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Abstract

We consider primitive cyclic codes of length pm − 1 over Fp. The
codes of interest here are duals of BCH codes. For these codes, a lower
bound on their minimum distance can be found via the adaptation of
the Weil bound to cyclic codes (see [10]). However, this bound is of
no significance for roughly half of these codes.

We shall fill this gap by giving, in the first part of the paper, a
lower bound for an infinite class of duals of BCH codes. Since this
family is a filtration of the duals of BCH codes, the bound obtained
for it induces a bound for all duals.

In the second part we present a lower bound obtained by imple-
menting an algorithmic method due to Massey and Schaub (the rank-
bounding algorithm). The numerical results are surprisingly higher
than all previously known bounds.

1 Introduction

1.1 Preliminaries

We consider cyclic codes of length n = pm−1 over Fp, that is, ideals of the ring
Fp[X]/(Xn−1), for m ∈ N∗. A defining-set of a code C is a set T ⊂ [0, n−1],
such that {αj, j ∈ T} is the zero-set of the generator polynomial of C, where
α is a primitive element in Fpm . Then, the narrow-sense BCH code of designed
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distance d is the code with defining-set T = ∪1≤s<dcl(s), where cl(s) is the
cyclotomic coset of p modulo n whose smallest element is s.

The dual C⊥ of a code C is the set of vectors which are orthogonal (with
respect to the inner product of Fn

p ) to all codewords of C. If C is cyclic,
then so is C⊥. Then we call check-set of C a subset J of [0, n], such that the
defining-set T⊥ of C⊥ can be written as the union of the cyclotomic cosets of
the elements of J . Also, we recall that the Mattson-Solomon polynomial of
an element a = (a0, . . . , an−1) of Fn

p , is the following polynomial of Fpm [Z] :
MSa(Z) =

∑n
i=1 AiZ

n−i, where Ai = a(αi), 1 ≤ i ≤ n (identifying a with a
polynomial of Fp[X]/(Xn − 1)).

We shall need the following result, that we call “Weil bound” for short. It is
in fact a bound that comes from the results of Weil and Serre on the number
of rational points of algebraic curves, adapted by Wolfmann to the case of
cyclic codes.

Theorem 1 [10] Let C be a cyclic code of length pm − 1 over Fp, with gen-
erator polynomial g(z) and check-set J . Let θ = sup J . If every element of
J is prime to p, the non-zero weights of C satisfy :

pm−1(p−1)−(θ − 1)(p− 1)

2p
b2pm

2 c ≤ w ≤ pm−1(p−1)+
(θ − 1)(p− 1)

2p
b2pm

2 c, if g(1) = 0,

pm−1(p−1)−1−(θ − 1)(p− 1)

2p
b2pm

2 c ≤ w ≤ pm−1(p−1)−1+
(θ − 1)(p− 1)

2p
b2pm

2 c, if g(1) 6= 0.

Remark 1 If C is the dual of the BCH code of designed distance d, then
theorem 1 applies with θ being the largest designed distance strictly less
than d, that is, the largest integer less than d, which is at the same time the
smallest element of its cyclotomic coset.

There exists a value of θ, say θ0, such that for θ ≥ θ0, the lower bound given
by the above theorem is negative. In the following lemma, we precize the
value of θ0, in the case where 1 is a zero of the generator polynomial of the
code (it is the only case of interest here, because 0 belongs to the defining-set
of any dual of BCH code). The proof can be found in [4].

Lemma 1 With the notations of theorem 1, for the cyclic codes admitting 1
as zero, the Weil bound is negative for θ ≥ θ0, with :

• if m is even, θ0 = p
m
2 + 1,
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• if m is odd, θ0 is the smallest element greater than or equal to d 2pm

b2p
m
2 ce+

1, which is at the same time the smallest element of its cyclotomic coset.
Let Λ = d 2pm

b2p
m
2 ce. We get :

For p = 2 and m ≥ 5, or for p > 2 and m ≥ 3, θ0 = Λ + 1 if p 6 |Λ + 1,
and θ0 = Λ + 2 otherwise.

Note : In many cases, we have Λ = dpm
2 e.

Another result of interest for us is the Roos bound. To recall it, we need to
introduce two notations : For a subset A of Fpm , say A = {αj1 , . . . , αjk}, we
shall denote by Ã, the subset : Ã = {αs, s ∈ ∪k

l=1cl(jl)}; that is, if αj ∈ A,
then αjpi mod n ∈ Ã for all i, 0 ≤ i ≤ m − 1. This notation follows from the
fact that if A is a zero-set of a cyclic code C over Fpm , then Ã is a zero-set
of a cyclic code over Fp, namely the subfield subcode of C.

