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Abstract

Motivated by the conjecture on the L(2, 1)-labelling number λ(G) of a graph G by
Griggs and Yeh [2] and the question: “Is the upper bound (∆+3)2/4 for λ(G) for chordal
graphs with maximum degree ∆ is sharp?”, posed by Sakai [3], we study the bounds for
λ(G) for chordal graphs in this paper. Let G be a chordal graph on n vertices with maxi-
mum degree ∆ and maximum clique number ω. We improve the upper bound (∆+3)2/4
on λ(G) and the upper bound (∆ + 2d− 1)2/4 on λd(G) with d ≥ 2, answering question
of Sakai and improving results of Chang et al. Finally, we study the labelling numbers
of r-power paths P r

n on n vertices. We obtain λd(P r
n) for small integers d ≥ 2 and r ≥ 2,

and give a better bound of λd(P r
n) for large integers d and r.
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1. Introduction

The problem of labelling vertices of a graph with a condition at distance two is a variation
of the channel assignment problem introduced by Hale and Roberts, respectively in [6] and
[7], where “close” transmitters receive different channels and “very close” transmitters must
receive channels at least two apart. This problem was first introduced and formulated as a
graph labelling problem by Griggs and Yeh [2].

Given a graph G with vertex set V and edge set E, for any u, v ∈ V , let dG(u, v) denote
the distance (the length of a shortest path) between u and v in G. An L(2, 1) - labelling f
is an integer assignment f : V → {0, 1, 2, . . . } such that if uv ∈ E, then |f(u) − f(v)| ≥ 2;
and if dG(u, v) = 2, then |f(u)− f(v)| ≥ 1. The number assigned to each vertex under f will
be called f -labels, or simply labels. The span of an L(2, 1)-labelling f , denoted span(f), is
the absolute difference between the maximum and minimum labels. Clearly, we may assume
the smallest and the largest label of each labelling f of G is 0 and span(f) respectively.
The L(2, 1)-labelling number, λ(G), is the minimum of span(f) over all L(2, 1)-labellings
of G. In [5], the authors considered a generalization of L(2, 1)-labelling, namely, L(d, 1)-
labelling of graphs. For a positive integer d, an L(d, 1)-labelling of G is an integer assignment
f : V → {0, 1, 2, . . . } such that if uv ∈ E, then |f(u) − f(v)| ≥ d; and if dG(u, v) = 2, then
|f(u)− f(v)| ≥ 1. The L(d, 1)-labelling number of G, λd(G), is the minimum of span(f) over
all L(d, 1)-labellings of G. Clearly, any complete graph of n vertices has the L(d, 1)-labelling
number (n− 1)d.

The L(2, 1)-labelling and the L(d,1)-labelling of graphs have been extensively studied
in the past decade ([2]). For any graph G, we shall denote by ∆(G), or simply by ∆, its
maximum degree. Griggs and Yeh [2] proved that λ(G) ≤ ∆2 + 2∆ and conjectured that
λ(G) ≤ ∆2; Chang and Kuo [4] improved this bound to ∆2 + ∆. Chang et al [5] proved that
λd(G) ≤ ∆2 + (d− 1)∆ for any integer d ≥ 2. In [3], Sakai investigated the L(2, 1)-labelling



of chordal graphs and unit interval graphs and proved that λ(G) ≤ (∆(G) + 3)2/4 for any
chordal graph G and asked whether this upper bound is sharp.

In Section 2, we improved the above upper bound. By similar arguments, we also improve
the upper bound (2d + ∆ − 1)2/4 for λd(G) of any chordal graph G and any integer d ≥ 2,
presented by Chang et al [5]. In Section 3, we determine λ(G) and give an upper bound of
λd(G), where G are r-power paths for any positive integers d, r ≥ 2. Also, we correct a result
on power paths by Chang et al [5].

