$. Suppose that $\lambda(G) \geq\left\lfloor(\Delta+3)^{2} / 4\right\rfloor$. With a series of claims about simplicial vertices of $G$, we shall reach a contradiction.

Let $d(v)=k$ and $v_{1}, v_{2}, \ldots, v_{k}$ its neighbors in $G$. Then, $v$, together with vertices $v_{i}$ 's, form a maximal clique $K_{k+1}(v)$. For $i=1,2, \ldots, k$, we let $M\left(v_{i}\right)$ be the set of vertices adjacent to $v_{i}$ but not in $K_{k+1}(v)$. Let $f$ be a labelling of $G_{v}$ with $\operatorname{span}(f)=\left\lfloor(\Delta+3)^{2} / 4\right\rfloor-1$.

Claim $1 \quad k=\lfloor(\Delta+3) / 2\rfloor$ or $k=\lfloor(\Delta+3) / 2\rfloor+1$.
Proof. Note that $v$ is distance one away from $k$ vertices $v_{i}, i=1,2, \ldots, k$ and distance two away from neighbors of each vertex in $M\left(v_{i}\right), i=1,2, \ldots, k$. Therefore, when we try to label $v$ with the numbers in $\left\{0,1, \ldots,\left\lfloor(\Delta+3)^{2} / 4\right\rfloor-1\right\}$, there are at most $3 k+k(\Delta-k)$ numbers used by $f$ to be avoided. However, the quadratic function $3 k+k(\Delta-k)$ attends its maximum $(\Delta+3)^{2} / 4$ when $k=(\Delta+3) / 2$. Therefore, if $k \neq\lfloor(\Delta+3) / 2\rfloor$ and $k \neq$ $\lfloor(\Delta+3) / 2\rfloor+1$, then $3 k+k(\Delta-k) \leq\left\lfloor(\Delta+3)^{2} / 4\right\rfloor-1$, and there is at least one number in $\left\{0,1, \ldots,\left\lfloor(\Delta+3)^{2} / 4\right\rfloor-1\right\}$ to be assigned to $v$, contrary to the assumption on $G$. This completes the proof of Claim 1 .

Claim 2 For $1 \leq i \leq k, d\left(v_{i}\right)=\Delta$, and for $i \neq j, M\left(v_{i}\right) \cap M\left(v_{j}\right)=\emptyset$. Also $\left|M\left(v_{i}\right)\right|=$ $\Delta-k$ for $i=1,2, \ldots, k$.

Proof. If any of Claim 2 does not hold, then the simplicial vertex $v$ is distance two away from at most $k(\Delta-k)-1$ vertices. By the similar arguments in Claim 1, we can label vertex $v$ with a number in $\left\{0,1, \ldots,\left\lfloor(\Delta+3)^{2} / 4\right\rfloor-1\right\}$, contradicting the assumption on $G$. So Claim 2 holds.

Claim 3 Each $v_{i}, i=1,2, \ldots, k$ is a minimal separator of $G$.
Proof. Without loss of generality, suppose that $G_{v_{1}}$ is connected. By Claim $1, k \geq 3$. Since $G$ is not complete, so by Claim $2, M\left(v_{i}\right)$ is non-empty for $i=1,2, \ldots, k$. Take a vertex $x$ in $M\left(v_{1}\right)$, and then consider some shortest path $P_{r+1}=\left[x=x_{0}, x_{1}, \ldots, x_{r}=v_{2}\right]$ from $x$ to $v_{2}$ in $G_{v_{1}}$. By Claim 2, $r \geq 2$. Adding two edges $v_{1} v_{2}$ and $v_{1} x$ to $P_{r+1}$, we get a cycle $C_{r+2}=\left[v_{1}, x_{0}, x_{1}, \ldots, x_{r}, v_{1}\right]$ in $G$. Since $G$ is chordal and $C_{r+2}$ is a cycle of length greater than three, $C_{r+2}$ must have a chord. But the edge $v_{1} v_{r-1}$ is only one possible chord in $C_{r+2}$, which is contrary to Claim 2. Thus Claim 3 follows.

