The Annals of Mathematical Statistics
1968, Vol. 39, No. 5, 1719-1723 '

BOUNDS ON THE MOMENTS OF MARTINGALES

By S. W. DuARMADHIRARI,! V. FaBian? anp K. Joepro®

M ichigan State University and Courant Institute of Mathematical Sciences
1. Summary and related work. We prove the following
TaeoreM. Let {S., n = 1} be a martingale, Sy = 0, X, = S» — Sp=1,
Yo = E(X.") and Bom = (1/0) D 7= vvj. Then forally = 2andn = 1,2, - - -

(1.1) E(|8.") = Cn’""Byn,
where
(1.2) C, = [8(» — 1) max (1, 27%)7.

As shown by Chung ([3], pp. 348-349) an inequality of Marcinkiewicz and
Zygmund ([5], p. 87) implies that the theorem holds (possibly with a different
value of C,) whenever the X’s are independent. In the same way the above
theorem is implied by the generalization of the Marcinkiewicz-Zygmund result
given by Burkholder ([2], Theorem 9). However, our proof is elementary. Al-
though our choice of C, is not the best possible, it is explicit. For the case of inde-
pendent X’s, von Bahr ([6], p. 817) has given a bound for E(|S,|") which may
sometimes involve powers of 8,, higher than 1. Finally Doob ([4], Chapter V,
Section 7) has treated the case when the X’s form a Markov chain.

After proving some lemmata in Section 2, we give the proof of the theorem in
Section 3. The case of exchangeable random variables is dealt with in Section 4.

2. Two lemmata. We use the following two lemmata in the proof of the
theorem.

LemMa 1.0 < » < p = B0 < Bk

Proor. Observe that v%" < v,;. Therefore

B = (W ) S T A S 0T D vui = Bun

Lemma 2. Let {y., n = 1} be a sequence of non-negative numbers. Let z,

=(yp1+ -+ + ya)/n. Then for allz = 1 and forn = 1,2, ---
(2.1) g n — )% + (n — 1), < a7'n%,,

Proor. If z = 1, the lemma holds for alln. Soletz > 1. If y, = OQorn = 1
the lemma is easy to verify. So we may assume that y, > 0 and n» > 1. If, in
(2.1), we replace y; by cy:, ¢ > 0, we get an equivalent inequality. We may there-
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fore assume that ‘yn = 1. Writing A = 2,1, we see that (2.1) is equivalent to
(2.2) (n — 1)°4 + z(n — 1)* A" < 0" (n — 1)A + 1].

Write § = (n — 1) Then (2.2) is the same as

(2.3) A+ 024" < AQ + 07 4+ 0(1 + )7

If A = 0, the inequality (2.3) is immediate. So let A > 0. Then (2.3) is equiva-
lent to

(2.4) fx) =0 for z =1,
where
(2.5). f@) = 1+ 02A™) (1 + 67 — (1 +0647)

Clearly f(1) = 0. So to prove (2.4), it suffices to show that f'(z) < 0for z = 1.
We have

f@) = (1L+ 6747 + 274" log A)
(2.6) — (1 4 2047Y") log (1 + 9)]
= (14 06)™*4™(a, B),
where B = AY* and
(2.7) g(z, B) = 6(1 + logB) — (B + z0) log (1 + 6).

We note that f'(z) £ 0 < g(x, B) £ 0. Now it is easy to verify that g(z, B),
as a function of B, reaches its maximum at B = By, where

Bolog (1 + 6) = 6.
But
g(x, Bo) = fllog By — zlog (1 + 6)],

which is negative for x = 1, because of the elementary inequality [8/(1 + 6)] =
log (1 + 6) for 6 > 0. This completes the proof of the lemma.
CororLLARY. Use the notation of Lemma 2. Then, for all * = 1 and for

n = 1, 2, cee,
(2.8) 25 (G — 1)y < P

Proor. Let T, denote the left side of (2.8). The corollary holds trivially for
n = 1. Suppose it holds for n = m. Then

Tm = Tm—l + (Tm - m—l)
z-1_(z—1)/z

< (m — 1)% Yema + (m — 1)y,

x

IIA

mE 2m by Lemma, 2.

This proves the corollary.
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3. Proof of the theorem. Suppose {S,} is a given martingale. The inequality
(1.1) clearly holds if v = 2 or if 8,» = . Suppose u > 2 and B,, < . To prove
the theorem it is enough to prove (1.1) for all v £ [2, u]. Suppose we are able to
prove

(%) (1.1) holds for all v e[2, u).

