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ABSTRACT
Recombination is an important evolutionary factor in many organisms, including humans, and under-

standing its effects is an important task facing geneticists. Detecting past recombination events is thus
important; this article introduces statistics that give a lower bound on the number of recombination events
in the history of a sample, on the basis of the patterns of variation in the sample DNA. Such lower bounds
are appropriate, since many recombination events in the history are typically undetectable, so the true
number of historical recombinations is unobtainable. The statistics can be calculated quickly by computer
and improve upon the earlier bound of Hudson and Kaplan (1985). A method is developed to combine
bounds on local regions in the data to produce more powerful improved bounds. The method is flexible
to different models of recombination occurrence. The approach gives recombination event bounds between
all pairs of sites, to help identify regions with more detectable recombinations, and these bounds can be
viewed graphically. Under coalescent simulations, there is a substantial improvement over the earlier
method (of up to a factor of 2) in the expected number of recombination events detected by one of the
new minima, across a wide range of parameter values. The method is applied to data from a region within
the lipoprotein lipase gene and the amount of detected recombination is substantially increased. Further,
there is strong clustering of detected recombination events in an area near the center of the region. A
program implementing these statistics, which was used for this article, is available from http://www.stats.ox.
ac.uk/mathgen/programs.html.

RECOMBINATION is one of the major influences ants by combining types already present in the popula-
on genetic diversity in many organisms. Under- tion. Detecting such historical recombinations is impor-

standing well the part it has to play is crucial to applica- tant in understanding the role of recombination in the
tions including disease association mapping and to creation of the patterns of variability that we observe.
many population genetic analyses. Of particular interest These detections enable us to reconstruct events that
in humans is answering the question of how much evolu- have shaped the history of a present-day sample.
tionary recombination has occurred in different geno- In this article we develop methods that can be applied
mic regions; this has major implications for the effort to DNA sequence data to obtain lower bounds on the
required, and difficulties involved, in disease-mapping number of recombination events that have occurred in
studies. This question is very difficult to answer through the genealogy describing the joint history of a sample.
traditional pedigree-based methods used to estimate re- Such lower bounds are useful since they give a measure
combination rates, because we are often interested in of the extent this genealogy must differ from a tree
recombination within a relatively short region. For such structure (which is what we would see in the absence
a region the likelihood of a recombination event in any of recombination). Further, since some recombination
one generation is likely to be extremely small, although events are fundamentally undetectable (for example,
recombination events over much longer genealogical both parents of the recombinant are of the same type
timescales can still have a strong influence on the popu- in the region sequenced) it makes sense to consider
lation ancestry. In this case, the size of pedigree study the minimum number that might have occurred in the
required to observe sufficient recombinations within history. The new methods also allow us to look at the
the region, to estimate the rate of occurrence of these pattern of detection across a region, giving an idea of
events accurately, is often prohibitively large. The rapid where more historical recombination events may have
expansion occurring in available sequence data sets en- occurred.
ables a different approach based on the analysis of such The bound Rm introduced by Hudson and Kaplan
data. Although all genetic variation is ultimately created (1985) already gives a minimum number of recombina-
through mutation, recombination can create new vari- tion events in the history of a sample. It is based on the

four-gamete test, which infers a recombination event
between pairs of diallelic loci at which all four possible1Corresponding author: Department of Statistics, 1 S. Parks Rd., Ox-

ford OX1 3TG, England. E-mail: myers@stats.ox.ac.uk gametic types are present. Such an event must have
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occurred if both loci have mutated at most once since By minimizing the number of such simplified recombi-
nations over all possible approximate histories, a lowerthe ancestor of the sample. Rm is constructed through

testing all pairs of loci in the region sequenced and bound on the number of true recombinations is ob-
tained. R h is rapidly computable for large data sets, sousing the four-gamete test to construct a collection of

intervals, within each of which recombination is de- its statistical properties can be estimated by simulation
under different models. For every pair of loci, the mini-tected. Under the conservative assumption that overlap-

ping intervals signal the same recombination event, the mum number of recombination events between that
pair is easily obtainable, and the collection of suchalgorithm of Hudson and Kaplan (1985) finds the

largest subset of nonoverlapping intervals from the origi- bounds can be viewed graphically, so regions with more
detectable recombinations can be visually identified.nal collection. Rm is then the number of such intervals

(each of which must indicate a different recombination This can be used in conjunction with similar visual aids,
such as the pairwise linkage disequilibria and incompati-event). Rm has the advantage of being very fast to com-

pute, but it is not optimal; there is often no possible bility matrix plots.
The statistic R h is applied to a real data example, thehistory for the data in which there are Rm recombina-

tions. Further, it is known that Rm misses most of the lipoprotein lipase (LPL) data set sequenced by Nicker-
son et al. (1998). For this data we compare the numberrecombination events in the sample history (Hudson

and Kaplan 1985), particularly where the mutation data of recombinations detected by R h and Rm and look at
whether the pattern of detections shows clustering ofare limited or the rate of recombination is high. Thus

there is reason to hope that an improved minimum recombination events along the 10-kb region sequenced
(as suggested by Templeton et al. 2000a using a differ-could offer detection of more recombination events.

Hein (1990, 1993) also introduced and developed an ent method). The findings are discussed in the light of
the assumptions under which R h is valid. Readers mostalgorithm that can be used to give a minimum number

of recombination events for a set of sequences, using a interested in the practical application of the new statis-
tics could go straight to this section.dynamic programming algorithm that works along the

polymorphic sites. Unfortunately this method becomes The following gives a guide to the subsequent sections
in this article; the first few sections detail the methodcomputationally infeasible for larger numbers of se-

quences, for example, more than eight, due to the fact and its implementation, followed by a section on simula-
tion results under a neutral coalescent model of evolu-that the method must consider a large number of possi-

ble evolutionary trees at each locus. For these cases an tion. Next is a section devoted to the LPL data set appli-
cation, before the final discussion. Some of the earlierapproximating algorithm must be used that no longer

guarantees that the solution is a true minimum. Cur- sections contain results that require proof; the simpler
results are proved within the text, while two longerrently no known algorithm will rapidly compute the true

minimum number of recombinations that are needed to proofs are placed in separate appendices.
First, in combining local recombination boundsconstruct a history for a given data set.

Here we develop two new statistics, R h and R s, which we explain the central mathematical concept of the
approach offered here. Given a collection of boundsgive lower bounds on the number of recombination

events in the history of a sample. A computer program on how many recombination events are needed for each
of a collection of continuous subregions of a largerthat can calculate both R h and R s upon input of a set

of sequence data has been written. For any given data region, we provide an algorithm (Algorithm 1) whereby
these bounds can be combined in an efficient mannerset, R s � R h � Rm so both minima offer an improvement

over Rm. Both statistics employ a technique developed to give the best possible overall bound for the parent
region. This gives a general method to combine recom-here that enables the combining of local recombination

bounds to create a better overall bound on a larger bination information from different subregions. Within
local recombination event bounds we first considerregion. The difference is on the way these local bounds

are obtained, and indeed future improved methods of an existing method and then derive two new methods
to obtain such subregion bounds, for input into theobtaining these bounds could result in further increases

in recombination detection. The first new bound R h is algorithm; the first new method results in the statistic
R h, and the second the improved statistic R s (which isbased on bounding the number of recombination events

by calculating the difference between the number of not so rapid to compute), upon combining the bounds.
These two sections give enough for a basic implemen-observed types in the sample and the number of segre-

gating sites; at least this number of types must have been tation of the method; the simple example (of a small
constructed data set) of the following section illustratescreated at recombination, rather than mutation, events.

The second statistic R s bounds the number of recombi- this and shows that the bounds Rm, R h, and R s can
give different numbers of detected events. A sectionnations by approximating the history of the data using

a simplified version of recombination events, in such a (implementation of the bounds) that details some
technical results important to implementing the meth-way that any true history for the data has more recombi-

nation events than one of these approximate histories. ods efficiently follows; the reader less interested in this
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aspect could omit this. Following this, in simulated Then we may write this bound mathematically in the
form of a constraint on the rl’s:properties we investigate how well all the minima per-

form under coalescent simulations, both to suggest sen-
�
j�1

l�i

rl � Bij . (1)sible parameter choices in obtaining R h (where we can
choose input values, increasing which improves the
bound but lengthens the time taken by the algorithm) The total number of recombination events in the whole
and to look at how much improvement is possible over region is �S�1

l�1 rl . We wish to find a minimum number of
Rm, for different scaled mutation and recombination recombination events, so must choose a vector (r1, r2,
rates and using the new statistics. . . . , rS�1) giving the inferred recombination events in

After the LPL application described above, in the each interval, which minimizes this sum while satisfying
discussion we talk about aspects of the results found all the local bounds. Thus for a collection (Bij) of such
and possible future applications of the statistics (for nonnegative bounds for the sample (some of which
example, estimating the recombination parameter �) may be zero), the minimum bound satisfying all the
as well as possible further developments and extensions constraints corresponds to the solution of the optimiza-

tion problem: Minimize �S�1
l�1 rl over nonnegative integersto the methods introduced here.