Claim 4 If $u$ and $v$ are two distinct simplicial vertices of $G$, then $d(u, v) \geq 3$.
Proof. Let $v_{1}, v_{2}$ be two distinct simplicial vertices of $G$ with $d\left(v_{1}\right)=l_{1}$ and $d\left(v_{2}\right)=l_{2}$. Also let $K\left(v_{1}\right)$ and $K\left(v_{2}\right)$ be two maximal cliques containing $v_{1}$ and $v_{2}$, respectively. By Claim 3 , each neighbor of a simplicial vertex of $G$ is not simplicial, so $v_{1}$ and $v_{2}$ are not adjacent. If $v_{1}$ and $v_{2}$ are at distance two, then there is a vertex $u$ adjacent to each of them. By Claim 1, $l_{i}>\Delta / 2, i=1,2$. By Claim $3, u$ is a minimal separator and so $K\left(v_{1}\right) \cap K\left(v_{2}\right)=\{u\}$. Thus $d(u) \geq l_{1}+l_{2}>\Delta$, a contradiction.

Let $S$ be the set of all simplicial vertices of $G$. By Claim 4, the induced subgraph $G-S$ is nonempty. By Lemma 2.3, $G-S$ is a connected and chordal graph. Let $x$ be a simplicial vertex of $G-S$. If $x$ is not adjacent to any vertex in $S$, then $x$ is simplicial in $G$ and we have a contradiction. So by Claim 4 again, there is one and only one simplicial vertex $v$ in $S$ such that $v$ is adjacent to $x$ in $G$. Suppose $d(v)=k$. Then $x=v_{i}$ for some $i, 1 \leq i \leq k$. Clearly, $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \cup\left(\cup_{i=1}^{k} M\left(v_{i}\right)\right) \subseteq V(G-S)$. Using Claims 1,2 and 3 , we can show that $x$ cannot be a simplicial vertex of $G-S$, a contradiction. This completes the proof of Theorem 2.

Based on the same arguments in the proof of Theorem 2.5 above, we have the following theorem about the upper bound of the $L(d, 1)$-labelling number of chordal graphs, improving the results by Chang et al [5].

Theorem 2.6 Suppose $d \geq 2$ is a positive integer and $G$ is a chordal graph. Then $\lambda_{d}(G) \leq\left\lfloor(\Delta+2 d-1)^{2} / 4\right\rfloor-1$.

We are unable to find any example in which the upper bound in Theorem 2.5 is attained. By Proposition 2.4, $\lambda\left(P_{n}\right)=4=\left\lfloor(\Delta+3)^{2} / 4\right\rfloor-2$ for paths on $n \geq 5$ vertices. So we think that the upper bound of $(\Delta+3)^{2} / 4$ might be decreased only to $\left\lfloor(\Delta+3)^{2} / 4\right\rfloor-2$ for $\lambda(G)$ for a general chordal graph $G$.

## 3. Power Paths

In this section, we consider a kind of special chordal graphs. Let $r \geq 1$ be an integer. The $r$-power path on $n$ vertices, denoted by $P_{n}^{r}$, is the graph with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edge set $\left\{v_{i} v_{j}: 1 \leq|i-j| \leq r\right\}$. A 1-path on $n$ vertices is an ordinary path denoted as $P_{n}$ in the first paragraph of Section 2.

In [5], the authors studied the $L(d, 1)$-labelling of the $r$-power paths and claimed that for two integers $r \geq 2$ and $d \geq 2$,

$$
\lambda_{d}\left(P_{n}^{r}\right)= \begin{cases}(n-1) d, & n \leq r+1 \\ r d+1, & r+2 \leq n \leq 2 r+2 \\ r d+2, & n \geq 2 r+3\end{cases}
$$

There is a mistake in the proof of the above claim when $n \geq 2 r+3$. It is straight-forward to check that $\lambda_{3}\left(P_{10}^{2}\right)$ is 9 not 8 , and so $\lambda_{3}\left(P_{n}^{2}\right)$ is at least 9 for $n \geq 10$. Thus the 2 -power path $P_{n}^{2}$ for $n \geq 10$ is a counterexample to their claim for the case $n \geq 2 r+3$.