If A and B are two subsets of a field F , the product-set AB is the set {ab, a ∈
A, b ∈ B}.
Theorem 2 [9] Let D be a cyclic code of length n over Fpm, and let T1 be its
zero-set. Assume dminD ≥ δ. Let β be a primitive n-th root of unity in Fpm,
and T2 = {βi1 , . . . , βik}, where 0 ≤ i1 < i2 < . . . < ik ≤ n− 1. If the number
of “missing powers” in T2, namely ik − i1 − k + 1, is strictly less than δ − 1,
then the cyclic code of length n over Fp whose zero-set is T̃1T2 has minimum
weight at least δ + k − 1.

Note that the true minimum distance of the duals of some cyclic codes can
be found from the minimum distance of the duals of BCH codes. This has
been shown by Moreno, Zinoviev and Kumar [7].

1.2 A particular class of duals of BCH codes

In order to derive a bound on the minimum distance of the duals of BCH
codes, we first isolate a particular class of them. This class was chosen for
combinatorial reasons. Indeed, for a code of this class, the particular form
of its defining-set settles a fully adapted context to apply the Roos and Weil
bounds.

Definition 1 Let 1 ≤ t ≤ m, and 0 ≤ i < p−1. We define the code B⊥(t, i)
as the dual of the BCH code of length pm− 1 over Fp, with designed distance
d(t, i) =

∑a
j=1(i + 1)pm−jt + (1− δr,0), with m = at + r, 0 ≤ r < t, and δ is

the Kronecker symbol.
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In the following, we identify an element s in [0, n[ with its p-ary expansion,
namely s =

∑m−1
i=0 sip

i = (s0 . . . sm−1).

Proposition 1 The defining-set of B⊥(t, i) is T (t, i) = {v ∈ [0, n], the p-ary
expansion of v has no pattern of the form j p− 1 . . . p− 1︸ ︷︷ ︸

t−1

, with p− 1 − i ≤

j ≤ p− 1}.
Remark 2 We have the following inclusions on B⊥(t, i) codes :

. . . B⊥(t, i) ⊂ B⊥(t, i + 1) . . . B⊥(t, p− 2) ⊂ B⊥(t− 1, 0) . . .

2 The theoretical bounds

2.1 A bound on the minimum distance of B⊥(t, i)

The following two theorems are derived from the Roos and Weil bounds. For
a proof, see [3]. Note that, for p = 2, the B⊥(t, i)s identify with the B⊥(t, 0)s.

Theorem 3 We assume p = 2, and we denote by δ(t), the minimum distance
of B⊥(t, 0).

1. for 2 ≤ t ≤ m−3
2

(so m ≥ 7), δ(t) ≥ 2t+1 + 2t − 4,

2. for t = m−2
2

(m ≥ 6), δ(t) ≥ 2
m
2 − 2,

3. for t = bm
2
c, δ(t) ≥ 2t+1 − 2t−1,

4. and for m
2

< t ≤ m− 1,

δ(t) ≥ 2m−1 − 2m−t−2
4

b2m
2

+1c.
Theorem 4 We assume p 6= 2, and we denote by δ(t, i), the minimum dis-
tance of B⊥(t, i).

1. for t = 1, δ(1, i) ≥ (z + 2)(p− 1− i), where z = 0 if i ≥ p
2
− 1, and z

is the largest integer strictly less than p
i+1

− 1 otherwise.

2. for 2 ≤ t < m−1
2

(so m ≥ 6), δ(t, i) ≥ (p− i)(pt − 1− i),

3. for t = m−1
2

and i = 0, or for t = m
2
, or t = m+1

2
and i > 0,

δ(t, i) ≥ (p− 1)2pm−t−2 + pt − 1− i,
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4. for t = m−1
2

and 0 < i < p − 1 (m ≥ 5), δ(t, i) ≥ (p − 1 − i)p
m−3

2 +

p
m−1

2 − 1− i,

5. for m+1
2

< t ≤ m or for t = m+1
2

and i = 0,

δ(t, i) ≥ (p− 1)(pm−1 − ((i+1)pm−t−2)
2p

b2pm
2 c).

2.2 A bound for all duals of BCH codes

We shall here give an estimate on the minimum distance of all duals of BCH
codes. This estimate is derived from theorems 3 and 4, and by the fact
that the B⊥(t, i)s realize a filtration of the duals of BCH codes. Indeed, let
d ∈ [0, n[. Then there exists t and i such that d(t, i) ≤ d < d(t, i + 1) or, if
i = p− 2, d(t, p− 2) ≤ d < d(t− 1, 0). But then, for the dual say B⊥(d) of
the BCH code of designed distance d, we have

B⊥(t, i) ⊆ B⊥(d) ⊂ B⊥(t, i + 1),

(or B⊥(t, p− 2) ⊆ B⊥(d) ⊂ B⊥(t− 1, 0)).