{rl } such thatWe assume throughout that each mutation observed
in the sample is the result of a single mutation event in

�
j�1

l�i

rl � Bij for 1 � i � j � S . (2)the sample history; this holds, for example, in the so-
called “infinite-sites” model of mutation. Thus the sam-
ple types may be represented in binary form at each This is an example of an integer linear programming
locus. Further, it is assumed that there is no gene conver- (ILP) problem. Various algorithms have been devel-
sion in the sample history, all recombination events take oped to solve such problems, although these can be
the form of reciprocal crossover events, and the DNA computationally costly for large systems. Fortunately, in
region that we analyze is sufficiently short that for every this case, we often have a relatively small set of con-
recombination event within it, exactly one endpoint lies straints. More importantly, the fact that the constraints
within the region and the other outside. Thus we make and objective function are of the same form enables a

simple dynamic solution, which means we can easily usethe same assumptions as used in the derivation of Rm

combinations of bounds in this form. In fact, there isby Hudson and Kaplan. If gene conversion is possible,
an efficient method of solving (2), which can be used tothe statistics Rm, R h, and R s will each give valid lower
give the minimum number of recombinations betweenbounds on the number of reciprocal crossover/gene
every pair of segregating sites in the sample. This resultsconversion event endpoints within the region. In the
in a minimum bound matrix R with Rst equal to theevent of repeat mutation the bounds produced may no
minimum number of recombination events betweenlonger be valid; the degree to which this distorts the
sites s and t needed to satisfy the bound system. Thisresults obtained will depend on the amount of repeat
can be more informative than reporting a single realiza-mutation that has occurred.
tion of a minimal solution since it incorporates uncer-
tainty as to where the detected recombinations occur
in the region. R may be constructed using the followingCOMBINING LOCAL RECOMBINATION BOUNDS
algorithm.

In this section we derive an algorithm to combine
Algorithm 1. Define a matrix R, where for 1 � s � t �sets of local regional bounds on the number of past

S, Rst is the optimal value for the objective function of therecombinations to obtain a bound for a longer stretch;
integer linear programming problem: Minimize �t�1

l�s rl overin the next section we see how such local bounds may
nonnegative integers {rl } such thatbe obtained. The use of this algorithm is central to

obtaining all the minima developed in this article. The
�
j�1

l�i

rl � Bij for 1 � i � j � S . (3)general approach used here is to consider bounding
the number of recombination events as a mathematical

Then we may construct R by the following algorithm:optimization problem. Suppose we have phased haplo-
type data for a sample of size n with S consecutively 1. Set R � 0 and k � 2.
labeled segregating sites at sl for l � 1, 2, . . . , S. The data 2. (Maximization step) For j � 1, 2, . . . , k � 1 set
provide information on recombination events between

Rjk � max{Rji � Bik : i � j, j � 1, . . . , k � 1} .pairs of segregating sites, in other words on the number
of recombination events rl in the region (sl, sl�1), for l � 3. (Incrementing step) If k � S, increment k by 1 and go to
1, . . . , S � 1. Now suppose we have some method of step 2.
obtaining a local bound Bij on the number of recombina-
tions in the region (si, sj) for i � j ; possible ways of In particular, the minimum for the whole region is given by

R1S.obtaining such bounds are discussed in the next section.
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Proof. See appendix a. � sults of this test into the new framework; unsurprisingly,
the minimum this results in is equal to Rm, so with these

This algorithm has been used to investigate the pat- conditions Algorithm 1 gives an alternative method of
terns of detectable recombination in a human data set obtaining this statistic. More interestingly, the two new
from the LPL locus; the results from the analysis are methods result in statistics R h and R s, respectively, when
discussed later, in lpl data application. R may be Algorithm 1 is employed, and these two offer improved
viewed graphically, in a similar manner to the incompat- detection over Rm.
ibility matrix; this is useful for visualizing the pattern of The first of the two new methods creates a “haplotype
detection along a length of sequence. bound” for a local region on the basis of counting the

Thus we have a general solution enabling us to com- number of different types in the sample produced by
bine different bounds on the number of recombinations various subsets of the full collection of segregating sites
that occur in the history. Algorithm 1 is really a dynami- in that region and deducing how many of these types
cal programming algorithm, which efficiently gives an must be created by recombination. The second, de-
optimal bound for every pair of sites. Further, if only scribed in Bounds from simulation of the sample history,
the overall bound is required, this can be obtained easily works by evolving the sample back, coalescing, and mu-
by performing the algorithm but fixing j � 1 in the tating until a recombination event is needed, and then
maximization step. This gives the required bound after choosing the recombinant from the remaining se-
looking at every element Bij only once, so is an efficient quences. The chosen recombinant is then removed and
solution to the system (2). A particular optimal solution the process repeated until a single ancestral sequence
vector can then be recovered by subtracting consecutive remains. The bound produced is the minimum number
elements of the row R1· produced. It should be noted of removals over the different choices of recombinants.
that this particular solution results in the placement of To obtain a local bound for a region, information from
all recombination events as far to the right along the segregating sites outside that region is temporarily disre-
sequence as possible; this rightward bias can obviously garded in creating the history.
mean that the particular solution produced is not neces- The bound that is possible depends on whether the
sarily a good indicator of where recombinations actually ancestral type is known or unknown at each locus; in
occurred along the sequence. By working in the other the case where we have an outgroup, the type is known
direction, we can equally subtract consecutive elements and this lends us extra information. If ancestral types
of the column R ·S to give another (not the same in are known, then for convention we assume that the
general) optimal solution. This will have a correspond- ancestral type is designated as a 0 in the binary sequence
ing leftward bias. data.

The optimization approach is also useful if we wish Hudson and Kaplan’s Rm: The conditions obtained
to include known or model-based information about by Hudson and Kaplan (1985) can be viewed in this
the history of the sample, provided this can be phrased framework as the set of equations obtained using the
as constraints on the rl’s. For example, if we wish to four-gamete test for recombination in the sample his-
impose rk � 0 then we need only remove the term in rk tory. This uses the fact that if mutations occur only once
from each constraint. This results in a system of the same in the sample history, a recombination event can be
form as before, which may readily be solved through the inferred in (si, sj) provided all four possible gametic
same algorithm; the new system will have no solution types 00, 01, 10, and 11 are present within the sample
if Bk(k�1) � 0, corresponding to a known recombination at the respective loci si and sj. In this case we say that
in the interval (sk, sk�1). An extension of this is the case sites i and j are incompatible. In the form of the system
where recombination is allowed only between a few sites (2) we can view the result of the four-gamete test in
or even a single adjacent pair of sites; this again results terms of a bound Bij for each pair i � j of sites, where
in the same form for the system of equations, which Bij � 1 if sites i and j are incompatible (so there must
may be solved using the method of Algorithm 1. It is be at least one recombination between sites i and j)
clear that more complicated constraints could also be and Bij � 0 otherwise. Thus in this case, viewing the
introduced. system of constraints as a matrix, it is just the usual

incompatibility matrix of pairs. The algorithm given in
Hudson and Kaplan (1985) that gives the minimumLOCAL RECOMBINATION EVENT BOUNDS
bound subject to these constraints involves “pruning” of

The usefulness of the approach above is dependent the set of incompatible pairs and seems rather different
on the quality of the collection of local bounds obtained. from the solution of Algorithm 1. However, it is clear
Here we suggest one existing and two new methods on closer inspection that both methods lead to the same
that give sets of local bounds, with later methods always bound Rm. In fact, the right endpoints of the disjoint
improving on the earlier ones. The first method simply intervals remaining in Hudson and Kaplan’s method
uses the four-gamete test (employed by Hudson and correspond exactly to the only nonzero values for rk

obtained in evaluating the particular optimal solutionKaplan 1985 to calculate Rm) and incorporates the re-
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from the top row R1·. Thus with these bounds the new equals H � 1, then one of the sample members is of
the same type as the sample MRCA. But we know theapproach gives a new algorithm that will obtain the

same bound as the older method. number of mutations in the sample history; this is just
S as each segregating site is assumed to have mutatedThe bounding method above holds whether ancestral

types are known or unknown. However, in the case of exactly once since the MRCA. Hence, if R is the number
of recombinations in the history, we have R � E � Sknown types the bound can be improved slightly through

a refinement of the test. In this case, a recombination and this gives the bound
can be inferred whenever the three types 01, 10, and 11