In this section, we also study the $L(d, 1)$-labelling of the $r$-power paths. We try to determine all $L(d, 1)$-labelling numbers of $P_{n}^{r}$, but we find that it seems difficult to compute the exact value of $\lambda_{d}\left(P_{n}^{r}\right)$ for large integers $r$ and $d$. First, we have the following theorem which gives a upper bound for $\lambda_{d}\left(P_{n}^{r}\right)$ for all integers $r \geq 2, d \geq 2$ and $n \geq 1$.

Theorem 3.1 Let $r \geq 2$ and $d \geq 2$ be two integers. If $l=\min \{d-1, r\}$, then

$$
\lambda_{d}\left(P_{n}^{r}\right) \leq \begin{cases}r d+i, & i(r+1)<n \leq(i+1)(r+1), 0 \leq i \leq l, \\ r d+l+1, & n>(l+1)(r+1) .\end{cases}
$$

Proof. Suppose $i(r+1)<n \leq(i+1)(r+1), 0 \leq i \leq l$. We have the following $L(d, 1)$-labelling for $P_{(i+1)(r+1)}^{r}$ :

$$
i, d+i, 2 d+i, \ldots, r d+i, i-1, d+(i-1), \ldots, r d+(i-1), \ldots, 0, d, 2 d, \ldots, r d .
$$

Therefore $\lambda_{d}\left(P_{n}^{r}\right) \leq \lambda_{d}\left(P_{(i+1)(r+1)}^{r}\right) \leq r d+i$.
Suppose $n>(l+1)(r+1)$. If we label the vertices of $P_{n}^{r}$ one by one with elments from the cyclic sequence:

$$
0, d, 2 d, \ldots, r d,(r+1) d, 1, d+1,2 d+1, \ldots, r d+1,0, d, 2 d, \ldots, r d,(r+1) d, 1, \cdots,
$$

until all vertices of $P_{n}^{r}$ have been labelled, we get an $L(d, 1)$-labelling of $P_{n}^{r}$ with span $r d+d$.
If instead we use the cyclic sequence:

$$
0, d+1,2 d+2, \ldots, r d+r, 1, d+2,2 d+3, \ldots, r d+r+1,0, d+1,2 d+2, \cdots
$$

we get an $L(d, 1)$-labelling of $P_{n}^{r}$ with span $r d+r+1$.
Therefore $\lambda_{d}\left(P_{n}^{r}\right) \leq \min \{r d+d, r d+r+1\}=r d+l+1$.
The following simple lemma is useful to compute the $L(d, 1)$-labelling numbers of $r$-power paths.

Lemma 3.2 Let $d, r, s$ be three integers with $d, r \geq 2$ and $0 \leq s \leq d$. Let $K_{r+1}$ be a clique of size $r+1$. If $f$ is an $L(d, 1)$-labelling of clique $K_{r+1}$ with $\operatorname{span}(f)=r d+s$, then there are $r+1$ integers $\varepsilon_{i}, i=0,1,2, \ldots, r, 0 \leq \varepsilon_{0} \leq \varepsilon_{1} \leq \varepsilon_{2} \leq \ldots \leq \varepsilon_{r} \leq s$, such that $f\left(K_{r+1}\right)$, the label set of $K_{r+1}$, is $\left\{i d+\varepsilon_{i} \mid i=0,1,2, \ldots, r\right\}$.

Proof. Suppose $f$ is an $L(d, 1)$-labelling of $K_{r+1}$ with $\operatorname{span}(f)=r d+s$. First, sort $r+1$ labels of $f\left(K_{r+1}\right)$ in an ascending order as $0 \leq f_{0}<f_{1}<\ldots<f_{r} \leq r d+s$. Then order $r+1$ vertices of $K_{r+1}$ as $v_{0}, v_{1}, v_{2}, \ldots, v_{r}$, such that $f\left(v_{i}\right)=f_{i}, i=0,1,2, \ldots, r$.

We now can see that $i d \leq f_{i} \leq i d+d, i=0,1,2, \ldots, r$. To the contrary, suppose that there is some $i, f_{i}<i d$ or $f_{i}>i d+d$. If $f_{i}<i d$, then the clique of $i+1$ vertices induced by $\left\{v_{0}, v_{1}, \ldots, v_{i}\right\}$ would have the $L(d, 1)$-labelling number less than $i d\left(\right.$ since $\left.f_{i}-f_{0}<i d\right)$, a contradiction. Similarly, if $f_{i}>i d+d$, then the clique of $r-i+1$ vertices induced by $\left\{v_{i}, v_{i+1}, \ldots, v_{r}\right\}$ would have the $L(d, 1)$-labelling number less than $(r-i) d\left(\right.$ since $f_{r}-f_{i}<$ $(r-i) d)$, which is the same contradiction.