2. General Chordal Graphs

In this paper, all graphs are finite, simple and undirected. For undefined terms and
concepts in graph theory, we refer to [1]. Let G = (V,E) be a graph with vertex set V and
edge set E. The number of vertices, denoted by n = |V |, is called the order of G. Two
vertices u, v ∈ V are said to be adjacent if edge uv ∈ E. A vertex u is a neighbor of vertex v
if u is adjacent to v. For any set S ⊆ V , |S| denotes the number of vertices of S and G[S]
denote the subgraph of G induced by S. Also, G−S and G− v denote the induced subgraph
G[V \ S] and G[V \ {v}] respectively. A clique of order k , denoted by Kk, is a complete
subgraph induced by k vertices. We use Pk = [v1, . . . , vk] to denote a path of length k − 1
from v1 to vk; and Ck = [v1, . . . , vk, v1] a cycle of length k in G. A chord of cycle Ck is an
edge joining two non-consecutive vertices on the cycle Ck. A subset S ⊂ V is a separator or
vertex cutset of G if there are two vertices x and y in the same component of G such that they
are in two distinct components of G − S. We say S separates G and S is an xy-separator.
The set S is a minimal separator of G if S is a separator and no proper subset of S separates
G. Likewise, S is a minimal xy-separator if S is an xy-separator and no proper subset of S
separates x and y into distinct components.

A graph is chordal if every cycle of length greater than three has a chord. Clearly, any
induced subgraph of a chordal graph is also chordal. A simplicial vertex of a graph G is a
vertex such that its neighbors induce a clique in G. A perfect elimination ordering of G on
n vertices is a vertex ordering v1, v2, . . . , vn of G such that for 1 ≤ i ≤ n, the vertex vi is a
simplicial vertex of the subgraph induced by {vi, vi+1, . . . , vn} in G. Dirac proved that every
chordal graph has a simplicial vertex and characterized chordal graphs by minimal vertex
separators, as shown below in Lemma 2.1 and Theorem 2.2.

Lemma 2.1 [8, 9] Every chordal graph G has a simplicial vertex. If G is not complete,
then it has two nonadjacent simplicial vertices.

Theorem 2.2 [8] A graph G is chordal if and if every minimal separator of G induces
a complete subgraph in G.

The following lemma is an useful fact that for any connected chordal graph G, the in-
duced subgraph of G obtained by removing some simplicial vertices from the graph remains
connected and chordal.

Lemma 2.3 Let G be a connected chordal graph and let S be a set of simplicial vertices
of G. Then G− S is also a connected chordal graph.

Proof. Clearly, G− S is chordal. If G− S is not connected, then S contains a minimal
xy-separator S′ for some vertices x and y. By Theorem 2.2, G[S′] is complete in G. Let Gx

and Gy be the connected of G − S′ containing x and y, respectively. Since S′ is minimal,
each vertex v ∈ S′ is adjacent to some vertex in Gx and some vertex in Gy; otherwise S′ \{v}



would be an xy-separator, contrary to the minimality of S′. Then each vertex in S′ can not
be simplicial, a contradiction. Hence G− S is connected. ¤

We now consider the labellings of chordal graphs. Sakai obtained [3] an upper bound
of λ(G) ≤ (∆ + 3)2/4 for any chordal graph G and asked whether this upper bound is
sharp. Theorem 2.5 below answers her question in the negative. We shall need the following
proposition by Griggs and Yeh [2].

Proposition 2.4 Suppose Pn denotes a path on n vertices. Then λ(P2) = 2, λ(P3) =
λ(P4) = 3 and λ(Pn) = 4 for all n ≥ 5.

Theorem 2.5 If G is a chordal graph, then λ(G) ≤ b(∆ + 3)2/4c − 1.

Proof. We may assume without loss of generality that G is connected and chordal. The
theorem clear holds if G is complete or if ∆ ≤ 2, so we may also assume that G is not
complete and ∆ ≥ 3. We proceed by induction on the number of vertices n of G.

The case where n = 1 is trivial. Suppose that the theorem holds for all chordal graphs
with fewer than n vertices, where n > 1. By Lemma 2.1, G must have two nonadjacent
simplicial vertices. Moreover, for any simplicial vertex v of G, Gv) = G \ {v} is a chordal
graph with fewer vertices than G; hence by induction λ(Gv) ≤ b(∆ + 3)2/4c − 1. Suppose
that λ(G) ≥ b(∆ + 3)2/4c. With a series of claims about simplicial vertices of G, we shall
reach a contradiction.

Let d(v) = k and v1, v2, . . . , vk its neighbors in G. Then, v, together with vertices
vi’s, form a maximal clique Kk+1(v). For i = 1, 2, . . . , k, we let M(vi) be the set of vertices
adjacent to vi but not in Kk+1(v). Let f be a labelling of Gv with span(f) = b(∆+3)2/4c−1.