R � �H � S � 1: Ancestor type present in the sample
H � S : Otherwise. (4)are present in the sample (Gusfield 1991, for exam-

ple). This is because we can effectively infer the exis-
tence of the ancestor type 00. Thus we can obtain a This may seem like a very weak bound, since whenever

there are more segregating sites than distinct haplotypestypes known incompatibility matrix and corresponding
equation system, the solution of which improves the it will give a negative answer, leading to a zero bound

on the number of recombinations. However, it becomesbound in certain cases; both the types-known and the
types-unknown bounds are referred to as Rm from here much more powerful when we note that there is no

reason why we may not apply it to any subset of sites inon. The knowledge of ancestral types is not expected
to improve Rm much in practice, since for large sample the data, not merely the full set of sites. Thus from the

original S sites we may choose any S	 � S say (for exam-sizes the ancestral type 00 will be present for most pairs
of sites considered. Note that the improved set of equa- ple, the first, third, and fourth sites), consider the types

at these sites only, and obtain a corresponding localtions obtained when types are known corresponds to
adding an all-zero type to the top of our list of sequences bound that holds for the region between the endpoint

sites in our set (sites one and four in our example).and then proceeding as if types were unknown.
Haplotype bounds: The method above clearly throws Examining many subsets will typically give a much-

improved bound collection! For a given local region,away information in the data about the recombination
history, since it considers only pairwise comparisons. the best “haplotype bound” is the maximum bound

obtained from applying (4) to subsets with the sameThis results in a nonoptimality of the bound; it is not
always possible to construct a history for the sample endpoint sites as that region. This collection of local

bounds gives the overall bound R h when Algorithm 1with only Rm recombinations. In fact, the incompatibility
bound can be viewed as a special case of a wider class is applied.

If we do not know ancestral types in the history, weof bounds. Suppose that there are H � n distinct haplo-
types in our sample of size n. Consider any possible must use the first bound of (4) since the ancestral type

may or may not be present. If types are known, we knowhistory describing the evolution of the sample backward
in time. The ancestors of our sample may undergo re- which set of conditions in (4) is satisfied, depending

on whether or not there is an all-zero (ancestral) typecombination, mutation, or coalescence events in the
history, before all lineages eventually coalesce to a single within the sample. Then if we always add an all-zero

type (before any other analysis) to the front of the listancestor of the whole segment of DNA being studied
(Griffiths and Marjoram 1996b, for example), called of types in this case, as before it is clear that applying

the type’s unknown bound will always give the correctthe most recent common ancestor (MRCA). At a time
t back from the present, let Ht be the number of types lower bound here. Finally, if we consider only the subsets

consisting of pairs of elements (i.e., the endpoint pairs)present in these ancestors, so H0 � H. We can make
the following observations: the haplotype bound is equivalent to the three- or four-

gamete test, and so the incompatibility test can be
1. Ht eventually declines to 1.

viewed as a special case of (4).
2. Ht remains unchanged by a coalescence of two lines

If there are S sites then there are a total of 2S subset
(they must be identical types to coalesce).

collections of these S. For large S it is thus impractical
3. Ht decreases by at most 1 at each mutation or recom-

to consider all subsets of the original site collection,
bination event in the history.

particularly since we need to count types for each such
collection. The approach taken to address this problemLooking forward in time from the ancestor to the

present, this means that each recombination or muta- by the current implementation of the minimum is to
introduce parameters that reduce the set of site collec-tion event in the ancestry creates at most one new type

of the H that must be created altogether to make up tions considered in producing R h. There are two param-
eters, and these set (1) the maximal subset size S	 thatthe present-day sample. The original ancestor makes up

at most one of these types depending on whether or is to be considered and (2) the maximal distance apart
of the endpoint sites (after removing compatible sites).not it is present in the sample. Then the total number

E of recombination or mutation events in the sample Increasing either parameter will increase the number
of subsets used to give local bounds and can thus in-history must satisfy E � H � 1 to create the observed

number of types. Further, if the number of such events crease the minimum produced. This improvement is at
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the cost of more computation time. The second parame- Algorithm 3. A lower bound for the number of recombina-
tion events in the history of a data set S is given by the followingter sets the maximal width after removing sites compati-
algorithm:ble with all others (which cannot affect R h) from the

data set; further details of why this is done are given in 1. Initially put B � ∞ and set R � 0.
implementation of the bounds. Note that setting a 2. If two sequences in S are of the same haplotype, coalesce
low value for this parameter means that local bounds them. If a site s is noninformative, remove the data corre-
are computed only for the number of recombination sponding to s from S. Repeat while it is still possible to
events between site pairs that are close together. Choos- perform such an event and more than one sequence remains
ing sensible values for these parameters often means in S.
the bound obtained is as good as if all subsets were 3. If only one sequence remains at this point, record the number
considered; sample sizes of 1000 with hundreds of segre- of removal events R in the current history and if R � B
gating sites can easily be analyzed on an average Pen- put B � R.
tium PC. In practice the best approach for a given data Otherwise more than one sequence remains; choose one
set is to start with reasonable small values for the parame- of the remaining sequences and remove it from the list S.
ters and then increase these until either the bound no Add 1 to R and go to step 2.
longer improves or (for a very large data set) the run 4. If there remains some possible sequence of removal events
time of the program becomes too long. The implemen- not yet tried, start a new history, set R � 0, and return to
tation also performs further steps that reduce computa- step 2 with the original data set S. Otherwise return B as
tion time; some of these are described further in the the required bound.
section implementation of the bounds.

Proof. The algorithm returns the minimum numberBounds from simulation of the sample history: The
of removal events over possible histories of S, whichprevious two bounds have had a somewhat loose genea-
consist of coalescence, mutation, and removal events.logical interpretation in that they do not attempt to
We use induction on the number of sequences n. Nowdirectly reconstruct the history of the sample in any way.
the algorithm is valid for n � 2 since no recombinationsImprovements to the bounds they offer can be made
are ever needed to construct a history for a sample sizethrough searching over such histories; this, however,
of 2 or less. Supposing it gives a true lower bound upcomes at a time cost relative to the previous bounding
to a sample size of n � 1, for a data set S with a sample

techniques. The idea is to search over possible histories
size of n let DS be the true minimum number of recombi-

of the sample. nations required to construct a history for S. We need
The following proposition gives us a general condi- to show that when applied to S, the algorithm returns

tion under which we may simplify our sequence data to a number that is no larger than DS.produce a smaller data set, which requires the same Considering beginning the algorithm, we know by
number of recombination events in the sample history. Proposition 2 that performing the second step of the

algorithm does not change the number of requiredProposition 2. For a sample S of size n, the minimum
recombinations in the history. This step then producesnumber RS of recombinations in the sample history until the
a modified data set S	 say, which also requires DS recom-MRCA is equal to RS	, where the new sample S	 is formed from
binations in its history. If S	 has n � 1 sequences or less,S by either of the following two events: (1) coalescence of two
the algorithm then obtains a valid bound by assumption.sample members of the same type and (2) removal of a noninfor-
Otherwise, note that the first event back in time mustmative site. If the ancestral type at a segregating site is known,
be a recombination to an ancestor of the sample, sinceit is defined as noninformative if and only if exactly one member
no other event type is possible. Letting H be some opti-of the sample is of the mutant type. If the ancestral type is
mal history of the data set S	, with DS recombinationunknown, the site is noninformative if and only if all but one
events in total, this first recombination occurs to the

of the sample members are of the same type at that site.
ancestor of sample member a say. Define a set S″ as S	
with a removed from the list. Then S″ is a set of n � 1Proof. See appendix b. �
sequences. Further, if we follow the evolution of the

The proposition above enables us to produce data ancestors of the members of S″ using H, we obtain a
set S	, a smaller data set than S, which nevertheless history for this modified data set. This history cannot
requires the same number of recombinations in its his- contain the first recombination event, so has at most
tory, under certain conditions; in other words, to sim- DS � 1 recombination events. Now our inductive hypoth-
plify the problem of finding a minimum. More impor- esis tells us that applying the algorithm to S″ will give
tantly it motivates the following algorithm, which gives a bound of at most DS � 1.
a lower bound for the number of recombinations needed Since the algorithm tries all possible chains of removal
in a region to explain the history of a data set S consist- events, at some point sequence a will be chosen as the

first removal. The resulting data set is then S″. Becauseing of a list of sequence types at segregating sites.
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the algorithm gives a bound of at most DS � 1 for this try to improve this by using R s if the original local
bounds obtained from this are not too large, certainlydata set, some chain of removals for S″ then includes
no larger than about nine.at most DS � 1 removals before step 4 of the algorithm

We now have a sequence of increasing bounds; foris reached. But adding a to the front of this chain gives
any given data set R s � R h � Rm; as we might expect,a list of removals for the original S with at most DS �
there seems to be a trade-off between the quality of the1 � 1 � DS removals altogether, and as the bound given
bound obtained and the computational time to acquireis the minimum over such chains, the bound returned
the bound.by the algorithm is at most DS, the true minimum. �

The basic idea of the algorithm is to look over possible
histories, using the proposition to perform events that EXAMPLE
do not change the minimum number of recombina-