The results of the following three theorems do not all come from including
B⊥(d) in a B⊥(t, i) code. Some are also derived by applying the Weil bound
directly to B⊥(d) (see remark 1), or by applying the Hartmann-Tzeng bound
[2] to B⊥(d) and then including this code in a Reed-Muller code. The proofs,
being quite long, are omitted here and are to be found in [4].

We denote by δ(d), the minimum distance of B⊥(d). The next theorem treats
the case p = 2.

Theorem 5 Let d ≥ 3, and l = l(d), such that

2l + 1 ≤ d < 2l+1 + 1. (1)

Set t = m− l.

1. If d = d(t, 0), a bound on δ(d) is given by theorem 3.

2. We assume d 6= d(t, 0). Then we have the following lower bound on
δ(d).

(a) l < bm
2
c

δ(d) ≥ weil(d), where weil(d) is the Weil bound for B⊥(d), as
given in theorem 1.
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(b) l = bm
2
c,

If m is even,

• d < 2
m
2

+1 − 3 ⇒ δ(d) ≥ 2
m
2

+1 − 2
m
2
−1,

• d = 2
m
2

+1 − 3 or d = 2
m
2

+1 − 1 ⇒ δ(d) ≥ 2
m
2 .

If m is odd,

Let θ0 be defined as in lemma 1. Then

• d < θ0 ⇒ δ(d) ≥ sup(2
m+3

2 − 2
m−1

2 , weil(d)),

• θ0 ≤ d < 2
m+1

2 − 3 ⇒ δ(d) ≥ 2
m+3

2 − 2
m−1

2 ,

• d = 2
m+1

2 − 3 or d = 2
m+1

2 − 1 ⇒ δ(d) ≥ 2
m+1

2 .

(c) m
2

< l < m− 2,

• d < 2l+1 − 3 ⇒ δ(d) ≥ 2t+1 − 2t−1,

• d = 2l+1 − 3 or d = 2l+1 − 1 ⇒ δ(d) ≥ 2t + 2t−1 − 4,

(d) l = m− 2 and m ≥ 4

δ(d) ≥ 6, except for d = 2m−1 − 1 and d = 2m−1 − 2
m
2
−1 − 1, in

which cases we only have δ(d) ≥ 4.

The next two theorems concern the non-binary case.

Theorem 6 Let 1 ≤ t ≤ m and d such that

d(t, i) ≤ d < d(t, i + 1), i < p− 2.

1. If d = d(t, i), a bound on δ(d) is given by theorem 4.

2. We assume d 6= d(t, i). Then we have the following lower bound on
δ(d) :

(a) t = 1,

• δ(d) ≥ 2(p− 2− i) if i < p− 4, δ(d) ≥ p− i otherwise.

(b) 2 ≤ t < m+1
2

,

• 2 ≤ t < m−1
2

, δ(d) ≥ (p− 1− i)(pt − 2− i),

• t = m−1
2

(m odd), δ(d) ≥ (p− 2− i)p
m−3

2 + p
m−1

2 − 2− i,

• t = m
2

(m even), δ(d) ≥ (p− 1)2p
m
2
−2 + p

m
2 − 2− i,
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(c) t = m+1
2

, (m odd, m ≥ 5). Let θ0 be defined as in lemma 1.

• d ≤ θ0 ⇒ δ(d) ≥ sup((p − 1)2p
m−5

2 + p
m+1

2 − 2 − i, weil(d)),
where weil(d) is the Weil bound for B̄⊥(d), as given in theorem
1.

• θ0 < d ⇒ δ(d) ≥ (p− 1)2p
m−5

2 + p
m+1

2 − 2− i,

(d) m+1
2

< t ≤ m, δ(d) ≥ weil(d).

Theorem 7 Let 2 ≤ t ≤ m− 1, and d such that

d(t, p− 2) ≤ d < d(t− 1, 0).

1. If d = d(t, p− 2), a bound on δ(d) is given by theorem 4.

2. We assume d 6= d(t, p − 2). We then have the following bound on
δ(d) :

(a) 2 ≤ t < m+1
2

, δ(d) ≥ pt − p + 2, except for d = pm−t+1 − 1, in
which case δ(d) ≥ pt − p.

(b) t = m+1
2

(m odd), δ(d) ≥ p
m+1

2 − p + 2, except for d = p
m+1

2 − 1,

in which case δ(d) ≥ (p− 1)2p
m−3

2 + p
m−1

2 − 1.

(c) dm
2
e + 1 ≤ t ≤ m − 1, δ(d) is bounded from below by the Weil

bound (theorem 1).

3 The algorithmic approach

We use an algorithmic approach to compute a lower bound on the minimum
disatnce of the duals of BCH codes. The algorithmic method used here is due
to T. Schaub and J. L. Massey, and is quite general to find a lower bound on
the minimum distance of any cyclic code. We have implemented this method
using the C language. We present the main ideas of the algorithm. It is
based on the following theorem, see for instance [8].