Claim 1 k = b(∆ + 3)/2c or k = b(∆ + 3)/2c+ 1.

Proof. Note that v is distance one away from k vertices vi, i = 1, 2, . . . , k and distance
two away from neighbors of each vertex in M(vi), i = 1, 2, . . . , k. Therefore, when we try to
label v with the numbers in {0, 1, . . . , b(∆ + 3)2/4c − 1}, there are at most 3k + k(∆ − k)
numbers used by f to be avoided. However, the quadratic function 3k + k(∆ − k) attends
its maximum (∆ + 3)2/4 when k = (∆ + 3)/2. Therefore, if k 6= b(∆ + 3)/2c and k 6=
b(∆ + 3)/2c + 1, then 3k + k(∆ − k) ≤ b(∆ + 3)2/4c − 1, and there is at least one number
in {0, 1, . . . , b(∆ + 3)2/4c − 1} to be assigned to v, contrary to the assumption on G. This
completes the proof of Claim 1. ¤

Claim 2 For 1 ≤ i ≤ k, d(vi) = ∆, and for i 6= j, M(vi) ∩M(vj) = Ø. Also |M(vi)| =
∆− k for i = 1, 2, . . . , k.

Proof. If any of Claim 2 does not hold, then the simplicial vertex v is distance two away
from at most k(∆−k)−1 vertices. By the similar arguments in Claim 1, we can label vertex
v with a number in {0, 1, . . . , b(∆+3)2/4c−1}, contradicting the assumption on G. So Claim
2 holds. ¤

Claim 3 Each vi, i = 1, 2, . . . , k is a minimal separator of G.

Proof. Without loss of generality, suppose that Gv1 is connected. By Claim 1, k ≥ 3.
Since G is not complete, so by Claim 2, M(vi) is non-empty for i = 1, 2, . . . , k. Take a vertex
x in M(v1), and then consider some shortest path Pr+1 = [x = x0, x1, . . . , xr = v2] from x
to v2 in Gv1 . By Claim 2, r ≥ 2. Adding two edges v1v2 and v1x to Pr+1, we get a cycle
Cr+2 = [v1, x0, x1, . . . , xr, v1] in G. Since G is chordal and Cr+2 is a cycle of length greater
than three, Cr+2 must have a chord. But the edge v1vr−1 is only one possible chord in Cr+2,
which is contrary to Claim 2. Thus Claim 3 follows. ¤



Claim 4 If u and v are two distinct simplicial vertices of G, then d(u, v) ≥ 3.

Proof. Let v1, v2 be two distinct simplicial vertices of G with d(v1) = l1 and d(v2) = l2.
Also let K(v1) and K(v2) be two maximal cliques containing v1 and v2, respectively. By Claim
3, each neighbor of a simplicial vertex of G is not simplicial, so v1 and v2 are not adjacent. If
v1 and v2 are at distance two, then there is a vertex u adjacent to each of them. By Claim 1,
li > ∆/2, i = 1, 2. By Claim 3, u is a minimal separator and so K(v1) ∩K(v2) = {u}. Thus
d(u) ≥ l1 + l2 > ∆, a contradiction. ¤

Let S be the set of all simplicial vertices of G. By Claim 4, the induced subgraph G− S
is nonempty. By Lemma 2.3, G− S is a connected and chordal graph. Let x be a simplicial
vertex of G − S. If x is not adjacent to any vertex in S, then x is simplicial in G and we
have a contradiction. So by Claim 4 again, there is one and only one simplicial vertex v in
S such that v is adjacent to x in G. Suppose d(v) = k. Then x = vi for some i, 1 ≤ i ≤ k.
Clearly, {v1, v2, . . . , vk} ∪ (∪k

i=1M(vi)) ⊆ V (G − S). Using Claims 1, 2 and 3, we can show
that x cannot be a simplicial vertex of G − S, a contradiction. This completes the proof of
Theorem 2. ¤

Based on the same arguments in the proof of Theorem 2.5 above, we have the following
theorem about the upper bound of the L(d, 1)-labelling number of chordal graphs, improving
the results by Chang et al [5].

Theorem 2.6 Suppose d ≥ 2 is a positive integer and G is a chordal graph. Then
λd(G) ≤ b(∆ + 2d− 1)2/4c − 1.