The three methods of obtaining local bounds abovetions, where this is possible. If at some point before a
result in three different bounds, Rm, R h, and R s, onsingle ancestor is reached we must stop, it is necessary
inputting these local bounds into Algorithm 1. The fol-to have a recombination event; we choose a member of
lowing example illustrates the bounds and shows thatthe current ancestor set to “recombine.” However, to
they are all different in general. Consider a sample ofsimplify things instead of recombining this sequence we
only eight sequences, where the two types at each sitesimply remove it from the list and continue. This results
are expressed in binary notation and with known ances-in a simpler data set (which then needs no more recom-
tral type at each site, denoted by 0:binations) than the one we should have if we included

ancestors of the recombinant. It also speeds things up
since there is no need to look over possible breakpoint
positions. After enough removal, coalescence, and mu-
tation events have been performed, it is clear the data
set will evolve to a single ancestor state. Minimizing
removals over every possible such “history” then ensures

Site 1 2 3 4
a 0 0 0 0
b 0 1 0 1
c 1 1 0 0
d 0 1 1 0.
e 1 1 1 1
f 1 1 0 1
g 1 1 1 0
h 1 0 0 1

the bound obtained is valid; however, it may not be
optimal because of the incomplete consideration of re-
combination events. Although the proposition greatly
reduces the class of histories that need be considered,
the number of such histories can become prohibitively
large if there are many types and little simplification is The incompatible site pairs are (1, 2), (1, 3), (1, 4), (2,
possible. 4), and (3, 4). This gives an incompatibility matrix B I

To obtain a local bound for the region between sites as below, and using Algorithm 1 or the original algo-
i and j, we can construct a data set corresponding to rithm of Hudson and Kaplan (1985) gives Rm � 2,
the types of all the sample members at just the sites with a solution vector of (1, 0, 1) for the number of
within that region. A bound Bij will correspond to the recombinations between adjacent sites. Looking at
subset {si, si�1, . . . , sj} of mutant loci. Unlike for the counting types, sites (1, 2, 3) considered together give
haplotype bounds there is no point in taking further six distinct types and so a bound of 6 � 3 � 1 � 2
subsets of this set, since the bound obtained is obviously recombinations in this region; the same is true for sites
increasing in the number of segregating sites in the (2, 3, 4). Sites (1, 2, 3, 4) give eight types and thus a
sample. Thus there is a total of S(S � 1)/2 subsets to bound of 8 � 4 � 1 � 3 recombinations, and no subset
be tried in general. Further, the bound obtained containing both endpoints 1 and 4 improves this bound.
through this method is easily seen to always equal or At this point we have obtained a set of local bounds
increase the haplotype bound for the corresponding that can be expressed as a matrix BH, shown alongside
region; it models the history more carefully. Using Algo- the incompatibility matrix B I:
rithm 1 on the local bounds results in the statistic R s,
which often improves the minimum, through incorpo-
rating information about the positions of recombina- B I � �

0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 0

� , BH � �
0 1 2 3
0 0 0 2
0 0 0 1
0 0 0 0

� . (5)
tion events along the sequence. For large data sets it is
not always possible to calculate R s, due to a very long
computation time, and in this case using the haplotype Now we can again use Algorithm 1 to find R h, the mini-
bound R h is the only option. This is more likely to be mal number of recombinations subject to the haplotype
necessary if the number of recombinations required for bounds. This results in a value of R h � 3 recombinations
a history is large. The best approach in practice might for the whole region, with a minimal solution vector

(1, 1, 1) for the number of recombinations betweenbe to calculate the (quick) haplotype bound and then
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successive sites. Note that even if we restricted our subset HS	 � HS . (7)
search so the endpoints were separated by at most one

Further, if the mutation s is compatible with all other segregat-site [so the local bound for site pair (1, 4) drops to
ing sites in the region, S	 is such thatzero], Algorithm 1 still recovers the same solution since

B13 � B34 � 3, and R h � 3 still. This illustrates how HS	 � HS � 1. (8)
the algorithm can improve over using the local bounds

Proof. Suppose the total set of sites is C. Then thealone.
mutation data over C � s (i.e., without site s) partitionsIf we use the improved local bounds from searching
the set of n sequences into a set of HS	 equivalenceover sample histories (which will give R s) the bound
classes according to which type each belongs to. Addingmatrix becomes
the mutation at s to form the list C results in a refinement
of these equivalence classes since if two sequences are
the same type for every mutation in C, they are certainly

BS � �
0 1 2 4
0 0 0 2
0 0 0 1
0 0 0 0

� . (6) of the same type for every mutation in C � s. The new
total number of classes is HS by definition. Then trivially
HS � HS	, the first inequality.For an illustration, the top right bound of 4 (corre-

To obtain the second, for a contradiction supposesponding to the local bound between sites 1 and 4) may
HS � HS	 � 2. Then at least two classes, E0 and E1 say,be attained by removing sequences b, f, h (viewed as
are split through adding the extra mutation; this follows“recombinants” by the algorithm) and then removing
since the mutation data are binary and so when the listthe mutation at site 4 (which is a singleton after these
of equivalence classes is refined through adding data atthree sequences are removed). No further simplifica-
a single mutation site, each previous class is divided intotion is possible at this point, so sequence e is removed
at most two disjoint classes corresponding to types 0from the list. At this point mutations and coalescences
and 1 at the added site. Now since E0 and E1 are differentcan be performed until a single ancestor is reached,
classes initially, without loss of generality there existsso no further recombinations are needed. All other
some segregating site t at which all members of E0 arepossible simulated histories require at least four recom-
type 0 and all members of E1 are type 1; in the reversebinations so this is the local bound given for the number
case we can simply swap the labels of the classes.of recombinations between sites 1 and 4. Using Algo-

Since the mutation at s splits both E0 and E1, thererithm 1 with the bounds of BS gives a minimum bound
exist members of both types 0 and 1 at s in each set.of RS � 4 and an optimal solution vector (1, 1, 2) in
But then all types 00, 01, 10, and 11 are present inthis case.
the sample at t, s, respectively, and these sites form anIn this example we then have 2 � Rm � R h � R s �
incompatible pair. This contradicts the assumption of4, so the three bounds are all different, and the new
s being compatible with all other sites, so HS � HS	 �methods improve the detection over Rm. In fact, we can
1, giving the lemma. �easily construct a history with exactly four recombina-

tions in this case, so four is the true minimum. No other Corollary 5. For any given list C of segregating sites,
algorithm could detect more than four past recombina- define RC as the haplotype-based bound (4) obtained using the
tion events. mutation data from all sites in C. Now form a new list C 	 by

removing from C those sites that are not incompatible with any
others. Then

IMPLEMENTATION OF THE BOUNDS
RC	

� RC (9)
We describe here some technical aspects of how the

so the set C 	 leads to an improved bound compared to C.bounds derived in combining local recombination
bounds and local recombination event bounds are Proof. Consider taking the list C and removing the
actually implemented. The methods given in this section nonincompatible sites one at a time. Then from Lemma
give ways to reduce the time taken to obtain the corre- 4, each successive removal reduces the number of types
sponding bounds, particularly R h. by either one or zero. However, since each removal

With the haplotype bounds, the number of subsets reduces the number of segregating sites in the list by
of the set of sites is very large for a reasonably large exactly one, the haplotype bound 4 is either unchanged
number of segregating sites. However, the implementa- or increased by one after each removal, giving the
tion is aided by the following fact about the number of corollary. �
haplotypes added by a given mutation:

Thus we need look only at incompatible sites to obtain
Lemma 4. For mutation data S for a sample of size n, define the best bound for a region; so the incompatibility ma-

HS as the number of different types in the sample. For a given trix itself is still very valuable in this case. This means
mutation labeled s, construct data S	 by removing the mutation we can often greatly reduce the number of site subsets

that need considering to obtain local haplotype bounds,data corresponding to site s from the data S. Then
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since many sites need never be considered for such compared to Hudson’s minimum, for the particular
parameter choice 
 � � � 10 and sample sizes n � 25,subsets. Our implementation calculates R h by first con-

structing the incompatibility matrix (and Rm) and then 50, 100. Each number is based on a single data set
containing 10,000 simulated samples, with ancestralremoving those sites that are compatible with all others,

before obtaining bounds using subset search over the types assumed unknown. It is clear that increasing the
subset size has a diminishing-returns effect; the increasereduced set. Further use of the condition is made by

choosing viable subsets; for example, checking the end- in number of recombination events detected diminishes
as the subset size gets bigger. The effect of increasingpoints is not compatible with the whole of the set. The

algorithm also saves time, using a “branch-and-bound” this subset size on the average minimum obtained ap-
pears to be stronger than the effect of increasing themethod; only subsets of a size up to the maximum that

could improve the current bound obtained for the sec- maximal width considered; changing the latter parame-
ter can greatly increase the run time of the program.tion are considered, and this maximal size is updated

as the current bound increases. As might be expected, using larger and wider spanning
subsets of the data yields the most benefit for largeThe bounds from simulation of the sample history

have also been implemented. Using Algorithm 3, the sample sizes, where more information about the recom-
bination history of the data is available. The run timesimplementation tries all possible histories, coalescing

or removing mutations from lines whenever possible (at for all 10,000 data sets were typically of the order of 10
min for subsets of size at most five, spanning at mostremoval events the program first tries removing the first

remaining sequence, and then the second, and so on 12 inconsistent sites. Thus for a single data set the pro-
gram will run very fast with much less conservative set-until all possibilities are exhausted). It, too, uses a

branch-and-bound approach, simulating histories only tings; however, to learn properties of the distribution
of the statistic for different parameters (and so examineto the previous best recombination depth for a region.
different models in the light of the data, for example),
a fast run time is important. Obviously, to get the best