Then, since |S,|” is bounded by the integrable function 1 + |S,|* for all » € [2, u),
we have
E lSnl" = lim,,” ElSnl" < hmy“;. Cynv/26m — “nuIZ -

Thus the theorem will be proved as soon as (*) is proved. This is accomplished
by induection as follows. Assuming that (1.1) holds for all v £ [2, v], with », = 2,
we show that (1.1) holds for all » & (v0, »o + €] where ¢ is a suitable positive
number. This, and the fact that (1.1) holds for » = 2, will imply (x).

By Taylor expansion, for all v & [2, p],

(3.1)  |8a]” = |Sncal” + v 520 (Sn) [Sna| ™ X + 20(» — 1)[Snes + 60X, X,
where 0 < 0 < 1. We note that
(3.2) [8n—1 + 60X, < max (1, 27 ) [|Sau| + | X777,

and that the expectation of the middle term on the right side of (3.1) is zero.
Setting

(3.3) 8 = (v — 1) max (1, 27%)

and

(3.4) An(v) = E(|Sa]” = [8nal),

we get from (3.1) and (3.2)

(3.5) Bn(v) £ 2798E(|Sna " Xn") + Yiul.
Assume that v = »; < »p < u. The Holder inequality gives

(3.6) E(|8ual"Xs") £ [E[Suca|"1® B | XA,
where '

(3.7) vo = [(nn — 2)w2)/(va — 2) < 1.

Let v & [2, u) be fixed. For any v & (v0,v0 + €|, we can choose v, using (3.7).
If eis positive and sufficiently small, then again vy < » < v £ pand (3.6) holds.
Adjusting € if necessary we can obtain v, so close to vy that, for allv, & (vo,v0 + €,

(3.8) vl < oytn
and
3.9) ve < 201 .

~ Suppose now that (1.1) holds for all » £ [2, »o]. Let »1 & (v, vo + €| with e posi-
five and determined as above. We shall show that (1.1) holds for v = »;.
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Lemma, 1 shows that 8,,, < B:%" Therefore
(3.10) QSZ%—Z)IM (ﬁ )Vo(V2—2)/(v1v2) - BS:;—Q)/H
Now (3.6) and the inductive hypothesis imply
E(|8na"7"X,")

(311) =< [Cvoﬁvo,n——l(n _ 1)vo/2](v2—2)/v2 ,Y%vz
< ORISR (n — DR (from (3.7), (3.10)]
< OB (n — 1) Py [from (3.8)].

It is seen from (1.2) and (3.3) that C, = [85,]". Therefore C, is increasing in »
and C, > 1. Hence

Cord < g _ o, o7
C, G ™ [Use (3.9)]
= C,,(85,)7"

Now the last lines of (3.11) and (3.12) yield
(313) E(ISaul""X.") = 0n(20,)7(n — 1)OPgNRA 0

From (3.5), with v = », and (3.13), we have
(3.14)  Au(m) = 2793840y (28,) 7 (0 — DB Wl 4+ oyl

From the corollary of Lemma 2, we have
(3.15) 25 (= DOTIPRIERME < 2B,
Now (3.14) and (3.15) yield

E(1Su") = 2251 8i(m)

(3.16) < 2708, [0y (28,) 72050 "By A 10y ]
2710 [ (9100,) " Con™” + M1By -

Multiplying the two inequalities (#18,,)'C,, > 1 and n’*’* = n, we see that the
second term in the bracket on the right side of (3.16) is smaller than the first.

Therefore (3.16) yields
E(8a") £ 27%6,,2(1180,) 7 Cot” 8oy m

_ v1/2
- Cl'ln vi,m e

IIA

(3.12)

This completes the proof of the theorem.

4. The case of exchangeable random variables. Our theorem has the following
* COROLLARY. Let {X, ,n = 1} be an exchangeable process with E(X:1X,) = 0.
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Let S» = D 7 X, and 8, = E(|X1|"). Then, for all v = 2 and n = 1,2, ---
E(|Sn|y) = Cvn"lz vy

with C, given by (1.2).

Proor. We shall assume that E(X,*) < o« because, otherwise, the corollary
is trivially true. In what follows equalities among random variables will mean
equalities with probability one. According to the de Finetti theorem (see also
Biihlmann [2], Theorem 2.2.1 and the remark following Corollary 2.4.2"), there
is a o-algebra § such that, given &, the X/’s are independent and identically dis-
tributed, and, with u = E(X; | F), foralln = 1,

(4.1) E(X:X,|5F) = &
(4-2) E(Xn+1 l Sa, 3:) = K.

From the assumption E(X1X,;) = 0 from (4.1) we obtain p = 0. Now (4.2)
shows that E(Xn41|Ss) = E(u|8S.) = 0. Thus {S,} is a martingale and the
theorem applies.

REMARK. The condition E(X;X,) = 0 of the corollary is necessary. Suppose
that E(X1X,) = & > 0. [It cannot be negative because of (4.1).] Then
E(82") = nBy + n(n — 1)t ~ n'%.
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