We are unable to find any example in which the upper bound in Theorem 2.5 is attained.
By Proposition 2.4, λ(Pn) = 4 = b(∆ + 3)2/4c − 2 for paths on n ≥ 5 vertices. So we think
that the upper bound of (∆ + 3)2/4 might be decreased only to b(∆ + 3)2/4c − 2 for λ(G)
for a general chordal graph G.

3. Power Paths

In this section, we consider a kind of special chordal graphs. Let r ≥ 1 be an integer. The
r-power path on n vertices, denoted by P r

n , is the graph with the vertex set {v1, v2, . . . , vn}
and the edge set {vivj: 1 ≤ |i− j| ≤ r}. A 1-path on n vertices is an ordinary path denoted
as Pn in the first paragraph of Section 2.

In [5], the authors studied the L(d, 1)-labelling of the r-power paths and claimed that for
two integers r ≥ 2 and d ≥ 2,

λd(P r
n) =





(n− 1)d, n ≤ r + 1,
rd + 1, r + 2 ≤ n ≤ 2r + 2,
rd + 2, n ≥ 2r + 3.

There is a mistake in the proof of the above claim when n ≥ 2r +3. It is straight-forward
to check that λ3(P 2

10) is 9 not 8, and so λ3(P 2
n) is at least 9 for n ≥ 10. Thus the 2-power

path P 2
n for n ≥ 10 is a counterexample to their claim for the case n ≥ 2r + 3.

In this section, we also study the L(d, 1)-labelling of the r-power paths. We try to
determine all L(d, 1)-labelling numbers of P r

n , but we find that it seems difficult to compute
the exact value of λd(P r

n) for large integers r and d. First, we have the following theorem
which gives a upper bound for λd(P r

n) for all integers r ≥ 2, d ≥ 2 and n ≥ 1.



Theorem 3.1 Let r ≥ 2 and d ≥ 2 be two integers. If l = min{d− 1, r}, then

λd(P r
n) ≤

{
rd + i, i(r + 1) < n ≤ (i + 1)(r + 1), 0 ≤ i ≤ l,
rd + l + 1, n > (l + 1)(r + 1).

Proof. Suppose i(r + 1) < n ≤ (i + 1)(r + 1), 0 ≤ i ≤ l. We have the following
L(d, 1)-labelling for P r

(i+1)(r+1):

i, d + i, 2d + i, . . . , rd + i, i− 1, d + (i− 1), . . . , rd + (i− 1), . . . , 0, d, 2d, . . . , rd.

Therefore λd(P r
n) ≤ λd(P r

(i+1)(r+1)) ≤ rd + i.

Suppose n > (l + 1)(r + 1). If we label the vertices of P r
n one by one with elments from

the cyclic sequence:

0, d, 2d, . . . , rd, (r + 1)d, 1, d + 1, 2d + 1, . . . , rd + 1, 0, d, 2d, . . . , rd, (r + 1)d, 1, · · · ,

until all vertices of P r
n have been labelled, we get an L(d, 1)-labelling of P r

n with span rd + d.

If instead we use the cyclic sequence:

0, d + 1, 2d + 2, . . . , rd + r, 1, d + 2, 2d + 3, . . . , rd + r + 1, 0, d + 1, 2d + 2, · · ·

we get an L(d, 1)-labelling of P r
n with span rd + r + 1.

Therefore λd(P r
n) ≤ min{rd + d, rd + r + 1} = rd + l + 1. ¤

The following simple lemma is useful to compute the L(d, 1)-labelling numbers of r-power
paths.

Lemma 3.2 Let d, r, s be three integers with d, r ≥ 2 and 0 ≤ s ≤ d. Let Kr+1 be a
clique of size r + 1. If f is an L(d, 1)-labelling of clique Kr+1 with span(f) = rd + s, then
there are r + 1 integers εi, i = 0, 1, 2, . . . , r, 0 ≤ ε0 ≤ ε1 ≤ ε2 ≤ . . . ≤ εr ≤ s, such that
f(Kr+1), the label set of Kr+1, is {id + εi | i = 0, 1, 2, . . . , r}.

Proof. Suppose f is an L(d, 1)-labelling of Kr+1 with span(f) = rd+s. First, sort r+1
labels of f(Kr+1) in an ascending order as 0 ≤ f0 < f1 < . . . < fr ≤ rd+ s. Then order r +1
vertices of Kr+1 as v0, v1, v2, . . . , vr, such that f(vi) = fi, i = 0, 1, 2, . . . , r.