SIMULATED PROPERTIES
bound for a single data set one should use the largest
width and subset size possible.Having developed methods that can potentially detect

more recombinations than the existing statistic Rm, a The remaining simulations (except those for Table 2)
were run with a maximal subset size of five and maximalquestion that is of obvious interest is how much improve-

ment we can expect to see. Another question is the width of 12 sites, which seems to be a reasonable com-
promise for speed and quality. This produces a mini-effect of different parameter choices on the value of R h

we obtain. Here we investigate both of these questions mum, which is referred to as R h from here on. Figure
2 shows two histograms of the distribution of the twounder the simple neutral population genetic model of

evolution. statistics with 
 � 10, � � 10, 20 and n � 50, on the basis
of 100,000 simulated samples and unknown ancestralThe properties of the various statistics giving a mini-

mum number of recombinations are difficult to calcu- types. It is clear that the new statistic R h often detects
substantially more recombination than does Rm. In fact,late analytically under even simple models. However,

they may be estimated under different population ge- from these runs the statistics coincided 0.33 of the time
for � � 5 (not shown on histogram), 0.09 of the timenetic models through simulation. To do this for the

neutral model of evolution, standard coalescent simula- for � � 10, and only 0.01 of the time for � � 20. While
both distributions are shifted to the right through in-tions (Hudson 1983) were run with various recombina-

tion and mutation rates and different sample sizes. A creasing �, the distribution corresponding to the haplo-
type minimum shows a more pronounced separation ofconstant population size and no population subdivision

were assumed. Data sets were produced using R. R. the peaks of the two distributions across the range of
recombination parameters considered. Thus it may beHudson’s program ms, which simulates mutation data

under this model (among others), and the statistical that the new minimum carries more information about
the true amount of recombination in the history thanproperties of the new minima were estimated. The effect

of known or unknown ancestor types was also tested. does the old.
To investigate the difference between the minima forUnder this model, the evolution of a sample of n se-

quences back in time is governed by a stochastic process, a wider range of parameter values, Table 1 shows the
mean and coefficient of variation (standard deviationwith rates dependent only on the scaled mutation and

recombination rates 
 � 4N� and � � 4Nr. Here N is divided by the mean) of the two estimates for different
values of 
 and �, for n � 25, n � 100, respectively, andthe effective population size and �, r are the per gene,

per generation mutation and recombination rates, re- all ancestral types known (types were assumed unknown
for the previous two simulations). Each data point isspectively.

Figure 1 gives three charts showing the effect of differ- based on 10,000 samples from the neutral distribution.
Run times for the program were strongly dependent onent choices of maximal subset size and maximal number

of sites spanned on the new haplotype-based minimum, the parameters used and varied from just a few tens of
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Figure 1.—The effect of parameter choice on the expected minimum for 
 � � � 10. The three lines on each graph
correspond to maximal widths for subsets of 10 (bottom line), 12 (middle line), and 15 (top line) incompatible sites; the
horizontal axis gives the maximal number of members of each subset. For each graph, the point corresponding to a subset size
of 2 shows the expectation of R m.

seconds for the 
 � 1 values to several hours for the particularly for small sample sizes (where the original
ancestral type is less likely to be present).
 � 100, � � 100 case to complete all 10,000 runs

(corresponding to a couple of seconds on average for The most striking point is that the expectation of the
new minimum R h is much more sensitive than Rm toeach simulated data set in the latter case). For a given


 and � pair the n � 25 simulations took around one- changes in recombination rate; so for a given value of

 and increasing �, the gap between the two increases onquarter of the time of the n � 100 simulations. Compar-

ing the expectation of R h for 
 � � � 10 with the types- average. The coefficient of variation, though, remains
broadly similar between the two estimates across a wideunknown case gives an increase in expectation from

4.21 to 5.28 and a change in scaled relative error from range of parameter values, with R h having a slightly
smaller relative error compared to Rm. For increasing0.46 to 0.43, for n � 25. For n � 100 the types-unknown,

types-known values are 7.60, 8.70 for expectation and 
 and fixed �, n, the expectations of Rm and R h, will
converge to the same limiting value; for a given history0.34, 0.33 for scaled relative error. Finally, for the estima-

tor Rm the types-unknown numbers are 2.96, 0.46 (n � this corresponds to the number of different tree topolo-
gies across the stretch of DNA and the expectation is25) and 4.45, 0.37 (n � 100), which compare to mean

and standard errors in the types-known case of 3.65, the expected number of such topologies. This value can
be calculated; it is �2.04 for � � 1 and n � 25, the only0.44 (n � 25) and 5.08, 0.36 (n � 100). Thus, using

information about the ancestral types where it is avail- case for which the limit is approached over the range
of 
 values considered, and in this case there is clearable can lead to significant improvements in terms of the

number of recombinations detected by either statistic, convergence of R h and Rm for large 
. The limiting value

Figure 2.—Histograms of R m

and R h for 
 � 10, n � 50.
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TABLE 2

Estimates of the means of the different minima
for samples of size 10

�


 Statistic 1 5 10 20 50 100

5 E (R m) 0.27 0.97 1.48 2.09 2.97 3.64
E (R h) 0.28 1.10 1.76 2.64 3.97 5.01
E (R s) 0.29 1.13 1.83 2.74 4.08 5.11

10 E (R m) 0.43 1.58 2.45 3.54 5.24 —
E (R h) 0.45 1.79 2.92 4.45 7.00 —
E (R s) 0.46 1.89 3.10 4.70 7.30 —

Dashes indicate where data were not generated due to a very
long expected run time. The data were generated assuming
known types with n � 10 and a maximal subset size of 12 and
width 12 for the R h estimates. For each set of parameters, all
three expectations are estimated from the same simulated
data set.

Figure 3.—The effect of sample size on the expected min-
seeming to perform better relative to Rm as n increases;ima for three values of 
 � �. Each point is estimated from

10,000 simulated samples. The dotted lines with circles give the ratio of the two expectations is increasing with the
values for E(R m), and the solid lines with crosses give values sample size. The increase in detection is, however, slow
for E(R h). The three pairs then correspond to 
 � � � 5 in both cases; this reflects the fact that the total number(bottom pair), 10 (middle pair), and 20 (top pair).

of recombination events in the sample history increases
only as �logn with sample size n and that mutations in
the correct portions of the ancestry are needed to detecthere corresponds to detection of �54% of the expected
these few extra recombinations.total number of recombination events in the sample

The statistical properties of the history-based boundhistory and is in fact the true minimum given the collec-
are much more difficult to estimate, since the bound istion of ancestral tree topologies along the sequence;
impossible to compute in the current implementationthis is more data than we can possess in practice, so
when the number of detected recombinations is large,many recombination events will inevitably go unde-
although for smaller obtained bounds, it may be rapidlytected. Although the minimum can give a guide to the
computed. This means that the algorithm tends toamount of recombination in the history, any minimum
“freeze” on occasional data sets, even when the simula-will miss the greater proportion of recombination events
tion parameters are quite moderate. Thus unfortunatelythat have occurred and thus should not be used directly
the simulation results of Table 2 correspond to onlyto estimate the recombination parameter.
10 sequences and varying rates of recombination andFor bigger values of �, it is clear that 
 needs to be
mutation. They compare the means of all three typesvery large indeed for the two estimators to become close
of bounds, with types known, across this range of param-to one another, and the improvement from using R h
eters in the model. The maximal subset size and widthsover Rm is greater for the larger sample size of 100 for
for the R h algorithm were both chosen here to be 12,given parameter values. Increasing the length of DNA
to observe as many recombinations as possible throughsequence for which data exist corresponds, for uniform
number of haplotypes only, for the purposes of theper base rates of recombination and mutation, to in-
comparison. The mean is a reasonable summary of thecreasing � and 
 in proportion. For such increases, the
difference between the minima since for any sample,expected values of both minima increase approximately
Rm � Rh � R s. The bounds from generation of thelinearly with the parameters, and the ratio of the two
history always took much longer to obtain than theremains approximately constant (though dependent on
haplotype-based bounds (typically many hours for R s,the ratio of recombination to mutation rates).
compared to �5 min for R h, for the full 10,000 simulatedThe effect of increasing the sample size on the statis-
samples). It appears from the simulations that the mini-tics is also of interest; Figure 3 shows the expected value
mum based on simulating histories offers little improve-of each statistic as a function of n for different values
ment over the haplotype-based bound; however, thisof � � 
, and ancestral types are assumed known. Each
may be misleading since the improvement offered isdata point is based on 10,000 samples. The expected
probably much greater for larger sample sizes, wherenumber of recombinations detected increases slowly

with sample size in both cases, with the new minimum there is more information about the unobserved history.
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TABLE 3 twice as many recombinations within the region, using
the largest subset size of 12. This larger-than-usual im-The expectation and coefficient of variation for R h for a model
provement (compared with a flat recombination rate)with a recombination hotspot in the center of the region (for
corresponds to the fact that the new minimum oftendetails see text) and uniform mutation rates of 5, 10, and 20
detects multiple recombinations within the hotspot, by