Thus for each $i, i=0,1,2, \ldots, r$, there exists an integer $\varepsilon_{i}, 0 \leq \varepsilon_{i} \leq s$, such that $f_{i}=i d+\varepsilon_{i}$. If there is some index $i$ such that $\varepsilon_{i}>\varepsilon_{i+1}$, then $f_{i+1}-f_{i}=(i+1) d+\varepsilon_{i+1}-$ $\left(i d+\varepsilon_{i}\right)=d+\left(\varepsilon_{i+1}-\varepsilon_{i}\right)<d$, contradicting that $f$ is an $L(d, 1)$-labelling of $K_{r+1}$. Therefore, $0 \leq \varepsilon_{0} \leq \varepsilon_{1} \leq \varepsilon_{2} \leq \ldots \leq \varepsilon_{r} \leq s$, and then

$$
f\left(K_{r+1}\right)=\left\{f_{i} \mid i=0,1,2, \ldots, r\right\}=\left\{i d+\varepsilon_{i} \mid i=0,1,2, \ldots, r\right\} .
$$

Although we can not determine completely the values of $\lambda_{d}\left(P_{n}^{r}\right)$ for all $d, r \geq 2$ and $n$, with Lemma 3.2, we prove the following weaker result.

Theorem 3.3 For integers $r \geq 2$ and $d \geq 2$, let $l=\min \{d-1, r\}$, then

$$
\lambda_{d}\left(P_{n}^{r}\right)= \begin{cases}(n-1) d, & n \leq r+1 \\ r d+1, & r+1<n \leq 2 r+2 \\ r d+2, & 2 r+2<n \leq 3 r+3\end{cases}
$$

and for $n>3 r+3, r d+2 \leq \lambda_{d}\left(P_{n}^{r}\right) \leq r d+l+1$.
Proof. If $n \leq r+1$, then $P_{n}^{r}$ is a complete graph of $n$ vertices. Thus $\lambda_{d}\left(P_{n}^{r}\right)=(n-1) d$.
If $r+1<n \leq 2 r+2$, then by Theorem 3.1, $\lambda_{d}\left(P_{n}^{r}\right) \leq r d+1$. Notice that every $r+1$ consecutive vertices induce a clique and any $k(r+1 \leq k \leq 2 r+1)$ consecutive vertices induce an $r$-power subpath $P_{k}^{r}$ with diameter two in $P_{n}^{r}$. Thus, if $\lambda_{d}\left(P_{n}^{r}\right)<r d+1$, then $\lambda_{d}\left(P_{n}^{r}\right)=r d$. Let $f$ be an $L(d, 1)$-labelling of $P_{n}^{r}$ with $\operatorname{span}(f)=r d$. Then by Lemma 3.2 , every clique of size $r+1$ has an unique label set $\{i d \mid i=0,1,2, \ldots, r\}$. This implies that the label of the first vertex of $P_{n}^{r}$ is the same as that of $(r+2)$ th vertex of $P_{n}^{r}$, contradicting that $f$ is an $L(d, 1)$-labelling, since these two vertices are distance two away from each other. Therefore, $\lambda_{d}\left(P_{n}^{r}\right)=r d+1$.

If $2 r+2<n \leq 3 r+3$, then by Theorem 3.1, $\lambda_{d}\left(P_{n}^{r}\right) \leq r d+2$. Let $V\left(P_{n}^{r}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Since the $r$-power path $P_{2 r+2}^{r}$ induced by $\left\{v_{1}, v_{2}, \ldots, v_{2 r+2}\right\}$ is a subgraph of $P_{n}^{r}$, then $\lambda_{d}\left(P_{n}^{r}\right) \geq \lambda_{d}\left(P_{n} 2 r+2^{r}\right)=r d+1$. If $\lambda_{d}\left(P_{n}^{r}\right)<r d+2$, then $\lambda_{d}\left(P_{n}^{r}\right)=r d+1$. Let $f$ be an $L(d, 1)$-labelling of $P_{n}^{r}$ with span $r d+1$. Then $f$ is also an $L(d, 1)$-labelling of $P_{2 r+2}^{r}$. Let $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{r+1}\right\}$ and $V_{2}=\left\{v_{r+2}, v_{r+3}, \ldots, v_{2 r+2}\right\}$. By Lemma 3.2,