Theorem 8 Let c ∈ Fn
p , let A1, . . . , An be the Mattson-Solomon coefficients

of c. Then the weight of c is equal to the rank of the circulant matrix

Cc =




A1 . . . An
...

. . .
...

An . . . An−1


 . (2)
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A0 A1 . . . An−1

A1 A2 . . . A0
...

...
...

An−1 A0 . . . An−2




Thus finding a lower bound on the minimum distance of a code C can be
done by finding the minimum rank of the matrices Cc, for all the codewords
c ∈ C. Since it is not feasible to compute the rank of all these matrices,
the algorithm compute a lower bound for the rank of a generic matrix Cgen,
which is as follows.
Let I(C) be the defining set of a cyclic code C. Then the Mattson-Solomon
coefficients of the codewords of c satisfy

∀ i ∈ I(C), Ai = 0.

The generic matrix of the code C is the matrix Cgen, corresponding to the
matrix Cc, with zero’s in the position of the Ai’s, i ∈ I(C), and the symbol
∆+ in the other positions. The symbol ∆+ means “certainly non zero”.
As an example, consider the following matrix


∆+ 0 ∆+

∆+ ∆+ 0
0 ∆+ ∆+


 .

The rank of such a matrix is easily seen to be greater than or equal to 2 for
any non zero values which can be given to the symbols ∆+.
The rank-bounding algorithm, designed by T. Schaub, finds a set of neces-
sarily independant columns in such a matrix, for all non zero values given to
the ∆+. The lower bound returned for the rank is the number of these lines.
The algorithm works by inspecting each line after another, trying to express
the current line in terms of previous lines. If this is impossible, the algorithm
add the current line to the set of independant lines. If not, it skips to the
next line. The techniques for establishing the independance of a line are too
intricated to be described here, and are fully explicited in [8]. The rank-
bounding algorithm works with complexity O(n3) for a matrix of size n. No
arithmetical operations are needed.
The algorithm computes a lower bound for codewords that do not belong to
any other subcode, for it assume that the Ai’s not belonging to the defining
set are non-zero. It must be recursively applied to all cyclic subcodes, or to
a portion of these. In the cases where the code has too many subcodes, the
complexity is large.
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4 Numerical results

We shall now present numerical tables illustrating the theoretical bound (the-
orems 5, 6 and 7) and Schaub’s method.

In the first column of the tables, we quote the designed distance d of the
BCH-code. The dagger means that the code corresponds to a B⊥(t, i) code
(B̄⊥(t, 0) in the binary case). The star in the Schaub’s bound column means
that the value is the actual minimum distance.

The first example is in the binary case, in the length 127. We can see that
Schaub’s algorithm gives very high values, e.g. for d = 9 to 21. For d =
11 (respectively 15, 19 ), we proved by the algorithmic method that the
minimum distance of B̄⊥(d) is at least 32 (respectively 28, 22), and some
other considerations (see [1]) lead to prove that it actually is the minimum
distance.

For large designed distances, the gap between the two method is not so
obvious.

p = 2, length 127.

d theoretical bound Schaub’s bound

3 † 64 64*
5 † 56 56*
7 48 48*
9 † 32 40
11 24 32*
13 16 30
15 16 28*
19 † 12 22*
21 12 20
23 12 16
27 12 14
29 8 14
31 8 12
43 † 8 8
47 6 8
55 6 6
63 4 4
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The next example also concerns the binary case. The “?” means that the
algorithm couldn’t stop because there were too many subcodes.

p = 2, length 255.

d theoretical bound Schaub’s bound

3 † 128 128*
5 † 112 112*
7 96 96*
9 † 80 86
11 64 64
13 48 64
15 32 60
17 †, 19 24 42
21 24 40
23, 25, 27 24 32
29 16 28
31 16 26
37 † 14 22
39 12 22
43, 45 12 20
47, 51, 53 12 16
55, 59 12 ?
61, 63, 85 † 8 ?
87, 91, 95, 111 6 ?
119, 127 4 ?

The last table concerns the ternary case. It is worth to notice here that the
theoretical bound is better for the first values of the designed distance (till
d = 10).

As for p = 2, there are cases where the algorithm couldn’t stop.

p = 3, length 242.
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d theoretical bound Schaub’s bound

2 † 162 162
4 † 153 121
5 135 114
7 † 122 80
8 102 80
10 † 90 80
11 51 79
13 51 72
14 51 65
16 51 56
17 51 53
19 † 29 51
20 26 48
22 26 38
23 26 35
25 26 26
26, 31 † 20 26
32, 34, 35 10 26
38 10 25
40, 41 10 23
43, 44 10 22
47,49 10 19
50 to 61 † 10 ?
62 to 79 8 ?
80, 121 † 6 ?
122 to 161 2 ?
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