Subset size looking across it. The coefficients of variation seem fairly
similar except for the case where the mutation rate is


 Statistic 2 3 5 12
20; here the coefficient of variation of the new minimum

5 E (R h) 1.48 2.20 2.93 3.00 is somewhat lower. The fact that looking across the
5 Coeff. var. 0.55 0.51 0.55 0.57 hotspot leads to increased detection is also confirmed

10 E (R h) 2.21 3.17 4.24 4.40 by the increase in detection that occurs as the maximal
10 Coeff. var. 0.49 0.42 0.39 0.41 subset size increases through 3, 5, and 12.20 E (R h) 3.35 4.46 5.55 5.70

Finally, one unexplored question is the effect of de-20 Coeff. var. 0.45 0.39 0.35 0.35
partures from the given assumptions on the results ob-

The sample size is fixed at 50 and the ancestral type is tained for the minimum. All the statistics here will give
assumed known at each locus. The columns correspond to a true minimum under any model of selection, recombi-different subset parameters for the bound; thus the first col-

nation rates, or population structure (although theirumn actually refers to R m; for the other columns, a maximal
properties will be strongly dependent on the particularsubset width of 12 was used. For each parameter set, 10,000

simulated samples were created and the estimates for the model chosen), provided the two assumptions of no
different widths are all based on this same data set. gene conversion and no repeat mutations hold. How-

ever, if these are violated, then such events in the history
can be mistaken for recombinations by the algorithms,

This is reflected in the fact that the improvement in and so the sensitivity to departures from the given as-
detection over Rm is only moderate for n � 10. sumptions is important. Here we look only briefly at

The theoretical behavior of the different bounds rela- the repeat mutation case. Data were simulated under a
tive to one another depends on the number S of segre- neutral model, for 50 sequences with a uniform recom-
gating sites in the sample. If S � 2, Hudson and Kaplan’s bination rate of 0 and 10 across the region, in a finite-
minimum Rm is obviously the optimal lower bound for sites model with 10,000 sites. The scaled mutation rate
the number of recombinations. If S � 3, this is no longer was chosen to be 10 across the region; however, on top
true (Rm � 2 but R h � 4 here); however, a search over of this underlying rate 5 or 10 randomly selected sites
all possible sets of genes with this number of segregating were chosen to be hypermutable with mutation rates
sites reveals that the haplotype bound R h is in fact always 200 times the regional average. This corresponds to an
equal to the bound R s; though a history for the sample expected number of 0.90 mutations per hypermutable
requiring exactly R h recombinations cannot necessarily site; so a proportion of such sites will undergo repeat
be constructed. This does not hold for S � 4, since the mutation. The results of Table 4 demonstrate that under
history-based bound R s is not equal to R h in some cases this moderate amount of repeat mutation, some multi-
here; it is not clear whether R s is optimal for these four ple mutation contributes to the minimum number of
sites (there are many possible sets of genes to look at recombinations, so that even if � � 0 there is some
in this case). false “detection.” We can measure the number of such

The next simulations here briefly consider what can erroneous detections by the increase over the (in paren-
happen under a different model of recombination. theses) expected number of recombinations detected
They give the means for the bound Rm of Hudson and with no repeat mutations but the same rates. It seems
Kaplan and the new haplotype bound R h, in a model that the erroneous detections are almost as great for a
where there is variability in the recombination rate subset size of 2 (i.e., Rm) as for R h with a subset size of 12.
across the region: a hotspot of recombination with an Thus the relative contribution of the repeat mutations is
otherwise uniform recombination rate. In fact, the simu- reduced slightly with the new minima. The relative er-
lations use a model where the central 10% of the region rors seem almost unaffected by the hypermutable sites
has a recombination rate of 100 times the average else- in the � � 10 case.
where (having a cumulative recombination rate � � Although this is encouraging, it should be noted that
10), and the overall recombination rate is 10.9 for the in theory the absolute contribution of such sites can be
whole length of the sequence. Uniform mutation rates worse for the new minimum than for Rm, if they have
of 5, 10, and 20 across the sequence were then used, mutated more than twice. This means that sites with
with a sample size of 50. Table 3 gives the results under extremely high mutation rates could have serious bias-
this model for different subset sizes. It shows that with ing effects on R h; however, these may be visible in prac-
these parameters, the improvement in expected mini- tice through a lack of linkage disequilibrium with nearby
mum over Rm (the first column) of the new method is sites, or more than two types may be present at these

sites. If such a site is strongly suspected to be hypermuta-about a factor of two, corresponding to detection of
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TABLE 4

The expectation and coefficient of variation for Rh for a model with 5 or 10 hypermutable sites in the region
(for details see text) and an otherwise uniform mutation rate of 10, with � � 0 or 10

Subset size
No.

� hypermutable Statistic 2 3 5 12

0 5 E (R h) 1.37 (0.00) 1.51 (0.00) 1.53 (0.00) 1.53 (0.00)
Coeff. var. 1.07 (0.00) 1.10 (0.00) 1.11 (0.00) 1.11 (0.00)

10 E (R h) 2.43 (0.00) 2.70 (0.00) 2.77 (0.00) 2.77 (0.00)
Coeff. var. 0.80 (0.00) 0.82 (0.00) 0.82 (0.00) 0.82 (0.00)

10 5 E (R h) 5.30 (4.64) 6.92 (6.12) 8.21 (7.33) 8.38 (7.49)
Coeff. var. 0.39 (0.38) 0.37 (0.37) 0.36 (0.35) 0.35 (0.35)

10 E (R h) 6.14 (4.89) 7.93 (6.44) 9.28 (7.67) 9.46 (7.81)
Coeff. var. 0.39 (0.37) 0.37 (0.36) 0.36 (0.35) 0.35 (0.35)

The sample size is fixed at 50 and the ancestral type is assumed known at each locus. The columns again
correspond to different subset parameters for the bound; thus the first column actually refers to R m; for the
other columns, a maximal subset width of 12 was used. For each parameter set, 10,000 simulated samples were
created and the estimates for the different widths are all based on this same data set. The term in parentheses
in each column gives the estimated number under an infinite-sites model with the same recombination rate
and the same overall mutation rate (including the contribution from the hypermutable sites).

ble, the best course might be to remove it before calcu- likely recombinations. Their method is not based on
finding a minimal number of recombinations, but onlating the minimum.
identifying sample members who seem likely to be re-
combinants through a statistical approach. This method

LPL DATA APPLICATION suggested that 29 recombination events were detectable
in the history of the larger sample, which includes allAs an application of the new minimum, we examined
three populations. Further, Templeton et al. (2000a,b)data corresponding to 9.7 kb of genomic DNA sequence
concluded that repeat mutation might have a significantfrom the human LPL gene. For this data, we calculated
role to play in the ancestry of the region. In particular,two lower bounds on the number of recombinations in
they suggested that repeat mutations were likely to bethe sample history: Rm of Hudson and Kaplan (1985)
common in CpG base pairs. This conclusion was ques-and one of the new statistics, R h, derived in this article.
tioned by Przeworski and Wall (2001), who foundR h was calculated using the methods described in com-
that with plausible higher mutation rates at CG dinucle-bining local recombination bounds and local re-
otides, the prior expectation was that there should becombination event bounds, and the associated bound
only around one repeat mutation event at the CpG sitesmatrix R for the data was also calculated. Algorithm 1
in the sample. This issue is of interest here, since suchwas used to give R, which for every pair of sites gives a
repeat mutations can be misinterpreted as recombina-lower bound for the number of recombination events
tion events. Recent work by Fearnhead and Donnellyin the sample history that occurred between those two
(2002) again suggests that repeat mutations are unlikelysites. R h is the bound for the whole region, correspond-
to have played a major role in the evolution of theing to the endpoint sites.
sample and specifically that it was likely that only aroundThe 9.7-kb region was sequenced by Nickerson et al.
one to five repeat mutations were in the sample history.(1998) in 71 individuals from Jackson, Mississippi; North

Templeton et al. (2000a) found that the 29 recombi-Karelia, Finland; and Rochester, Minnesota. Here we
nation events found by their method were clusteredlook at the data for each location in turn, as well as the
strongly near the center of the region, approximatelycombined data set. Sites where phase was not deter-
between sites 2987 and 4872, and suggested that thismined (at frequencies of 1 or 2 in the whole sample)
was due to an elevated rate of recombination in this area.were excluded, as were sites where the type was not
If this is the case, we would expect a similar clusteringdetermined for every individual in the sample. It should
of the recombination events detected using the newbe possible to modify the algorithms so that missing
methods between sites 2987 and 4872. Of the recombi-data of the latter type can be handled, but this has not
nation events suggested by Templeton et al. (2000a),yet been implemented.
21 of them fell within the suggested hotspot and onlyThe amount of recombination detectable for this data
8 outside. Clark et al. (1998) looked at the spread ofset has previously been analyzed by Clark et al. (1998),
recombination events detected using the algorithm ofusing Hudson and Kaplan’s Rm, and Templeton et al.