$$
\begin{aligned}
& f\left(V_{1}\right)=\left\{i d+\varepsilon_{i}^{1} \mid 0 \leq i \leq r, 0 \leq \varepsilon_{0}^{1} \leq \varepsilon_{1}^{1} \leq \ldots \leq \varepsilon_{r}^{1} \leq 1\right\} \\
& f\left(V_{2}\right)=\left\{i d+\varepsilon_{i}^{2} \mid 0 \leq i \leq r, 0 \leq \varepsilon_{0}^{2} \leq \varepsilon_{1}^{2} \leq \ldots \leq \varepsilon_{r}^{2} \leq 1\right\}
\end{aligned}
$$

If $\varepsilon_{r}^{1}=\varepsilon_{r}^{2}$, then $\varepsilon_{r}^{1}=\varepsilon_{r}^{2}=1$, otherwise $f\left(V_{1}\right)=f\left(V_{2}\right)=\{i d \mid i=0,1,2, \ldots, r\}$, a contradiction. Moreover, $f\left(v_{1}\right)=f\left(v_{2 r+2}\right)=r d+1$. It follows that there is no label of the form $r d+\varepsilon_{r}$ in the label sets of any cliques formed by $r+1$ consecutive vertices except vertices $v_{1}$ and $v_{2 r+2}$ in $P_{2 r+2}^{r}$, which contradicts Lemma 3.2. Hence $\varepsilon_{r}^{1} \neq \varepsilon_{r}^{2}$. Similarly, $\varepsilon_{0}^{1} \neq \varepsilon_{0}^{2}$. Then either $\varepsilon_{0}^{1}=\varepsilon_{r}^{1}=0$ and $\varepsilon_{0}^{2}=\varepsilon_{r}^{2}=1$, or $\varepsilon_{0}^{1}=\varepsilon_{r}^{1}=1$ and $\varepsilon_{0}^{2}=\varepsilon_{r}^{2}=0$. For the former case, $f\left(V_{1}\right)=\{i d \mid i=0,1,2, \ldots, r\}$ and $f\left(V_{2}\right)=\{i d+1 \mid i=0,1,2, \ldots, r\}$, and then by Lemma 3.2, it is no difficult to see that

$$
f\left(v_{i}\right)= \begin{cases}(r+1-i) d, & i=1,2, \ldots, r+1 \\ (2 r+2-i) d+1, & i=r+2, r+3, \ldots, 2 r+2 .\end{cases}
$$

For the later case, $f\left(V_{1}\right)=\{i d+1 \mid i=0,1,2, \ldots, r\}$ and $f\left(V_{2}\right)=\{i d \mid i=0,1,2, \ldots, r\}$, and then by Lemma 3.2,

$$
f\left(v_{i}\right)= \begin{cases}(i-1) d+1, & i=1,2, \ldots, r+1, \\ (r+2-i) d, & i=r+2, r+3, \ldots, 2 r+2 .\end{cases}
$$

Therefore, for each case, there is no label in $\{0,1,2, \ldots, r d+1\}$, which can be used to label the vertex $v_{2 r+3}$, and then we have reached a contradiction. Hence $\lambda_{d}\left(P_{n}^{r}\right)=r d+2$.

By Theorem 3.1 and the result in the previous paragraph, the last part of the theorem follows.

Corollary 3.4 Let $r \geq 2$ be an integer, then

$$
\lambda\left(P_{n}^{r}\right)= \begin{cases}2(n-1), & n \leq r+1 \\ 2 r+1, & r+1<n \leq 2 r+2 \\ 2 r+2, & n>2 r+2\end{cases}
$$

Proof. In Theorem 3.3, we let $d=2$. Then $l=1$. For the case $n>3 r+3,2 r+2 \leq$ $\lambda\left(P_{n}^{r}\right) \leq 2 r+l+1=2 r+2$, thus $\lambda\left(P_{n}^{r}\right)=2 r+2$. Hence the corollary holds.