We now can see that id ≤ fi ≤ id + d, i = 0, 1, 2, . . . , r. To the contrary, suppose that
there is some i, fi < id or fi > id + d. If fi < id, then the clique of i + 1 vertices induced
by {v0, v1, . . . , vi} would have the L(d, 1)-labelling number less than id(since fi − f0 < id),
a contradiction. Similarly, if fi > id + d, then the clique of r − i + 1 vertices induced by
{vi, vi+1, . . . , vr} would have the L(d, 1)-labelling number less than (r − i)d(since fr − fi <
(r − i)d), which is the same contradiction.

Thus for each i, i = 0, 1, 2, . . . , r, there exists an integer εi, 0 ≤ εi ≤ s, such that
fi = id + εi. If there is some index i such that εi > εi+1, then fi+1 − fi = (i + 1)d + εi+1 −
(id+εi) = d+(εi+1−εi) < d, contradicting that f is an L(d, 1)-labelling of Kr+1. Therefore,
0 ≤ ε0 ≤ ε1 ≤ ε2 ≤ . . . ≤ εr ≤ s, and then

f(Kr+1) = {fi | i = 0, 1, 2, . . . , r} = {id + εi | i = 0, 1, 2, . . . , r}. ¤

Although we can not determine completely the values of λd(P r
n) for all d, r ≥ 2 and n,

with Lemma 3.2 , we prove the following weaker result.



Theorem 3.3 For integers r ≥ 2 and d ≥ 2, let l = min{d− 1, r}, then

λd(P r
n) =





(n− 1)d, n ≤ r + 1,
rd + 1, r + 1 < n ≤ 2r + 2,
rd + 2, 2r + 2 < n ≤ 3r + 3,

and for n > 3r + 3, rd + 2 ≤ λd(P r
n) ≤ rd + l + 1.

Proof. If n ≤ r +1, then P r
n is a complete graph of n vertices. Thus λd(P r

n) = (n−1)d.

If r + 1 < n ≤ 2r + 2, then by Theorem 3.1, λd(P r
n) ≤ rd + 1. Notice that every r + 1

consecutive vertices induce a clique and any k(r+1 ≤ k ≤ 2r+1) consecutive vertices induce
an r-power subpath P r

k with diameter two in P r
n . Thus, if λd(P r

n) < rd+1, then λd(P r
n) = rd.

Let fbe an L(d, 1)-labelling of P r
n with span(f) = rd. Then by Lemma 3.2, every clique of

size r + 1 has an unique label set {id|i = 0, 1, 2, . . . , r}. This implies that the label of the
first vertex of P r

n is the same as that of (r + 2)th vertex of P r
n , contradicting that f is an

L(d, 1)-labelling, since these two vertices are distance two away from each other. Therefore,
λd(P r

n) = rd + 1.

If 2r+2 < n ≤ 3r+3, then by Theorem 3.1, λd(P r
n) ≤ rd+2. Let V (P r

n) = {v1, v2, . . . , vn}.
Since the r-power path P r

2r+2 induced by {v1, v2, . . . , v2r+2} is a subgraph of P r
n , then

λd(P r
n) ≥ λd(Pn2r + 2r) = rd + 1. If λd(P r

n) < rd + 2, then λd(P r
n) = rd + 1. Let f be

an L(d, 1)-labelling of P r
n with span rd + 1. Then f is also an L(d, 1)-labelling of P r

2r+2. Let
V1 = {v1, v2, . . . , vr+1} and V2 = {vr+2, vr+3, . . . , v2r+2}. By Lemma 3.2,

f(V1) = {id + ε1
i | 0 ≤ i ≤ r, 0 ≤ ε1

0 ≤ ε1
1 ≤ . . . ≤ ε1

r ≤ 1}
f(V2) = {id + ε2

i | 0 ≤ i ≤ r, 0 ≤ ε2
0 ≤ ε2

1 ≤ . . . ≤ ε2
r ≤ 1}

If ε1
r = ε2

r, then ε1
r = ε2

r = 1, otherwise f(V1) = f(V2) = {id | i = 0, 1, 2, . . . , r}, a
contradiction. Moreover, f(v1) = f(v2r+2) = rd + 1. It follows that there is no label of
the form rd + εr in the label sets of any cliques formed by r + 1 consecutive vertices except
vertices v1 and v2r+2 in P r