(2000a), who used a parsimony-based method to infer Hudson and Kaplan (1985) and did not find any such
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TABLE 5

The number of detected recombination events for the three data sets in the different site ranges,
calculated using R h and Algorithm 1

Site range

Region 106–2987 2987–4872 4872–9721 Full region

Jackson 10 (0.00347) 9 (0.00477) 13 (0.00268) 36 (0.00374)
Finland 2 (0.00069) 13 (0.00690) 11 (0.00227) 27 (0.00281)
Rochester 1 (0.00035) 13 (0.00690) 7 (0.00144) 21 (0.00218)
Combined 12 (0.00417) 22 (0.01167) 28 (0.00577) 70 (0.00728)

Pairs of entries give the number of detections and (in parentheses) the detections divided by the relevant
distance. The middle interval (sites 2987–4872) corresponds to the suggested recombination hotspot.

clustering. Although Templeton et al. (2000a) argued In fact, Figure 4 shows the number of detections be-
tween all pairs of sites, scaled by the distance betweenthat this was due to false positives caused by repeat
sites, for all three regions and for the combined data.mutations, an alternative explanation is that Rm simply
This is a scaled version of the matrix R calculated as incould not pick up the increased amount of recombina-
Algorithm 1. There is a clear tendency for increasedtion within a hotspot by looking only at incompatible
density of detection between pairs of sites where at leastpairs.
one site is within the central zone (between the whiteThe minimum number of recombination events found
and black pairs of lines) or the sites span this regionusing R h for each geographic location and the distribu-
(above and to the right of the black lines). This increasetion of detections within the region sequenced are sum-
is sustained even for sites some distance either side ofmarized in Table 5. The statistic was calculated using a
the central region. If there were an overwhelmingmaximal set width and subset size of 25 each (see Haplo-
amount of repeat mutation (unless this was clusteredtype bounds in local recombination event bounds for
in certain regions) it would probably be expected todetails on these parameters, the increasing of which
cloud rather than enhance any signal of increased detec-improves the quality of the bound produced). Table 5
tion in certain regions, by causing false detectionsalso shows the number of detections per site for the
throughout the region; thus the results here may be adifferent regions for each location and the combined
conservative estimate.data, calculated by simply dividing the number of detec-

tions by the distance between sites. For every region the
density of detection is higher in the suggested hotspot,

DISCUSSIONalthough the signal is weaker for the Jackson data set
(for which a number of sites within the hotspot were Assuming no repeat mutation, and with no gene con-
removed due to missing data). For the Finland and version, the new minima R h and R s presented here can
Rochester data, this increase in detection is very substan- give substantially improved bounds over the incompati-
tial, and for the overall data there is support for more bility-based measure Rm of the minimum number of
recombination in the central region. recombinations in the history of a sample. The bounds

The new minima are all much higher than the corre- developed here use more information about the sample
sponding Rm’s, which vary between 13 and 17 for the history than does the pattern of pairwise incompatibili-
three data sets, with an overall Rm of 22 for the combined ties. Moreover, with appropriate parameter choices the
data. This compares to R h � 70 when the data from all bound R h is extremely fast to compute, while still giving
three regions are taken into account, so the increase a good quality of bound; R s always gives an equal or
in detection for this data set is very substantial. One improved bound, for data sets sufficiently small for it
important proviso is that this could be an overestimate to be used. Compared to Hudson and Kaplan’s Rm statis-
of the minimum number if there has been repeat muta- tic the improvement is greatest when there is a substan-
tion; however, each repeat mutation event could be tial amount of recombination in the history of a sample
mistaken for only two recombinations at most. The Jack- or a large sample size. The new bounds are not the best
son data differ by having more detection at the 3	 end that might be theoretically obtained since it is not always
of the sequence and less within the hotspot than the possible to construct a data history with R h or R s recom-
other areas. However, there is an additional signal for binations; however, they may come close to this opti-
more detectable recombination within the central re- mum for real data samples.
gion when we consider pairs of sites spanning sites 2987– These minima can be used to obtain an instant visual

impression of where and how much recombination is4872.
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Figure 4.—Density of detected recombinations for the different regions. For each plot, the incompatibility matrix is shown
below the diagonal. Above the diagonal the matrix R is shown as calculated by Algorithm 1, with each entry scaled by the distance
between sites. Thus the color at the point (x, y) shows the number of recombinations detected between sites x and y divided by
the distance between x and y. The black and white lines show the boundaries of the suggested hotspot region (colors chosen
for contrast). Points above and to the right of these lines correspond to pairs of sites within or across the central region.

occurring in a given region. The pairwise incompatibil- ject to stochastic variation, and the distribution of segre-
gating sites within the region will also affect the patternity matrix is still important in this respect; it gives a set

of intervals in which we must put recombination events of detection; we would on the whole expect the detec-
tions per site to be increased both within and acrossto construct any history of the data. Viewing any system

of bounding Equations 2 as a generalized incompatibil- any hotspot region. This should provide a clearer signal
than incompatibilities alone would give, before the useity matrix, recombination hotspots may be indicated by

large recombination bounds across the hotspot location of more sophisticated methods (for example, simulation
studies or a likelihood analysis), to check whether anitself compared to neighboring regions. This picture is

enhanced when Algorithm 1 is employed to give a ma- observed pattern was really significant in a statistical
sense. The development of such methods will be antrix bounding the number of recombination events be-

tween every pair of segregating sites. Scaling each entry important tool in the reliable detection of local hetero-
geneity in recombination rates.by the distance between sites gives the number of de-

tected events per site, and the resulting matrix can be The method was applied to a recent data set of 9.7 kb
from the lipoprotein lipase gene. The new method de-viewed graphically (Figure 4). The idea of this scaling

is that the number of detections should increase approx- tected more than three times the amount of recombina-
tion as Rm, subject to the question of whether repeatimately linearly with distance if the recombination rate

is constant across a region. Although this is obviously mutations have an important role to play in this region.
Further, the pattern of detection across the regionnot perfect, the amount of visible recombination is sub-
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showed substantial support for the presence of an ele- els; of particular interest for human data may be models
where there is much more recombination than averagevated recombination rate in the central region, which

has been suggested by other authors; this was most at particular areas within the region. As mentioned
above, the recombination bounds are able to give atstrongly signaled between pairs of sites encompassing

this region, while the signal within the region itself was least some indication of the comparative level of recom-
bination across such hotspots relative to elsewhere inmore variable among the data sets from different geo-

graphic locations. Although the possibility of repeat mu- the region.
tation is a concern, the presence of a few repeat muta- Another question that needs studying is the effect
tion events would not bias the minima too severely, since of departures from the given assumptions, no repeat
many recombination events can be inferred for these mutations and no gene conversion, on the minima pro-
data. duced. The example here shows that repeat mutation

It is important to note, however, that the new bounds can lead to erroneously inferred recombination events.
and perhaps any parsimony bound on the number of More generally, if either can occur, the obtained mini-
recombinations in the history will miss the majority of mum may not be a true lower bound on recombination
recombination events in a sample history for realistic events, and so the sensitivity to some violation of these
mutation rates; most recombinations will go unde- assumptions is of importance. Where the assumptions
tected. Thus the minimum should not be taken as an do not hold true, Rm and R h are still valid statistics for
indicator of the number of recombinations that really performing inference, as long as the appropriate true
occurred in the history. This is a result of the fact that underlying model of the process is used for judging
many recombinations do not create a novel haplotype the values given, but such departures may reduce the
in the population across the region of consideration, information they carry about the parameters of interest.
so may be omitted from a parsimonious reconstruction In principle it should be possible to adapt the approach
of the history. Thus if we wish to estimate the rate of used here to include the possibility of inferring repeat
recombination � itself in the region, the full-likelihood mutations at certain sites (instead of recombination
methods introduced and developed by Griffiths and events), although this has not yet been attempted; this
Marjoram (1996a), Nielsen (2000), Kuhner et al. might make it possible to extract more information
(2000), and Fearnhead and Donnelly (2001) will be about the recombination history of a sample where a
the best if the data set is suitable for their use. For significant number of sites may have mutated more than
larger data sets where this is currently impossible, one once.
approach suggested and implemented by Wall (2000) The calculations of Rm, R h, and R s for this article
estimates the rate of recombination by performing maxi- were performed by a C program called RecMin.c, which
mum-likelihood estimation on summary statistics of the implements all three statistics and is available from
data. This can be much quicker than performing the full- http://www.stats.ox.ac.uk/mathgen/programs.html.
likelihood inference and enables properties of the esti-
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since (r*1 , r*2 , . . . , r*m�1) is minimal (taking this to be
the empty vector if m � 1) subject to a subset of these