Corollary 3.5 Let $d \geq 3$ be an integer, then

$$
\lambda_{d}\left(P_{n}^{2}\right)= \begin{cases}(n-1) d, & n \leq 3 \\ 2 d+1, & 3<n \leq 6 \\ 2 d+2, & 6<n \leq 9 \\ 2 d+3, & n>9\end{cases}
$$

Proof. In Theorem 3.3, let $r=2$. Since $d \geq 3$, then $l=r=2$. Thus it suffices to show that the fourth case of the corollary is true.

By Theorem 3.3, for $n>9,2 d+2 \leq \lambda_{d}\left(P_{n}^{2}\right) \leq 2 d+l+1=2 d+3$. Suppose $\lambda_{d}\left(P_{n}^{2}\right)<2 d+3$, then $\lambda_{d}\left(P_{n}^{2}\right)=2 d+2$. Let $f$ be an $L(d, 1)$-labelling of $P_{n}^{2}$ with span $2 d+2$. Similar to the arguments in the proof of Theorem 3.3, we consider the subgraph $P_{9}^{2}$ induced by the first 9 vertices of $P_{n}^{2}$. Let $V\left(P_{n}^{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then $V\left(P_{9}^{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{9}\right\}$. By Lemma 3.2 , the label set of any clique formed by 3 consecutive vertices must be one of the sets $\left\{i d+\varepsilon_{i} \mid i=0,1,2,0 \leq \varepsilon_{0} \leq \varepsilon_{1} \leq \varepsilon_{2} \leq 2\right\}$. A tedious analysis by cases shows that only eight $L(d, 1)$-labellings of $P_{9}^{2}$ are possible.

$$
\begin{array}{cc}
\{2 d, d, 0,2 d+1, d+1,1,2 d+2, d+2,0\} & \{2 d, d, 0,2 d+1, d+1,1,2 d+2, d+2,2\} \\
\{2 d+2, d, 0,2 d+1, d+1,1,2 d+2, d+2,0\} & \{2 d+2, d, 0,2 d+1, d+1,1,2 d+2, d+2,2\} \\
\{0, d+2,2 d+2,1, d+1,2 d+1,0, d, 2 d\} & \{2, d+2,2 d+2,1, d+1,2 d+1,0, d, 2 d\} \\
\{0, d+2,2 d+2,1, d+1,2 d+1,0, d, 2 d+2\} & \} 2, d+2,2 d+2,1, d+1,2 d+1,0, d, 2 d+2\}
\end{array}
$$

But whenever one of the $L(d, 1)$-labellings above occurs, we can not find a number in $\{0,1,2, \ldots, 2 d+2\}$ to label the vertex $v_{10}$, contradicting that $f$ is an $L(d, 1)$-labelling of $P_{n}^{2}$. Therefore, $\lambda_{d}\left(P_{n}^{2}\right)=2 d+3$ for $n>9$.

## References

[1] G. Chartrand and L. Lesniak, Graphs and digraphs, 3-rd ed., New York, Chapman \& Hall (1996).
[2] J. R. Griggs and R. K. Yeh, Labelling Graphs with a condition at Distance, SIAM J. Discrete Math., 5(1992), pp.586-595.
[3] D. Sakai, Labelling Chordal Graphs: Distance Two Condition, SIAM J. Discrete Math., 7(1994),pp.133-140.
[4] G. J. Chang and D. Kuo, The $L(2,1)$-labelling Problem on Graphs, SIAM J. Discrete Math., 9(1996), pp.309-316
[5] G. J. Chang, W.-T. Ke, D. Kuo, D. D.-F. Liu and R. K. Yeh, On $L(d, 1)$-labellings of Graphs, Discrete Mathematics 220(2000), pp.57-66.
[6] W. K. Hale, Frequency Assignment: Theory and Applications, Proc. IEEE, 68(1980), pp.1497-1514.
[7] F. S. Roberts, private communication with J. R. Griggs(1988).
[8] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. University Hamburg, 25(1961), pp. 71-76.
[9] J. R. S. Blair and B. Peyton, An introduction to chordal graphs and clique trees, Graph theory and sparse matrix computation, A. George, et al., (editors), Springer, New York, 1993, pp.1-29.