2r+2, which contradicts Lemma 3.2. Hence ε1
r 6= ε2

r. Similarly,
ε1
0 6= ε2

0. Then either ε1
0 = ε1

r = 0 and ε2
0 = ε2

r = 1, or ε1
0 = ε1

r = 1 and ε2
0 = ε2

r = 0. For
the former case, f(V1) = {id | i = 0, 1, 2, . . . , r} and f(V2) = {id + 1 | i = 0, 1, 2, . . . , r}, and
then by Lemma 3.2, it is no difficult to see that

f(vi) =
{

(r + 1− i)d, i = 1, 2, . . . , r + 1,
(2r + 2− i)d + 1, i = r + 2, r + 3, . . . , 2r + 2.

For the later case, f(V1) = {id + 1 | i = 0, 1, 2, . . . , r} and f(V2) = {id | i = 0, 1, 2, . . . , r},
and then by Lemma 3.2,

f(vi) =
{

(i− 1)d + 1, i = 1, 2, . . . , r + 1,
(r + 2− i)d, i = r + 2, r + 3, . . . , 2r + 2.

Therefore, for each case, there is no label in {0, 1, 2, . . . , rd + 1}, which can be used to label
the vertex v2r+3, and then we have reached a contradiction. Hence λd(P r

n) = rd + 2.

By Theorem 3.1 and the result in the previous paragraph, the last part of the theorem
follows. ¤

Corollary 3.4 Let r ≥ 2 be an integer, then

λ(P r
n) =





2(n− 1), n ≤ r + 1,
2r + 1, r + 1 < n ≤ 2r + 2,
2r + 2, n > 2r + 2.



Proof. In Theorem 3.3, we let d = 2. Then l = 1. For the case n > 3r + 3, 2r + 2 ≤
λ(P r

n) ≤ 2r + l + 1 = 2r + 2, thus λ(P r
n) = 2r + 2. Hence the corollary holds. ¤

Corollary 3.5 Let d ≥ 3 be an integer, then

λd(P 2
n) =





(n− 1)d, n ≤ 3,
2d + 1, 3 < n ≤ 6,
2d + 2, 6 < n ≤ 9,
2d + 3, n > 9.

Proof. In Theorem 3.3, let r = 2. Since d ≥ 3, then l = r = 2. Thus it suffices to show
that the fourth case of the corollary is true.

By Theorem 3.3, for n > 9, 2d+2 ≤ λd(P 2
n) ≤ 2d+l+1 = 2d+3. Suppose λd(P 2

n) < 2d+3,
then λd(P 2

n) = 2d + 2. Let f be an L(d, 1)-labelling of P 2
n with span 2d + 2. Similar to the

arguments in the proof of Theorem 3.3, we consider the subgraph P 2
9 induced by the first

9 vertices of P 2
n . Let V (P 2

n) = {v1, v2, . . . , vn}, then V (P 2
9 ) = {v1, v2, . . . , v9}. By Lemma

3.2, the label set of any clique formed by 3 consecutive vertices must be one of the sets
{id + εi | i = 0, 1, 2, 0 ≤ ε0 ≤ ε1 ≤ ε2 ≤ 2}. A tedious analysis by cases shows that only eight
L(d, 1)-labellings of P 2

9 are possible.

{2d, d, 0, 2d + 1, d + 1, 1, 2d + 2, d + 2, 0} {2d, d, 0, 2d + 1, d + 1, 1, 2d + 2, d + 2, 2}
{2d + 2, d, 0, 2d + 1, d + 1, 1, 2d + 2, d + 2, 0} {2d + 2, d, 0, 2d + 1, d + 1, 1, 2d + 2, d + 2, 2}
{0, d + 2, 2d + 2, 1, d + 1, 2d + 1, 0, d, 2d} {2, d + 2, 2d + 2, 1, d + 1, 2d + 1, 0, d, 2d}

{0, d + 2, 2d + 2, 1, d + 1, 2d + 1, 0, d, 2d + 2} }2, d + 2, 2d + 2, 1, d + 1, 2d + 1, 0, d, 2d + 2}
But whenever one of the L(d, 1)-labellings above occurs, we can not find a number in

{0, 1, 2, . . . , 2d + 2} to label the vertex v10, contradicting that f is an L(d, 1)-labelling of P 2
n .

Therefore, λd(P 2
n) = 2d + 3 for n > 9. ¤
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