APPENDIX A: PROOF OF ALGORITHM 1 conditions, we have

Before proving the optimality of the algorithm, we
�
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l�m

rlderive a few results that are needed in the proof. The
first proposition gives an alternative algorithm that can
be used to find an optimal solution vector. � �

m�1

l�1

r*l � Bm(k�1)

Proposition 6. An optimal vector for the system of (2) is
� �

k

l�1

r*l ,given by the vector (r*1 , r*2 , . . . , r*S�1) generated by the follow-
ing algorithm.

where the last line follows from (A1). Thus (r*1 , r*2 ,
1. Let k � 1. . . . , r*k ) minimizes Rk subject to the appropriate bounds
2. (Maximization step) Set r*k � max{Bi(k�1): i � 1, 2, . . . , and the lemma follows by induction. �

k}.
The lemma is useful in itself, since it means that3. (Updating step) For i � 1, 2, . . . , k and j � k � 2, k �

for any k, our solution minimizes the number Rk of3, . . . S, subtract r*k from Bij .
recombination events up to site k � 1, subject to the4. (Incrementing step) If k � S � 1, increment k by 1 and
set of bounds. The algorithm of Proposition 6 acts bygo to step 2.
sweeping through the equation system from left to right,

Proof. We prove the result using the following lemma, and at the maximization step setting successive r*k values
which gives the proposition immediately when applied equal to the smallest value needed to satisfy all the
to the case k � S � 1. � conditions whose last term is rk, the “minimum neces-

sary” at each stage. Then we decrease the remainingLemma 7. For any k � 1, 2, . . . , S � 1 the vector
bounds where there is a term in rk by r*k , reflecting the(r*1 , r*2 , . . . , r*k ) obtained using the algorithm of Proposition
fact that rk has already been chosen, in the updating6 minimizes the sum Rk � �k

l�1rl subject to those conditions of
step. The choice of starting from the left rather than(2) satisfying j � k � 1.
from the right is arbitrary; a right-to-left algorithm would

Proof. We use induction on k. The lemma is clearly lead to the same minimum, although the actual solution
true for k � 1 as in this case, only a single bound B12 is itself might be different as there is no guarantee of
used to give r*1 , and r*1 � B12 is clearly optimal with re- uniqueness. If we arrange the Bij’s in (upper triangular)
spect to this bound. Further, the only condition of (2) matrix form, then the algorithm results in a sweep across
satisfying j � 2 is on B12. the columns from left to right, at each step maximizing

for the current column and then decrementing theSuppose the lemma is true up to and including the
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appropriate entries to the right of this column. Algo- Proof of Algorithm 1. Note that the algorithm again
works by moving along columns from left to right, andrithm 1 offers a faster and more comprehensive solution

to the system, so is preferred; here we use Proposition each column of R is assigned as that column is reached.
The algorithm recursively assigns6 as a stepping stone to derive the better method. In

fact, Lemma 7 now has the following corollary, which
Rjk � max{Rji � Bik : i � j, j � 1, . . . , k � 1} . (A4)will be useful in the proof.

For the purposes of induction, suppose this results inCorollary 8. The minimum bound Rn satisfies the follow-
optimal R ·2, . . . , R ·(k�1) so the first k � 1 columns of Ring equality:
are set correctly. This is certainly true for k � 3 since
clearly R12 � B12 as set by the algorithm. By definitionRn � max

1�i1�i2�...�ik�n
��

k�1

j�1

Bijij�1� .
Rjk minimizes

�
k�1

l�j

rl (A5)Proof. Consider any collection 1 � i1 � i2 � . . . �
ik � n. Since the number of recombinations in the inter-

subject to the bounds of (2). Now those bounds Bpq withval (ij, ij�1) cannot be below Bijij�1
and the intervals (ij,

p � j or q � k can obviously always be satisfied by settingij�1) and (il, il�1) are disjoint for j � l, we must have
rp or rq, respectively, to be large enough, and such terms
will not contribute to the sum of (A5). Then in factRn � �

k�1

j�1

Bijij�1
.

minimizing this sum subject to the whole set of bounds
is equivalent to minimizing subject to those constraints

Maximizing over all such collections gives corresponding to Bpq, where j � p � q � k. This results
in an ILP of the same form as the original system; so

Rn � max
1�i1�i2�...�ik�n

��
k�1

j�1

Bijij�1� . (A2) we may apply Corollary 8 to this new problem to give
immediately

Now note that in the proof of the lemma above we work
Rjk � max

j�i1�i2�...�il�k

� �
l�1

m�1

Bimim�1�along the columns B·k from left to right. At the kth
column we always choose some constraint Bmkk , where
mk � k to be tight for the minimal solution produced. � max

j�i�k�1
� max

j�i1�i2�...�il�i

� �
l�1

m�1

Bimim�1� � Bik� (A6)
Then for the particular case k � n we may write

Rn � Bmnn � Rmn � max
j�i�k�1

(Rji � Bik), (A7)

for some 1 � mn � n. where (A6) follows by repeating the previous argument
Define j 1 � n and recursively j l�1 � mjl for l � 1. This with k replaced by i. But we know that R ·i is set correctly

will produce a strictly decreasing series of integers by the algorithm for all i � k � 1 and now comparing
bounded below by 1 and commencing at n; hence, for with (A4), we can see the algorithm assigns each Rjk and
some s � n, js � 1. Then for any l � (s � 1) we can hence R ·k correctly also. Then by induction, the whole
similarly write matrix R produced by the algorithm is correct. �

If we seek a particular solution vector that is optimal,Rjl � Bjl�1 jl � Rjl�1

it is clear from the proof of the algorithm that we recover
and so the solution given by Proposition 6 by subtracting the

consecutive elements of R 1· and setting rj � R 1(j�1) � R 1j

Rn � �
s�1

l�1

Bjl�1 jl for j � 1, 2, . . . , S � 1.

since R1 � 0. But 1 � js � js�1 � . . . � j1 � n and thus
APPENDIX B: PROOF OF PROPOSITION 2

Rn � �
s�1

l�1

Bjl�1 jl � max
1�i1�i2�...�ik�n

��
k�1

j�1

Bijij�1� . (A3) Proof. Consider any history � for the sample �, con-
sisting of an ancestral graph for the sample, with muta-
tion events placed on the branches, resulting in theEquations A2 and A3 together give the required result.
sample configuration seen in the present. We can con-

�
struct a history for �	 from this as follows. If �	 is formed

Thus we can write the optimal solution as a sum of from � through a coalescence of two type a sample
bounds corresponding to disjoint intervals. Note that members, then a history �	 for �	 is created from �
this decomposition is not necessarily unique. Since by choosing some sample member j of � of type a and
these bounds are exactly satisfied by one optimal solu- removing material only ancestral to j from the graph.

This gives a history for a reduced set of sequences, oftion, they must be satisfied in all optimal solutions.
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types identical to the members of �	, which may then of type a, sample members then form � through first
coalescing two members of type a back in time. Thisbe viewed as a possible history of �	. Otherwise, �	 is

formed from � through the removal of a noninforma- results in a set of sequences identical to the members
of �	 who may then be evolved back to their ancestortive mutation at m say from �. Since by assumption

mutations arise only once in the history, there exists a according to the history �	 (with starting point shifted
slightly backward in time). Finally, if �	 is formed fromunique branch in � containing a mutation at m. Remov-

ing this mutation from the appropriate branch will re- � through the removal of a noninformative mutation
at m from �, then there exists a unique sequence l insult in a history for a sample with types identical to the

members of � except at m, where there are no mutants, �, which is the only representative of one of the two
types present at m. l corresponds to some line l	 in �	,and so this adapted history may again be regarded as a

history for �	. Now � and �	 contain the same number where l	 is identical in type to l except at m. Form �
through first mutating the ancestral line to l, at m. Theof recombination events; minimizing this number of

recombinations over all possible histories � immedi- ancestor to l is now of the same type as l	; so again we
obtain a set identical to �	 and may use �	 exactly asately gives R�	 � R�.

Conversely, suppose we have a history �	 for the sam- before to give the history � of the original data. Then
in the same way as above we can deduce R� � R�	, givingple �	. Then we may always construct a history � for �

as follows. If �	 is formed from � through a coalescence the proposition. �


